
Firewalls and Network Defense

Tadayoshi Kohno

Some slides based on Vitaly Shmatikov’s

CSE 490K

Firewalls

Trusted hosts and
networks Firewall

Router
Intranet

DMZ Demilitarized Zone:
publicly accessible
servers and networks

! Idea: separate local network from the Internet

Castle and Moat Analogy

!More like the moat around a castle than a firewall

• Restricts access from the outside

• Restricts outbound connections, too (!!)
– Important: filter out undesirable activity from internal hosts!

Firewall Locations in the Network

!Between internal LAN and external network

!At the gateways of sensitive subnetworks within
the organizational LAN

• Payroll’s network must be protected separately within
the corporate network

!On end-user machines

• “Personal firewall”

• Microsoft’s Internet Connection

 Firewall (ICF) comes standard
 with Windows XP

Firewall Types

! Packet- or session-filtering router (filter)

! Proxy gateway

• All incoming traffic is directed to firewall, all outgoing
traffic appears to come from firewall

• Application-level: separate proxy for each application

– Different proxies for SMTP (email), HTTP, FTP, etc.

– Filtering rules are application-specific

• Circuit-level: application-independent, “transparent”
– Only generic IP traffic filtering (example: SOCKS)

! Personal firewall with application-specific rules

• E.g., no outbound telnet connections from email client

Firewall Types: Illustration

Packet Filtering

! For each packet, firewall decides whether to allow
it to proceed

• Decision must be made on per-packet basis
– Stateless; cannot examine packet’s context (TCP connection,

application to which it belongs, etc.)

! To decide, use information available in the packet

• IP source and destination addresses, ports

• Protocol identifier (TCP, UDP, ICMP, etc.)

• TCP flags (SYN, ACK, RST, PSH, FIN)

• ICMP message type

! Filtering rules are based on pattern-matching

Packet Filtering Examples

Example: FTP [Wenke Lee]

“PORT 5151” !

"

“OK”

#

DATA CHANNEL

$

TCP ACK

FTP clientFTP server

20
Data

21
Command 5150 5151

! Client opens

command
channel to
server; tells
server second
port number

" Server

acknowledges

Server opens

data channel to
client’s second
port

$ Client

acknowledges

Connection from
a random port on
an external host

Disadvantages of stateless packet filters: How distinguish (3) from attack?

The following filtering rules allow a user to FTP from any IP
address to the FTP server at 172.168.10.12

access-list 100 permit tcp any gt 1023 host 172.168.10.12 eq 21
access-list 100 permit tcp any gt 1023 host 172.168.10.12 eq 20
 ! Allows packets from any client to the FTP control and data ports
access-list 101 permit tcp host 172.168.10.12 eq 21 any gt 1023
access-list 101 permit tcp host 172.168.10.12 eq 20 any gt 1023
 ! Allows the FTP server to send packets back to any IP address with TCP ports > 1023

interface Ethernet 0
 access-list 100 in ! Apply the first rule to inbound traffic
 access-list 101 out ! Apply the second rule to outbound traffic
!

FTP Packet Filter

Anything not explicitly permitted
by the access list is denied!

Weaknesses of Packet Filters

!Do not prevent application-specific attacks

• For example, if there is a buffer overflow in URL
decoding routine, firewall will not block an attack string

!No user authentication mechanisms

• … except (spoofable) address-based authentication

• Firewalls don’t have any upper-level functionality

!Vulnerable to TCP/IP attacks such as spoofing

• Solution: list of addresses for each interface (packets
with internal addresses shouldn’t come from outside)

! Security breaches due to misconfiguration

Abnormal Fragmentation

For example, ACK bit is set in both fragments,

but when reassembled, SYN bit is set

(can stage SYN flooding through firewall)

!," Send 2 fragments
with the ACK bit set;
fragment offsets are
chosen so that the full
datagram re-assembled
by server forms a packet
with the SYN bit set (the
fragment offset of the
second packet overlaps
into the space of the first
packet)

All following packets will
have the ACK bit set

!

"

Telnet ClientTelnet Server

23 1234

Allow only if ACK bit set

#

FRAG1 (with ACK)

FRAG2 (with ACK)

SYN
packet (no
ACK)

ACK

Fragmentation Attack [Wenke Lee] More Fragmentation Attacks

! Split ICMP message into two fragments, the
assembled message is too large

• Buffer overflow, OS crash

! Fragment a URL or FTP “put” command

• Firewall needs to understand application-specific
commands to catch this

!Denial of service (e.g., chargen attacks)

• “Character generation” debugging tool: connect to a
certain port and receive a stream of data

• If attacker fools it into connecting to itself, CPU locks

Stateless Filtering Is Not Enough

! In TCP connections, ports with numbers less than
1024 are permanently assigned to servers

• 20,21 for FTP, 23 for telnet, 25 for SMTP, 80 for HTTP…

!Clients use ports numbered from 1024 to 16383

• They must be available for clients to receive responses

!What should a firewall do if it sees, say, an
incoming request to some client’s port 5612?

• It must allow it: this could be a server’s response in a
previously established connection…

• …OR it could be malicious traffic

• Can’t tell without keeping state for each connection

Example: Variable Port Use

Inbound SMTP Outbound SMTP

Session Filtering

!Decision is still made separately for each packet,
but in the context of a connection

• If new connection, then check against security policy

• If existing connection, then look it up in the table and
update the table, if necessary

– Only allow incoming traffic to a high-numbered port if there is
an established connection to that port

!Hard to filter stateless protocols (UDP) and ICMP

! Typical filter: deny everything that’s not allowed

• Must be careful filtering out service traffic such as ICMP

! Filters can be bypassed with IP tunneling

Example: Connection State Table

Application-Level Gateway

! Splices and relays two application-specific connections

• Example: Web browser proxy

• Daemon spawns proxy process when communication is detected

• Big processing overhead, but can log and audit all activity

! Can support high-level user-to-gateway authentication

• Log into the proxy server with your name and password

! Simpler filtering rules than for arbitrary TCP/IP traffic

! Each application requires implementing its own proxy

Circuit-Level Gateway

! Splices two TCP connections, relays TCP segments

! Less control over data than application-level gateway

• Does not examine the contents of TCP segment

! Client’s TCP stack must be aware of the gateway

• Client applications are often adapted to support SOCKS

! Often used when internal users are trusted

• Application-level proxy on inbound connections, circuit-level proxy
on outbound connections (lower overhead)

Comparison

! Packet filter Best No No

! Session filter No Maybe

!Circuit-level gateway Yes (SOCKS) Yes

!Application-level Worst Yes Yes

 gateway

Modify client

application

Defends against

fragm. attacks
Performance

Bastion Host

!Bastion host is a hardened system implementing
application-level gateway behind packet filter

• All non-essential services are turned off

• Application-specific proxies for supported services
– Each proxy supports only a subset of application’s commands,

is logged and audited, disk access restricted, runs as a non-
privileged user in a separate directory (independent of others)

• Support for user authentication

!All traffic flows through bastion host

• Packet router allows external packets to enter only if
their destination is bastion host, and internal packets to
leave only if their origin is bastion host

Single-Homed Bastion Host Single-Homed Bastion Host

If packet filter is compromised,

traffic can flow to internal network

Dual-Homed Bastion Host

No physical connection between

internal and external networks

Screened Subnet

Only the screened subnet is visible

to the external network;

internal network is invisible

Protecting Addresses and Routes

!Hide IP addresses of hosts on internal network

• Only services that are intended to be accessed from
outside need to reveal their IP addresses

• Keep other addresses secret to make spoofing harder

!Use NAT (network address translation) to map
addresses in packet headers to internal addresses

• 1-to-1 or N-to-1 mapping

! Filter route announcements

• No need to advertise routes to internal hosts

• Prevent attacker from advertising that the shortest
route to an internal host lies through the attacker

General Problems with Firewalls

! Interfere with networked applications

!Don’t solve the real problems

• Buggy software (think buffer overflow exploits)

• Bad protocol design (think WEP in 802.11b)

!Generally don’t prevent denial of service

!Don’t prevent insider attacks

• The “wireless access points” hole

! Increasing complexity and potential for
misconfiguration

Defending Against Spam

CAN-SPAM Act (passed in 2003)

! Legal solution to the problem

• Bans email harvesting, misleading header information,
deceptive subject lines, use of proxies

• Requires opt-out and identification of advertising

• Imposes penalties (up to $11K per violation)

! FTC report on effectiveness (Dec 2005)

• 50 cases pursued in the US

• No impact on spam originating outside the US (60%)

• Open relays hosted on botnets make it difficult to
collect evidence

http://www.ftc.gov/spam

SPF (Sender Policy Framework)

Spammers put

popular domains

(e.g., hotmail.com)

as FROM sources !

hotmail flooded by

bounced responses

Used by AOL and others

SPF (Sender Policy Framework)

Spammers put

popular domains

(e.g., hotmail.com)

as FROM sources !

hotmail flooded by

bounced responses

Used by AOL and others

What if spammer gets

a throwaway domain?

Domain Keys (DKIM)

Sender’s server

has to sign email

DNS provides verification

key to the recipient

From Yahoo

S/MIME

Sender’s server

has to sign email;

includes certified

verification key

Sender obtains

public-key certificate

Encapsulating Policies in Email
Addresses

! Email addresses encode policies

! (Using crypto)

! Idea: Give different email address to different
people. Email address contained MACed
encoding of policy for that address

• Receive once

• Receive only for a specific window in time

!Generic defenses against spam and DoS

!Basic idea: sender must solve a “puzzle” before
his email or connection request is accepted

• Takes effort to solve, but solution easy to check

• Sender has to “pay” in computation time

– Example (Hashcash): find collision in a short hash

!CAPTCHA: prove that the sender is human

• Solve a “reverse Turing test”

• Only in application layer (e.g., Web)

!Both are difficult to deploy (why?)

Puzzles and CAPTCHAs

Defending Against DDoS
!Authenticate packet sources

• Not feasible with current IP (unless IPsec is used)

! Filter incoming traffic on access routers or rate-
limit certain traffic types (ICMP and SYN packets)

• Need to correctly measure normal rates first!

! Puzzles and CAPTCHAS: force clients to do an
expensive computation or prove they are human

• Honest clients can easily do this, but zombies can’t

• Requires modification of TCP/IP stack (not feasible?)

DDoS Defense Techniques

!Note: this will only locate zombies

• Forensics on zombie machines can help find masters
and the attacker who remotely controls them

!Can use existing IP routing infrastructure

• Link testing (while attack is in progress)

• Packet logging (for post-mortem path reconstruction)

!…or propose changes to routing infrastructure

• IP traceback (e.g., via packet marking) and many other
proposals

• Changing routing infrastructure is hard!

Finding Attack Sources

!Only works while attack is in progress

! Input debugging

• Victim reports attack to upstream router

• Router installs a filter for attack traffic, determines
which upstream router originated it

• Repeat upstream (requires inter-ISP cooperation)

!Controlled flooding

• Iteratively flood each incoming link of the router; if
attack traffic decreases, this must be the guilty link

– Use a form of DoS to throttle DoS traffic (!!)

• Need a good network map and router cooperation

Link Testing

!How to determine
the path traversed
by attack packets?

!Assumptions:

• Most routers remain
uncompromised

• Attacker sends many
packets

• Route from attacker
to victim remains
relatively stable

R6 R7 R8

A4 A5A1 A2 A3

R9 R10

R12

Victim

IP Traceback Problem Obvious Solution Doesn’t Work

!Obvious solution: have each router on the path
add its IP address to packet; victim will read
path from the packet

! Problem: requires space in the packet

• Paths can be long

• Current IP format provides no extra fields to store
path information

• Changes to packet format are not feasible

!DDoS involves many
packets on the same path

!With some probability,
each router marks packet
with router’s address

• Fixed space per packet

• Large number of packets
means that each router on
the path will appear in
some packet

R6 R7 R8

A4 A5A1 A2 A3

R9 R10

R12

Victim

Probabilistic Packet Marking Node and Edge Sampling

!Node sampling

• With probability p, router stores its address in packet

• Router at distance d shows up with probability p(1-p)d

! Edge sampling

• Packet stores an edge and distance since it was stored
– More space per packet, but fewer packets to reconstruct path

• With probability p, router stores the current edge and
sets distance to 0, else increments distance by 1

R

p 1-p 1-p 1-p

V

d

Authenticated Packet Marking Authenticated Packet Marking

! Packet markings not authenticated: attacker can
forge them and mislead the victim

Authenticated Packet Marking

! Packet markings not authenticated: attacker can
forge them and mislead the victim

!Digital signatures are too expensive

Authenticated Packet Marking

! Packet markings not authenticated: attacker can
forge them and mislead the victim

!Digital signatures are too expensive

!Message authentication codes (MACs)

Authenticated Packet Marking

! Packet markings not authenticated: attacker can
forge them and mislead the victim

!Digital signatures are too expensive

!Message authentication codes (MACs)

• Each router shares secret key with victim: too complex

Authenticated Packet Marking

! Packet markings not authenticated: attacker can
forge them and mislead the victim

!Digital signatures are too expensive

!Message authentication codes (MACs)

• Each router shares secret key with victim: too complex

! Time-release keys

Authenticated Packet Marking

! Packet markings not authenticated: attacker can
forge them and mislead the victim

!Digital signatures are too expensive

!Message authentication codes (MACs)

• Each router shares secret key with victim: too complex

! Time-release keys

• Each router has a sequence of keys

Authenticated Packet Marking

! Packet markings not authenticated: attacker can
forge them and mislead the victim

!Digital signatures are too expensive

!Message authentication codes (MACs)

• Each router shares secret key with victim: too complex

! Time-release keys

• Each router has a sequence of keys

• Publishes first key in digital certificate

Authenticated Packet Marking

! Packet markings not authenticated: attacker can
forge them and mislead the victim

!Digital signatures are too expensive

!Message authentication codes (MACs)

• Each router shares secret key with victim: too complex

! Time-release keys

• Each router has a sequence of keys

• Publishes first key in digital certificate

• Changes key periodically

Time-Release Key Chain

!Router creates chain of keys K0, K1, ... ,KN-1

• Select a random key KN

• Using hash function, let Kj = hash(Kj+1)

!Router publishes K0 in public certificate

!Keys will be used in order K1, K2, ...

• Given Kj, cannot predict Ki for i>j

• Given Kj, can compute K0 and check if Ki is a member

of a valid key chain

Secure Overlay Services (SOS)

!Goal: maintain access in face of DDOS attack

! Idea: move victim site to another location on
overlay network

! Separate good from bad/unknown traffic

• Authenticate human users when their traffic enters
the overlay

– Force them to solve a CAPTCHA (reverse Turing test)

• Route good traffic to new location through overlay

[Keromytis et al.]

Intrusion Detection

After All Else Fails

! Intrusion prevention

• Find buffer overflows and remove them

• Use firewall to filter out malicious network traffic

! Intrusion detection is what you do after
prevention has failed

• Detect attack in progress

– Network traffic patterns, suspicious system calls, etc.

• Discover telltale system modifications

What Should Be Detected?

!Attempted and successful break-ins

!Attacks by legitimate users

• For example, illegitimate use of root privileges

• Unauthorized access to resources and data

! Trojan horses

!Viruses and worms

!Denial of service attacks

Where Are IDS Deployed?

!Host-based

• Monitor activity on a single host

• Advantage: better visibility into behavior of individual
applications running on the host

!Network-based (NIDS)

• Often placed on a router or firewall

• Monitor traffic, examine packet headers and payloads

• Advantage: single NIDS can protect many hosts and
look for global patterns

Intrusion Detection Techniques

!Misuse detection

• Use attack “signatures” (need a model of the attack)
– Sequences of system calls, patterns of network traffic, etc.

• Must know in advance what attacker will do (how?)

• Can only detect known attacks

!Anomaly detection

• Using a model of normal system behavior, try to
detect deviations and abnormalities

– E.g., raise an alarm when a statistically rare event(s) occurs

• Can potentially detect unknown attacks

!Which is harder to do?

Misuse vs. Anomaly

! Password file modified

! Four failed login attempts

! Failed connection attempts on
50 sequential ports

! User who usually logs in around
10am from UW dorm logs in at
4:30am from a Russian IP address

! UDP packet to port 1434

! “DEBUG” in the body of an SMTP
message

Misuse vs. Anomaly

! Password file modified Misuse

! Four failed login attempts

! Failed connection attempts on
50 sequential ports

! User who usually logs in around
10am from UW dorm logs in at
4:30am from a Russian IP address

! UDP packet to port 1434

! “DEBUG” in the body of an SMTP
message

Misuse vs. Anomaly

! Password file modified Misuse

! Four failed login attempts Anomaly

! Failed connection attempts on
50 sequential ports

! User who usually logs in around
10am from UW dorm logs in at
4:30am from a Russian IP address

! UDP packet to port 1434

! “DEBUG” in the body of an SMTP
message

Misuse vs. Anomaly

! Password file modified Misuse

! Four failed login attempts Anomaly

! Failed connection attempts on
50 sequential ports

Anomaly

! User who usually logs in around
10am from UW dorm logs in at
4:30am from a Russian IP address

! UDP packet to port 1434

! “DEBUG” in the body of an SMTP
message

Misuse vs. Anomaly

! Password file modified Misuse

! Four failed login attempts Anomaly

! Failed connection attempts on
50 sequential ports

Anomaly

! User who usually logs in around
10am from UW dorm logs in at
4:30am from a Russian IP address

Anomaly

! UDP packet to port 1434

! “DEBUG” in the body of an SMTP
message

Misuse vs. Anomaly

! Password file modified Misuse

! Four failed login attempts Anomaly

! Failed connection attempts on
50 sequential ports

Anomaly

! User who usually logs in around
10am from UW dorm logs in at
4:30am from a Russian IP address

Anomaly

! UDP packet to port 1434 Misuse

! “DEBUG” in the body of an SMTP
message

Misuse vs. Anomaly

! Password file modified Misuse

! Four failed login attempts Anomaly

! Failed connection attempts on
50 sequential ports

Anomaly

! User who usually logs in around
10am from UW dorm logs in at
4:30am from a Russian IP address

Anomaly

! UDP packet to port 1434 Misuse

! “DEBUG” in the body of an SMTP
message

Not an attack!
(most likely)

Misuse Detection (Signature-Based)

! Set of rules defining a behavioral signature likely
to be associated with attack of a certain type

• Example: buffer overflow
– A setuid program spawns a shell with certain arguments

– A network packet has lots of NOPs in it

– Very long argument to a string function

• Example: SYN flooding (denial of service)

– Large number of SYN packets without ACKs coming back

– …or is this simply a poor network connection?

!Attack signatures are usually very specific and may
miss variants of known attacks

• Why not make signatures more general?

Extracting Misuse Signatures

!Use invariant characteristics of known attacks

• Bodies of known viruses and worms, port numbers of
applications with known buffer overflows, RET
addresses of overflow exploits

• Hard to handle mutations
– Polymorphic viruses: each copy has a different body

!Big research challenge: fast, automatic extraction
of signatures of new attacks

!Honeypots are useful for signature extraction

• Try to attract malicious activity, be an early target

Anomaly Detection

!Define a profile describing “normal” behavior

• Works best for “small”, well-defined systems (single
program rather than huge multi-user OS)

! Profile may be statistical

• Build it manually (this is hard)

• Use machine learning and data mining techniques

– Log system activities for a while, then “train” IDS to recognize
normal and abnormal patterns

• Risk: attacker trains IDS to accept his activity as normal
– Daily low-volume port scan may train IDS to accept port scans

! IDS flags deviations from the “normal” profile

What’s a “Profile?”

! Login and session activity

• Login and location frequency; last login; password fails;
session elapsed time; session output, CPU, I/O

!Command and program execution

• Execution frequency; program CPU, I/O, other
resources (watch for exhaustion); denied executions

! File access activity

• Read/write/create/delete frequency; records read/
written; failed reads, writes, creates, deletes; resource
exhaustion

!How to make all this auditing scalable?

Host-Based IDS

!Use OS auditing and monitoring mechanisms to
find applications taken over by attacker

• Log all system events (e.g., file accesses)

• Monitor shell commands and system calls executed by
user applications and system programs

– Pay a price in performance if every system call is filtered

Host-Based IDS

!Use OS auditing and monitoring mechanisms to
find applications taken over by attacker

• Log all system events (e.g., file accesses)

• Monitor shell commands and system calls executed by
user applications and system programs

– Pay a price in performance if every system call is filtered

!Con: need an IDS for every machine

Host-Based IDS

!Use OS auditing and monitoring mechanisms to
find applications taken over by attacker

• Log all system events (e.g., file accesses)

• Monitor shell commands and system calls executed by
user applications and system programs

– Pay a price in performance if every system call is filtered

!Con: need an IDS for every machine

!Con: if attacker takes over machine, can tamper
with IDS binaries and modify audit logs

Host-Based IDS

!Use OS auditing and monitoring mechanisms to
find applications taken over by attacker

• Log all system events (e.g., file accesses)

• Monitor shell commands and system calls executed by
user applications and system programs

– Pay a price in performance if every system call is filtered

!Con: need an IDS for every machine

!Con: if attacker takes over machine, can tamper
with IDS binaries and modify audit logs

!Con: only local view of the attack

Host-Based IDS

Level of Monitoring

!Which types of events to monitor?

• OS system calls

• Command line

• Network data (e.g., from routers and firewalls)

• Processes

• Keystrokes

• File and device accesses

Host-Based Anomaly Detection

!Compute statistics of certain system activities

!Report an alert if statistics outside range

! Example: IDES (Denning, mid-1980s)

• For each user, store daily count of certain activities

– For example, fraction of hours spent reading email

• Maintain list of counts for several days

• Report anomaly if count is outside weighted norm

Big problem: most unpredictable user is the most important

! File integrity checker

• Records hashes of critical files and binaries
– Recorded hashes must be in read-only memory (why?)

• Periodically checks that files have not been modified,
verifies sizes, dates, permission

!Good for detecting rootkits

!Can be subverted by a clever rootkit

• Install backdoor inside a continuously running system
process (no changes on disk!)

• Copy old files back into place before Tripwire runs

!How to detect modifications to running process?

Tripwire “Self-Immunology” Approach

!Normal profile: short sequences of system calls

• Use strace on UNIX

[Forrest]

… open,read,write,mmap,mmap,getrlimit,open,close …

open,read,write,mmap

read,write,mmap,mmap

 …

write,mmap,mmap,getrlimi
tmmap,mmap,getrlimit,ope
n…

remember last K events

“Self-Immunology” Approach

!Normal profile: short sequences of system calls

• Use strace on UNIX

[Forrest]

… open,read,write,mmap,mmap,getrlimit,open,close …

open,read,write,mmap

read,write,mmap,mmap

 …

write,mmap,mmap,getrlimi
tmmap,mmap,getrlimit,ope
n…

remember last K events

Compute % of traces that
have been seen before.
Is it above the threshold?

“Self-Immunology” Approach

!Normal profile: short sequences of system calls

• Use strace on UNIX

[Forrest]

… open,read,write,mmap,mmap,getrlimit,open,close …

open,read,write,mmap

read,write,mmap,mmap

 …

write,mmap,mmap,getrlimi
tmmap,mmap,getrlimit,ope
n…

remember last K events

Compute % of traces that
have been seen before.
Is it above the threshold?

Y

N

normal

abnormalRaise alarm if a high fraction of
system call sequences haven’t

been observed before

Better System Call Monitoring

!Use static analysis of source code to find out what
a normal system call sequence looks like

• Build a finite-state automaton of expected system calls

!Monitor system calls from each program

! System call automaton is conservative

• No false positives!

[Wagner and Dean]

Wagner-Dean Example

Entry(f)Entry(g)

Exit(f)Exit(g)

open
()

close
()

exit()

getuid() geteuid()

f(int x) {

 x ? getuid() : geteuid();

 x++;

}

g() {

 fd = open("foo", O_RDONLY);

 f(0); close(fd); f(1);

 exit(0);

}

If code behavior is inconsistent with this automaton, something is wrong

Network-Based IDS

! Inspect network traffic

• For example, use tcpdump to sniff packets on a router

• Passive (unlike firewalls)

• Default action: let traffic pass (unlike firewalls)

Network-Based IDS

! Inspect network traffic

• For example, use tcpdump to sniff packets on a router

• Passive (unlike firewalls)

• Default action: let traffic pass (unlike firewalls)

!Watch for protocol violations, unusual connection
patterns, attack strings in packet payloads

• Check packets against rule sets

Network-Based IDS

! Inspect network traffic

• For example, use tcpdump to sniff packets on a router

• Passive (unlike firewalls)

• Default action: let traffic pass (unlike firewalls)

!Watch for protocol violations, unusual connection
patterns, attack strings in packet payloads

• Check packets against rule sets

!Con: can’t inspect encrypted traffic (IPSec, VPNs)

Network-Based IDS

! Inspect network traffic

• For example, use tcpdump to sniff packets on a router

• Passive (unlike firewalls)

• Default action: let traffic pass (unlike firewalls)

!Watch for protocol violations, unusual connection
patterns, attack strings in packet payloads

• Check packets against rule sets

!Con: can’t inspect encrypted traffic (IPSec, VPNs)

!Con: not all attacks arrive from the network

Network-Based IDS

! Inspect network traffic

• For example, use tcpdump to sniff packets on a router

• Passive (unlike firewalls)

• Default action: let traffic pass (unlike firewalls)

!Watch for protocol violations, unusual connection
patterns, attack strings in packet payloads

• Check packets against rule sets

!Con: can’t inspect encrypted traffic (IPSec, VPNs)

!Con: not all attacks arrive from the network

!Con: record and process huge amount of traffic

Network-Based IDS

!Date: Fri, 19 Mar 2004

!Quote from email:
 “The campus switches have been bombarded with these packets

[…] and apparently 3Com switches reset when they get these
packets. This has caused the campus backbone to be up and
down most of yesterday. The attack seems to start with
connection attempts to port 1025 (Active Directory logon, which
fails), then 6129 (DameWare backdoor, which fails), then 80
(which works as the 3Com’s support a web server, which can’t be
disabled as far as we know). The HTTP command starts with
‘SEARCH /\x90\x02\xb1\x02’ […] then goes off into a continual
pattern of ‘\x90’ ”

U. of Toronto, 2004 (from David Lie)

! Snort (popular open-source tool)

• Large rule sets for known vulnerabilities
– 2007-03-22: Microsoft Windows Server Service Controller is prone to a

buffer overflow vulnerability that may allow an attacker to take complete
control of the target host.

– 2007-03-08: The HP Mercury LoadRunner agent suffers from a
programming error that may allow a remote attacker to cause a stack-based
buffer overflow condition to occur.

!Bro (from Vern Paxson at LBL)

• Separates data collection and security decisions

– Event Engine distills the packet stream into high-level events
describing what’s happening on the network

– Policy Script Interpeter uses a script defining the network’s
security policy to decide what to do in response

Popular NIDS

Irony and NIDS

Sourcefire Snort Remote Buffer Overflow

!Notification Type: IBM Internet Security
Systems Protection Advisory

!Notification Date: Feb 19, 2007

!Description: Snort IDS and Sourcefire Intrusion
Sensor IDS/IPS are vulnerable to a stack-based
buffer overflow, which can result in remote code
execution.

 … patched since then (phew!)

Port Scanning

!Many vulnerabilities are OS specific

• Bugs in specific implementations

• Oversights in default configuration

! Port scan is often a prelude to an attack

• Attacker tries many ports on many IP addresses

– For example, looking for an old version of some daemon with
an unpatched buffer overflow

• If characteristic behavior detected, mount attack
– Example: SGI IRIX responds on TCPMUX port (TCP port 1); if

response detected, IRIX vulnerabilities can used to break in

Scanning Defense

! Scan suppression: block traffic from addresses
that previously produced too many failed
connection attempts

• Goal: detect port scans from attacker-controlled hosts

• Requires network filtering and maintaining state

• Can be subverted by slow scanning; does not work
very well if the origin of scan is far away (why?)

! False positives are common, too

• Website load balancers, stale IP caches

– E.g., dynamically get an IP address that was used by P2P host

!Overload NIDS with huge data streams, then
attempt the intrusion

• Bro solution: watchdog timer
– Check that all packets are processed by Bro within T seconds;

if not, terminate Bro, use tcpdump to log all subsequent traffic

!Use encryption to hide packet contents

! Split malicious data into multiple packets

• NIDS does not have full TCP state and does not always
understand every command of receiving application

• Simple example: send “ROB<BS><BS>OT”,
receiving application may reassemble to “ROOT”

Attacking and Evading NIDS

