
Tadayoshi Kohno

CSE 490K Lecture 13

Network Security
(TCP/IP and DNS)

Some slides based on Dan Boneh’s and Vitaly Shmatikov’s

Programming Project #2

! Out today, Tuesday, May 8

! Due Thursday, May 24, 11:59pm

• Submit via Catalyst system

! Teams of up to three people

• New teams OK (old teams also OK)

! Basic idea: Implement a “Man-in-the-Middle” attack
against SSL

! Recall Security and Privacy Code of Ethics form

! Based on Dan Boneh’s CS255 project (Stanford)
• Slides: http://crypto.stanford.edu/~dabo/cs255/

proj2_pres.pdf

Overview

!MITM attack against SSL

• Not at network layer (not re-writing packets, etc)

• At SSL Proxy Layer, in Java
– Networking

– SSL

– Certificates

! Password-based authentication for MITM server

• Hashed, salted passwords

• Password file encrypted with an authenticated
encryption scheme.

Overview

!Normal SSL

• SSL encrypted data routed like normal TCP/IP over
Internet

Client
SSL webserver

Internet

Proxy Server

!Browser connects to proxy

! Proxy connects to web server and forwards
between the two

Internet

Client

Proxy

“Man in the Middle”

! Instead of forwarding encrypted data between
the two hosts, the proxy will set up two different
SSL connections

• Proxy <--> Remote Server
– Normal SSL client connection to remote site

• Proxy <--> Browser

– SSL server connection to the browser, using its own
certificate, with some data cloned from the remote hosts’
certificate

– If browser accepts this fake certificate, the proxy has access
to the data in the clear!

What we provided

!Basic Proxy Server setup

• Parses CONNECT request and sets up a connection
between client and remote server

!Basic Admin Server/Client

• Server listens for connections on plain socket and
parses out username/password/command that client
sends

Basic Admin Server/Client

!Goal: Experience in adding security features to
an application

• Secure connection between admin client and proxy
server using SSL

• Password based authentication for client
– Secure storage of password file (authenticated encryption)

– Passwords stored, hashed, using public and private salt

• Extra credit: Challenge / Response authentication

– In addition to password authentication, not instead of.

Proxy Server

!Already listens for browser CONNECT requests
and sets up the needed SSL connections

! You should

• Understand the connections being made

• Obtain the remote server certificate from the remote
SSL connection

• Copy the relevant fields and sign a forged certificate
using your CA cert (from your keystore); use IAIK

• Modify the code creating the client SSL connection to
use the newly forged certificate

Signing Certificate

!Build a self-signed certificate for the proxy
server (the proxy server’s “CA” certificate)

• keytool -genkey -keyalg RSA

• Store this in a JKS keystore for use by your proxy
server

• Use it for signing your programmatically generated
certs

• Your proxy pretends to be the CA

! Submit a keystore with your project

Generating Certs “On the Fly”

!Not easy to generate certificates
programmatically using standard Java libraries

! Instead, use the IAIK-JCE library

• iaik.x509.X509Certificate (class)

iaik.x509.X509Certificate

! To convert from a java certificate:

• new X509Certificate(javaCert.getEncoded());

! Signing

• cert.sign(AlgorithmID.sha256withRSAEncryption,
issuerPk);

! See iaik.asn1.structures.Name

• For extracting info (e.g., common name) from the
certificate’s distinguished name (cert.getSubjectDN())

Managing Certs and SSL Sockets

! Use the KeyStore class for

• Loading certificates from file (e.g., your CA certificate)

• Storing programmatically generated certificates

! Use SSLContext class for setting up certificates to

be used with SSLServerSocket

• Create a certificate

• Load into new KeyStore

• Init a KeyManagerFactory with new KeyStore

• Init SSLContext with new KeyManagerFactory and

provided “TrustEveryone” TrustManager

! Use SSLContext for creating SSLSocketFactories

! See MITMSSLSocketFactory.java

Admin Server

!Already listens for client connections and parses
the data sent using plain sockets

! You should

• Modify code to use SSL sockets (see the proxy server
code for examples)

• Implement authentication for the transmitted
username and password

• Implement required admin commands

– Shutdown

– Stats

Password file

!Need to store a file containing usernames, salts,
and hashed passwords

• Both public and secret salts (aka pepper)

! Should be stored encrypted with an
authenticated encryption scheme

• I recommend Encrypt-then-MAC

• Maybe AES in CTR mode to Encrypt, and HMAC-SHA1
to MAC

• But be careful about security!!

Username Salt Hashed password

Alice S H(Pwd||S||P)

Bob

Password File Utility

! You should add a utility for creating these
password files

! Simple method:

• Make a class to take a file and a list of usernames
and passwords, and covert it to a password file.

Configuring Firefox (under OS X,
similar for Linux)

When going to https://www.cs.washington.edu When going to https://www.cs.washington.edu

When going to https://www.cs.washington.edu

Identical in sample code
(uses same cert for all

websites)

Sample code causes this second warning

Your job - new certificates, avoid second warning
Possible Problems

! You should be able to start up the proxy and

connect to it “out of the box”

• After you create your keystore with “keytool”

! If you are having problems

• Is someone else trying to use your machine and that

port? (Default 8001.)

– Try a different port on the command line

• Firewall problems

– Try to telnet to the needed ports (8001/8002/...)

• Try running your browser on the same machine, and

setting the proxy as “localhost”

! Course mailing list: Great place to share

knowledge

Attacks on TCP/IP and DNS

Internet Infrastructure

local network

Internet service
provider (ISP)

backbone

ISP

local network

! TCP/IP for packet routing and connections

! Border Gateway Protocol (BGP) for route discovery

! Domain Name System (DNS) for IP address discovery

OSI Protocol Stack

application

presentation

session

transport

network

data link

physical

IP

TCP

email, Web, NFS

RPC

Ethernet

Data Formats

Application data

dataTCP
header dataTCP

header dataTCP
header

dataTCP
header

IP
header

dataTCP
header

IP
header

Ethernet
header

Ethernet
trailer

application
layer

transport
layer

network
layer

data link
layer

message

segment

packet

frame

TCP (Transmission Control Protocol)

! Sender: break data into packets

• Sequence number is attached to every packet

!Receiver: reassemble packets in correct order

• Acknowledge receipt; lost packets are re-sent

!Connection state maintained on both sides

book
remember received pages

and reassemblemail each
page

IP (Internet Protocol)

!Connectionless

• Unreliable, “best-effort” protocol

!Uses numeric addresses for routing

• Typically several hops in the route

Alice’s computer

Alice’s ISP

Bob’s ISP

Bob’s computer

Packet

Source 128.83.130.239

171.64.66.201

3

Dest

Seq
128.83.130.239

171.64.66.201

IP Routing

!Routing of IP packets is based on IP addresses

!Routers use a forwarding table

• Entry = destination, next hop, network interface, metric

• For each packet, a table look-up is performed to
determine how to route it

!Routing information exchange allows update of
old routes and creation of new ones

• RIP (Routing Information Protocol)

• OSPF (Open Shortest Path First Protocol)

• BGP (Border Gateway Protocol)

Routing Attacks

! Source routing

• Source of the packet specifies a particular route
– For example, because the automatic route is dead

• Attacker can spoof source IP address and use source
routing to direct response through a compromised host

• Solution: reject packets with source routing!

– More heavy-duty: allow source route only via trusted gateways

!Routing Information Protocol (RIP)

• Use bogus routing updates to intercept traffic
– RIP implicitly assumes that routers are trusted

• “Black hole” attacks and many others

BGP Misconfiguration

!Domain advertises good routes to addresses it
does not known how to reach

• Result: packets go into a network “black hole”

!April 25, 1997: “The day the Internet died”

• AS7007 (Florida Internet Exchange) de-aggregated the
BGP route table and re-advertised all prefixes as if it
originated paths to them

• In effect, AS7007 was advertising that it has the best
route to every host on the Internet

• Huge network instability as incorrect routing data
propagated and routers crashed under traffic

ICMP (Control Message Protocol)

! Provides feedback about network operation

• “Out-of-band” messages carried in IP packets

• Error reporting, congestion control, reachability, etc.

! Example messages:

• Destination unreachable

• Time exceeded

• Parameter problem

• Redirect to better gateway

• Reachability test (echo / echo reply)

• Message transit delay (timestamp request / reply)

Security Issues in TCP/IP

!Network packets pass by untrusted hosts

• Eavesdropping (packet sniffing)

! IP addresses are public

• Smurf attacks

! TCP connection requires state

• SYN flooding

! TCP state is easy to guess

• TCP spoofing and connection hijacking

 network

Packet Sniffing

!Many applications send data unencrypted

• ftp, telnet send passwords in the clear

!Network interface card (NIC) in “promiscuous
mode” reads all passing data

Solution: encryption (e.g., IPSec), improved routing

Smurf Attack

gateway victi
m

1 ICMP Echo Req
Src: victim’s address
Dest: broadcast address

Looks like a legitimate

“Are you alive?” ping

request from the victim

Every host on the network
generates a ping (ICMP
Echo Reply) to victim

Stream of ping replies
overwhelms victim

Solution: reject external packets to broadcast addresses

“Ping of Death”

! If an old Windows machine received an ICMP
packet with a payload longer than 64K, machine
would crash or reboot

• Programming error in older versions of Windows

• Packets of this length are illegal, so programmers of
Windows code did not account for them

!Recall “security theme” of this course - every line
of code might be the target of an adversary

Solution: patch OS, filter out ICMP packets

TCP Handshake

C S

SYNC

SYNS, ACKC

ACKS

Listening…

Store data

(connection state, etc.)

Wait

Connected

SYN Flooding Attack

S

SYNC1 Listening…

Spawn a new thread,

store connection data
SYNC2

SYNC3

SYNC4

SYNC5

… and more

… and more

… and more

… and more

… and more

SYN Flooding Explained

!Attacker sends many connection requests with
spoofed source addresses

!Victim allocates resources for each request

• Connection state maintained until timeout

• Fixed bound on half-open connections

!Once resources exhausted, requests from
legitimate clients are denied

! This is a classic denial of service (DoS) attack

• Common pattern: it costs nothing to TCP initiator to
send a connection request, but TCP responder must
allocate state for each request (asymmetry!)

Preventing Denial of Service

!DoS is caused by asymmetric state allocation

• If responder opens a state for each connection
attempt, attacker can initiate thousands of connections
from bogus or forged IP addresses

!Cookies ensure that the responder is stateless
until initiator produced at least 2 messages

• Responder’s state (IP addresses and ports of the con-
nection) is stored in a cookie and sent to initiator

• After initiator responds, cookie is regenerated and
compared with the cookie returned by the initiator

SYN Cookies
[Bernstein and Schenk]

C S

SYNC Listening…

Does not store state

F(source addr, source port,
 dest addr, dest port,
 coarse time, server secret)

SYNS, ACKC

sequence # = cookie

Cookie must be unforgeable

 and tamper-proof (why?)

Client should not be able

 to invert a cookie (why?)

F=Rijndael or crypto hash

Recompute cookie,
compare with with the one
received, only establish
connection if they match

ACKS(cookie)

Compatible with standard TCP;
simply a “weird” sequence number scheme

More info: http://cr.yp.to/syncookies.html

Anti-Spoofing Cookies: Basic Pattern

!Client sends request (message #1) to server

! Typical protocol:

• Server sets up connection, responds with message #2

• Client may complete session or not (potential DoS)

!Cookie version:

• Server responds with hashed connection data instead
of message #2

• Client confirms by returning hashed data
– If source IP address is bogus, attacker can’t confirm

• Need an extra step to send postponed message #2,
except in TCP (SYN-ACK already there)

Another Defense: Random Deletion

121.17.182.45

231.202.1.16

121.100.20.14

5.17.95.155

SYNC

! If SYN queue is full, delete random entry

• Legitimate connections have a chance to complete

• Fake addresses will be eventually deleted

! Easy to implement

half-open connections

TCP Connection Spoofing

! Each TCP connection has an associated state

• Sequence number, port number

! TCP state is easy to guess

• Port numbers are standard, sequence numbers are
often predictable

• Can inject packets into existing connections

! If attacker knows initial sequence number and
amount of traffic, can guess likely current number

• Send a flood of packets with likely sequence numbers

“Blind” IP Spoofing Attack

Trusted connection between Alice and Bob
uses predictable sequence numbers

Alice Bob

! SYN-flood Bob’s queue

" Send packets to Alice that
 resemble Bob’s packets

Open connection to Alice to
 get initial sequence number

! Can’t receive packets sent to Bob, but maybe can penetrate Alice’s
computer if Alice uses IP address-based authentication

• For example, rlogin and many other remote access programs uses

address-based authentication

DoS by Connection Reset

! If attacker can guess current sequence number
for an existing connection, can send Reset packet
to close it

• With 32-bit sequence numbers, probability of guessing
correctly is 1/232 (not practical)

• Most systems accept large windows of sequence
numbers ! much higher probability of success

– Need large windows to handle massive packet losses

User Datagram Protocol (UDP)

!UDP is a connectionless protocol

• Simply send datagram to application process at the
specified port of the IP address

• Source port number provides return address

• Applications: media streaming, broadcast

!No acknowledgement, no flow control, no
message continuation

!Denial of service by UDP data flood

Countermeasures

!Above transport layer: Kerberos

• Provides authentication, protects against spoofing

• Does not protect against connection hijacking

!Above network layer: SSL/TLS and SSH

• Protects against connection hijacking and injected data

• Does not protect against DoS by spoofed packets

!Network (IP) layer: IPSec

• Protects against hijacking, injection, DoS using
connection resets, IP address spoofing

DNS: Domain Name Service

Client
Local

DNS recursive
resolver

root & edu
DNS server

washington.edu
DNS server

www.cs.washington.edu

NS washington.edu
www.cs.w

ashington.edu

NS cs.washington.edu

www=IPaddr
cs.washington.edu

DNS server

DNS maps symbolic names to numeric IP addresses

(for example, www.cs.washington.edu " 128.208.3.88)

DNS Caching

!DNS responses are cached

• Quick response for repeated translations

• Other queries may reuse some parts of lookup
– NS records for domains

!DNS negative queries are cached

• Don’t have to repeat past mistakes

– For example, misspellings

!Cached data periodically times out

• Lifetime (TTL) of data controlled by owner of data

• TTL passed with every record

DNS Vulnerabilities

!DNS host-address mappings are not authenticated

!DNS implementations have vulnerabilities

• Reverse query buffer overrun in old releases of BIND
– Gain root access, abort DNS service…

• MS DNS for NT 4.0 crashes on chargen stream

– telnet ntbox 19 | telnet ntbox 53

!Denial of service is a risk

• Oct ’02: ICMP flood took out 9 root servers for 1 hour

Reverse DNS Spoofing

! Trusted access is often based on host names

• E.g., permit all hosts in .rhosts to run remote shell

!Network requests such as rsh or rlogin arrive from
numeric source addresses

• System performs reverse DNS lookup to determine
requester’s host name and checks if it’s in .rhosts

! If attacker can spoof the answer to reverse DNS
query, he can fool target machine into thinking
that request comes from an authorized host

• No authentication for DNS responses and typically no
double-checking (numeric # symbolic # numeric)

Other DNS Risks

!DNS cache poisoning

• False IP with a high time-to-live will stay in the cache of
the DNS server for a long time

• Basis of pharming

! Spoofed ICANN registration and domain hijacking

• Authentication of domain transfers based on email addr

• Aug ’04: teenager hijacks eBay’s German site

• Jan ’05: hijacking of panix.com (oldest ISP in NYC)
– "The ownership of panix.com was moved to a company in Australia, the actual

DNS records were moved to a company in the United Kingdom, and
Panix.com's mail has been redirected to yet another company in Canada."

!Misconfiguration and human error

JavaScript/DNS Intranet attack (I)

JavaScript/DNS Intranet attack (I)

!Consider a Web server intra.good.net

JavaScript/DNS Intranet attack (I)

!Consider a Web server intra.good.net

• IP: 10.0.0.7, inaccessible outside good.net network

JavaScript/DNS Intranet attack (I)

!Consider a Web server intra.good.net

• IP: 10.0.0.7, inaccessible outside good.net network

• Hosts sensitive CGI applications

JavaScript/DNS Intranet attack (I)

!Consider a Web server intra.good.net

• IP: 10.0.0.7, inaccessible outside good.net network

• Hosts sensitive CGI applications

!Attacker at evil.org gets good.net user to
browse www.evil.org

JavaScript/DNS Intranet attack (I)

!Consider a Web server intra.good.net

• IP: 10.0.0.7, inaccessible outside good.net network

• Hosts sensitive CGI applications

!Attacker at evil.org gets good.net user to
browse www.evil.org

! Places Javascript on www.evil.org that
accesses sensitive application on intra.good.net

JavaScript/DNS Intranet attack (I)

!Consider a Web server intra.good.net

• IP: 10.0.0.7, inaccessible outside good.net network

• Hosts sensitive CGI applications

!Attacker at evil.org gets good.net user to
browse www.evil.org

! Places Javascript on www.evil.org that
accesses sensitive application on intra.good.net

• This doesn’t work because Javascript is subject to
“same-origin” policy

JavaScript/DNS Intranet attack (I)

!Consider a Web server intra.good.net

• IP: 10.0.0.7, inaccessible outside good.net network

• Hosts sensitive CGI applications

!Attacker at evil.org gets good.net user to
browse www.evil.org

! Places Javascript on www.evil.org that
accesses sensitive application on intra.good.net

• This doesn’t work because Javascript is subject to
“same-origin” policy

• … but the attacker controls evil.org DNS

JavaScript/DNS Intranet attack (II)

good.net

browser
Evil.org

DNS

Lookup www.evil.org

222.33.44.55

Evil.org

Web

GET /, host www.evil.org

Response

Evil.org

DNS

Lookup www.evil.org

10.0.0.7

Web

POST /cgi/app, host www.evil.org

Response

– short ttl

Intra.good.net

10.0.0.7
– compromise!

Drive-by pharming

Reference: http://www.cs.indiana.edu/pub/techreports/TR641.pdf

Drive-by pharming

Reference: http://www.cs.indiana.edu/pub/techreports/TR641.pdf

Assumes router has

default password

Reference: http://www.cs.indiana.edu/pub/techreports/TR641.pdf Reference: http://www.cs.indiana.edu/pub/techreports/TR641.pdf

DNSSEC

!Goals: authentication and integrity of DNS
requests and responses

! PK-DNSSEC (public key)

• DNS server signs its data (can be done in advance)

! SK-DNSSEC (symmetric key)

• Encryption and MAC: Ek(m, MAC(m))

• Each message contains a nonce to avoid replay

• Each DNS node shares a symmetric key with its parent

• Zone root server has a public key (hybrid approach)

