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CSE 490K Lecture 13

Network Security
(TCP/IP and DNS)

Some slides based on Dan Boneh’s and Vitaly Shmatikov’s

Programming Project #2

! Out today, Tuesday, May 8

! Due Thursday, May 24, 11:59pm

• Submit via Catalyst system

! Teams of up to three people

• New teams OK (old teams also OK)

! Basic idea:  Implement a “Man-in-the-Middle” attack 
against SSL

! Recall Security and Privacy Code of Ethics form

! Based on Dan Boneh’s CS255 project (Stanford)
• Slides:  http://crypto.stanford.edu/~dabo/cs255/

proj2_pres.pdf

Overview

!MITM attack against SSL

• Not at network layer (not re-writing packets, etc)

• At SSL Proxy Layer, in Java
– Networking

– SSL

– Certificates

! Password-based authentication for MITM server

• Hashed, salted passwords

• Password file encrypted with an authenticated 
encryption scheme.

Overview

!Normal SSL

• SSL encrypted data routed like normal TCP/IP over 
Internet

Client
SSL webserver

Internet

Proxy Server

!Browser connects to proxy

! Proxy connects to web server and forwards 
between the two

Internet

Client

Proxy

“Man in the Middle”

! Instead of forwarding encrypted data between 
the two hosts, the proxy will set up two different 
SSL connections

• Proxy <--> Remote Server
– Normal SSL client connection to remote site

• Proxy <--> Browser

– SSL server connection to the browser, using its own 
certificate, with some data cloned from the remote hosts’ 
certificate

– If browser accepts this fake certificate, the proxy has access 
to the data in the clear! 



What we provided

!Basic Proxy Server setup

• Parses CONNECT request and sets up a connection 
between client and remote server

!Basic Admin Server/Client

• Server listens for connections on plain socket and 
parses out username/password/command that client 
sends

Basic Admin Server/Client

!Goal:  Experience in adding security features to 
an application

• Secure connection between admin client and proxy 
server using SSL

• Password based authentication for client
– Secure storage of password file (authenticated encryption)

– Passwords stored, hashed, using public and private salt

• Extra credit:  Challenge / Response authentication

– In addition to password authentication, not instead of.

Proxy Server

!Already listens for browser CONNECT requests 
and sets up the needed SSL connections

! You should

• Understand the connections being made

• Obtain the remote server certificate from the remote 
SSL connection

• Copy the relevant fields and sign a forged certificate 
using your CA cert (from your keystore); use IAIK

• Modify the code creating the client SSL connection to 
use the newly forged certificate

Signing Certificate

!Build a self-signed certificate for the proxy 
server (the proxy server’s “CA” certificate)

• keytool -genkey -keyalg RSA

• Store this in a JKS keystore for use by your proxy 
server

• Use it for signing your programmatically generated 
certs

• Your proxy pretends to be the CA

! Submit a keystore with your project

Generating Certs “On the Fly”

!Not easy to generate certificates 
programmatically using standard Java libraries

! Instead, use the IAIK-JCE library

• iaik.x509.X509Certificate (class)

iaik.x509.X509Certificate

! To convert from a java certificate:

• new X509Certificate(javaCert.getEncoded());

! Signing

• cert.sign(AlgorithmID.sha256withRSAEncryption, 
issuerPk);

! See iaik.asn1.structures.Name

• For extracting info (e.g., common name) from the 
certificate’s distinguished name (cert.getSubjectDN())



Managing Certs and SSL Sockets

! Use the KeyStore class for

• Loading certificates from file (e.g., your CA certificate)

• Storing programmatically generated certificates

! Use SSLContext class for setting up certificates to 

be used with SSLServerSocket

• Create a certificate

• Load into new KeyStore

• Init a KeyManagerFactory with new KeyStore

• Init SSLContext with new KeyManagerFactory and 

provided “TrustEveryone” TrustManager

! Use SSLContext for creating SSLSocketFactories

! See MITMSSLSocketFactory.java

Admin Server

!Already listens for client connections and parses 
the data sent using plain sockets

! You should

• Modify code to use SSL sockets (see the proxy server 
code for examples)

• Implement authentication for the transmitted 
username and password

• Implement required admin commands

– Shutdown

– Stats

Password file

!Need to store a file containing usernames, salts, 
and hashed passwords

• Both public and secret salts (aka pepper)

! Should be stored encrypted with an 
authenticated encryption scheme

• I recommend Encrypt-then-MAC

• Maybe AES in CTR mode to Encrypt, and HMAC-SHA1 
to MAC

• But be careful about security!!

Username Salt Hashed password

Alice S H(Pwd||S||P)

Bob ... ...

Password File Utility

! You should add a utility for creating these 
password files

! Simple method:

• Make a class to take a file and a list of usernames 
and passwords, and covert it to a password file.

Configuring Firefox (under OS X, 
similar for Linux)



When going to https://www.cs.washington.edu When going to https://www.cs.washington.edu

When going to https://www.cs.washington.edu

Identical in sample code
(uses same cert for all 

websites) 

Sample code causes this second warning

Your job - new certificates, avoid second warning
Possible Problems

! You should be able to start up the proxy and 

connect to it “out of the box”

• After you create your keystore with “keytool”

! If you are having problems

• Is someone else trying to use your machine and that 

port?  (Default 8001.)

– Try a different port on the command line

• Firewall problems

– Try to telnet to the needed ports (8001/8002/...)

• Try running your browser on the same machine, and 

setting the proxy as “localhost”

! Course mailing list:  Great place to share 

knowledge



Attacks on TCP/IP and DNS

Internet Infrastructure

local network

Internet service
provider (ISP)

backbone

ISP

local network

! TCP/IP for packet routing and connections

! Border Gateway Protocol (BGP) for route discovery

! Domain Name System (DNS) for IP address discovery

OSI Protocol Stack
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Application data

dataTCP
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TCP (Transmission Control Protocol)

! Sender: break data into packets

• Sequence number is attached to every packet

!Receiver: reassemble packets in correct order

• Acknowledge receipt; lost packets are re-sent

!Connection state maintained on both sides

book
remember received pages

and reassemblemail each
page

IP (Internet Protocol)

!Connectionless

• Unreliable, “best-effort” protocol

!Uses numeric addresses for routing

• Typically several hops in the route

Alice’s computer

Alice’s ISP

Bob’s ISP

Bob’s computer

Packet

Source 128.83.130.239

171.64.66.201

3

Dest

Seq
128.83.130.239

171.64.66.201



IP Routing

!Routing of IP packets is based on IP addresses

!Routers use a forwarding table

• Entry = destination, next hop, network interface, metric

• For each packet, a table look-up is performed to 
determine how to route it

!Routing information exchange allows update of 
old routes and creation of new ones

• RIP (Routing Information Protocol)

• OSPF (Open Shortest Path First Protocol)

• BGP (Border Gateway Protocol)

Routing Attacks

! Source routing

• Source of the packet specifies a particular route
– For example, because the automatic route is dead

• Attacker can spoof source IP address and use source 
routing to direct response through a compromised host

• Solution: reject packets with source routing!

– More heavy-duty: allow source route only via trusted gateways

!Routing Information Protocol (RIP)

• Use bogus routing updates to intercept traffic 
– RIP implicitly assumes that routers are trusted

• “Black hole” attacks and many others

BGP Misconfiguration

!Domain advertises good routes to addresses it 
does not known how to reach

• Result: packets go into a network “black hole”

!April 25, 1997: “The day the Internet died”

• AS7007 (Florida Internet Exchange) de-aggregated the 
BGP route table and re-advertised all prefixes as if it 
originated paths to them

• In effect, AS7007 was advertising that it has the best 
route to every host on the Internet

• Huge network instability as incorrect routing data 
propagated and routers crashed under traffic

ICMP (Control Message Protocol)

! Provides feedback about network operation

• “Out-of-band” messages carried in IP packets

• Error reporting, congestion control, reachability, etc.

! Example messages:

• Destination unreachable

• Time exceeded

• Parameter problem

• Redirect to better gateway

• Reachability test (echo / echo reply)

• Message transit delay (timestamp request / reply)

Security Issues in TCP/IP

!Network packets pass by untrusted hosts

• Eavesdropping (packet sniffing)

! IP addresses are public

• Smurf attacks

! TCP connection requires state

• SYN flooding

! TCP state is easy to guess

• TCP spoofing and connection hijacking

     network

Packet Sniffing

!Many applications send data unencrypted

• ftp, telnet send passwords in the clear

!Network interface card (NIC) in “promiscuous 
mode” reads all passing data

Solution: encryption (e.g., IPSec), improved routing



Smurf Attack

gateway victi
m

1 ICMP Echo Req
Src: victim’s address
Dest: broadcast address

Looks like a legitimate

“Are you alive?” ping

request from the victim

Every host on the network
generates a ping (ICMP
Echo Reply) to victim

Stream of ping replies
overwhelms victim

Solution: reject external packets to broadcast addresses

“Ping of Death”

! If an old Windows machine received an ICMP 
packet with a payload longer than 64K, machine 
would crash or reboot

• Programming error in older versions of Windows

• Packets of this length are illegal, so programmers of 
Windows code did not account for them

!Recall “security theme” of this course - every line 
of code might be the target of an adversary

Solution: patch OS, filter out ICMP packets

TCP Handshake

C S

SYNC

SYNS, ACKC

ACKS

Listening…

Store data

(connection state, etc.)

Wait

Connected

SYN Flooding Attack

S

SYNC1 Listening…

Spawn a new thread,

store connection data
SYNC2

SYNC3

SYNC4

SYNC5

… and more

… and more

… and more

… and more

… and more

SYN Flooding Explained

!Attacker sends many connection requests with 
spoofed source addresses

!Victim allocates resources for each request

• Connection state maintained until timeout

• Fixed bound on half-open connections

!Once resources exhausted, requests from 
legitimate clients are denied

! This is a classic denial of service (DoS) attack

• Common pattern: it costs nothing to TCP initiator to 
send a connection request, but TCP responder must 
allocate state for each request (asymmetry!)

Preventing Denial of Service

!DoS is caused by asymmetric state allocation

• If responder opens a state for each connection 
attempt, attacker can initiate thousands of connections 
from bogus or forged IP addresses

!Cookies ensure that the responder is stateless 
until initiator produced at least 2 messages

• Responder’s state (IP addresses and ports of the con-
nection) is stored in a cookie and sent to initiator

• After initiator responds, cookie is regenerated and 
compared with the cookie returned by the initiator



SYN Cookies
[Bernstein and Schenk]

C S

SYNC Listening…

Does not store state

F(source addr, source port, 
   dest addr, dest port,
   coarse time, server secret)

SYNS, ACKC

sequence # = cookie

Cookie must be unforgeable 

   and tamper-proof (why?)

Client should not be able

   to invert a cookie (why?)

F=Rijndael or crypto hash

Recompute cookie, 
compare with with the one
received, only establish 
connection if they match 

ACKS(cookie)

Compatible with standard TCP;
simply a “weird” sequence number scheme

More info: http://cr.yp.to/syncookies.html 

Anti-Spoofing Cookies: Basic Pattern

!Client sends request (message #1) to server

! Typical protocol:

• Server sets up connection, responds with message #2

• Client may complete session or not (potential DoS)

!Cookie version:

• Server responds with hashed connection data instead 
of message #2

• Client confirms by returning hashed data
– If source IP address is bogus, attacker can’t confirm

• Need an extra step to send postponed message #2, 
except in TCP (SYN-ACK already there)

Another Defense: Random Deletion

121.17.182.45

231.202.1.16

121.100.20.14

5.17.95.155

SYNC

! If SYN queue is full, delete random entry

• Legitimate connections have a chance to complete

• Fake addresses will be eventually deleted

! Easy to implement

half-open connections

TCP Connection Spoofing

! Each TCP connection has an associated state

• Sequence number, port number

! TCP state is easy to guess

• Port numbers are standard, sequence numbers are 
often predictable

• Can inject packets into existing connections

! If attacker knows initial sequence number and 
amount of traffic, can guess likely current number

• Send a flood of packets with likely sequence numbers

“Blind” IP Spoofing Attack

Trusted connection between Alice and Bob
uses predictable sequence numbers

Alice Bob

! SYN-flood Bob’s queue

" Send packets to Alice that
   resemble Bob’s packets

# Open connection to Alice to
    get initial sequence number

! Can’t receive packets sent to Bob, but maybe can penetrate Alice’s 
computer if Alice uses IP address-based authentication

• For example, rlogin and many other remote access programs uses 

address-based authentication

DoS by Connection Reset

! If attacker can guess current sequence number 
for an existing connection, can send Reset packet 
to close it

• With 32-bit sequence numbers, probability of guessing 
correctly is 1/232 (not practical)

• Most systems accept large windows of sequence 
numbers ! much higher probability of success

– Need large windows to handle massive packet losses



User Datagram Protocol (UDP)

!UDP is a connectionless protocol

• Simply send datagram to application process at the 
specified port of the IP address

• Source port number provides return address

• Applications: media streaming, broadcast

!No acknowledgement, no flow control, no 
message continuation

!Denial of service by UDP data flood

Countermeasures

!Above transport layer: Kerberos

• Provides authentication, protects against spoofing

• Does not protect against connection hijacking

!Above network layer: SSL/TLS and SSH

• Protects against connection hijacking and injected data

• Does not protect against DoS by spoofed packets

!Network (IP) layer: IPSec

• Protects against hijacking, injection, DoS using 
connection resets, IP address spoofing

DNS: Domain Name Service

Client
Local 

DNS recursive
resolver

root & edu 
DNS server

washington.edu 
DNS server

www.cs.washington.edu

NS washington.edu
www.cs.w

ashington.edu

NS cs.washington.edu

www=IPaddr
cs.washington.edu

DNS server

DNS maps symbolic names to numeric IP addresses

(for example, www.cs.washington.edu " 128.208.3.88)

DNS Caching

!DNS responses are cached 

• Quick response for repeated translations

• Other queries may reuse some parts of lookup
– NS records for domains 

!DNS negative queries are cached

• Don’t have to repeat past mistakes

– For example, misspellings

!Cached data periodically times out

• Lifetime (TTL) of data controlled by owner of data

• TTL passed with every record

DNS Vulnerabilities

!DNS host-address mappings are not authenticated

!DNS implementations have vulnerabilities

• Reverse query buffer overrun in old releases of BIND 
– Gain root access, abort DNS service…

• MS DNS for NT 4.0 crashes on chargen stream

– telnet ntbox 19 | telnet ntbox 53

!Denial of service is a risk

• Oct ’02: ICMP flood took out 9 root servers for 1 hour

Reverse DNS Spoofing

! Trusted access is often based on host names

• E.g., permit all hosts in .rhosts to run remote shell

!Network requests such as rsh or rlogin arrive from 
numeric source addresses

• System performs reverse DNS lookup to determine 
requester’s host name and checks if it’s in .rhosts

! If attacker can spoof the answer to reverse DNS 
query, he can fool target machine into thinking 
that request comes from an authorized host

• No authentication for DNS responses and typically no 
double-checking (numeric # symbolic # numeric)



Other DNS Risks

!DNS cache poisoning

• False IP with a high time-to-live will stay in the cache of 
the DNS server for a long time

• Basis of pharming

! Spoofed ICANN registration and domain hijacking

• Authentication of domain transfers based on email addr

• Aug ’04: teenager hijacks eBay’s German site

• Jan ’05: hijacking of panix.com (oldest ISP in NYC)
– "The ownership of panix.com was moved to a company in Australia, the actual 

DNS records were moved to a company in the United Kingdom, and 
Panix.com's mail has been redirected to yet another company in Canada." 

!Misconfiguration and human error

JavaScript/DNS Intranet attack (I)

JavaScript/DNS Intranet attack (I)

!Consider a Web server intra.good.net

JavaScript/DNS Intranet attack (I)

!Consider a Web server intra.good.net

• IP: 10.0.0.7, inaccessible outside good.net network

JavaScript/DNS Intranet attack (I)

!Consider a Web server intra.good.net

• IP: 10.0.0.7, inaccessible outside good.net network

• Hosts sensitive CGI applications

JavaScript/DNS Intranet attack (I)

!Consider a Web server intra.good.net

• IP: 10.0.0.7, inaccessible outside good.net network

• Hosts sensitive CGI applications

!Attacker at evil.org gets good.net user to 
browse www.evil.org



JavaScript/DNS Intranet attack (I)

!Consider a Web server intra.good.net

• IP: 10.0.0.7, inaccessible outside good.net network

• Hosts sensitive CGI applications

!Attacker at evil.org gets good.net user to 
browse www.evil.org

! Places Javascript on www.evil.org that 
accesses sensitive application on intra.good.net

JavaScript/DNS Intranet attack (I)

!Consider a Web server intra.good.net

• IP: 10.0.0.7, inaccessible outside good.net network

• Hosts sensitive CGI applications

!Attacker at evil.org gets good.net user to 
browse www.evil.org

! Places Javascript on www.evil.org that 
accesses sensitive application on intra.good.net

• This doesn’t work because Javascript is subject to 
“same-origin” policy

JavaScript/DNS Intranet attack (I)

!Consider a Web server intra.good.net

• IP: 10.0.0.7, inaccessible outside good.net network

• Hosts sensitive CGI applications

!Attacker at evil.org gets good.net user to 
browse www.evil.org

! Places Javascript on www.evil.org that 
accesses sensitive application on intra.good.net

• This doesn’t work because Javascript is subject to 
“same-origin” policy

• … but the attacker controls evil.org DNS

JavaScript/DNS Intranet attack (II)

good.net

browser
Evil.org

DNS

Lookup www.evil.org

222.33.44.55

Evil.org

Web

GET /, host www.evil.org

Response

Evil.org

DNS

Lookup www.evil.org

10.0.0.7

Web

POST /cgi/app, host www.evil.org

Response

– short ttl

Intra.good.net

10.0.0.7
– compromise!

Drive-by pharming

Reference:  http://www.cs.indiana.edu/pub/techreports/TR641.pdf

Drive-by pharming

Reference:  http://www.cs.indiana.edu/pub/techreports/TR641.pdf

Assumes router has 

default password



Reference:  http://www.cs.indiana.edu/pub/techreports/TR641.pdf Reference:  http://www.cs.indiana.edu/pub/techreports/TR641.pdf

DNSSEC

!Goals: authentication and integrity of DNS 
requests and responses

! PK-DNSSEC (public key)

• DNS server signs its data (can be done in advance)

! SK-DNSSEC (symmetric key)

• Encryption and MAC: Ek(m, MAC(m))

• Each message contains a nonce to avoid replay

• Each DNS node shares a symmetric key with its parent

• Zone root server has a public key (hybrid approach)


