
Tadayoshi Kohno

CSE 490K Lecture 8

User Authentication

Some slides derived from Vitaly Shmatikov’s

Basic Problem

?

How do you prove to someone that
 you are who you claim to be?

Any system with access control must solve this problem

Many Ways to Prove Who You Are
What you know

• Passwords
• Secret key

Where you are
• IP address
• Physical location

What you are
• Biometrics

What you have
• Secure tokens

All have advantages and disadvantages

Why Authenticate?

 To prevent an attacker from breaking into our
account
• Co-worker, family member, ...

 To prevent an attacker from breaking into any
account on our system
• Unix system

– Break into single account, then exploit local vulnerability or
mount a “stepping stones” attack

• Calling cards
• Building

 To prevent an attacker from breaking into any
account on any system

Also Need

Usability!
• Remember password?
• Have to bring physical object with us all the time?

Denial of service
• Stolen wallet
• Try to authenticate as you until your account

becomes locked
• What about a military or other mission critical

scenario
– Lock all accounts - system unusable

Password-Based Authentication

User has a secret password.
 System checks it to authenticate the user.

• May be vulnerable to eavesdropping when password is
communicated from user to system

How is the password stored?
How does the system check the password?
How easy is it to remember the password?
How easy is it to guess the password?

• Easy-to-remember passwords tend to be easy to guess
• Password file is difficult to keep secret

Common usage modes

Amazon = t0p53cr37

UWNetID = f0084r#1

Bank = a2z@m0$;

Image from http://www.interactivetools.com/staff/dave/damons_office/

Common usage modes

Write down passwords
 Share passwords with others
Use a single password across multiple sites

• Amazon.com and Bank of America?
• UW CSE machines and MySpace?

Use easy to remember passwords
• Favorite <something>?
• Name + <number>?

Other “authentication” questions
• Mother’s maiden name?

Some anecdotes [Dhamija and Perrig]

Users taught how to make secure passwords,
but chose not to do so

Reasons:
• Awkward or difficult
• No accountability
• Did not feel that it was important

Social Engineering

 “Hi, I’m the CEO’s assistant. I need you to reset
his password right away. He’s stuck in an airport
and can’t log in! He lost the paper that he wrote
the password on.

 “What do you mean you can’t do it!? Do you
really want me to tell him that you’re preventing
him from closing this major deal?

 “Great! That’s really helpful. You have no idea
how important this is. Please set the password to
ABCDEFG. He’ll reset it again himself right away.

 “Thanks!”

University of Sydney Study [Greening ‘96]

 336 CS students emailed message asking them
to supply their password
• Pretext: in order to “validate” the password database

after a suspected break-in

 138 students returned their password
 30 returned invalid password
 200 changed their password
 (Not disjoint)

 Still, 138 is a lot!

Awkward

How many times do you have to enter your
password before it actually works?
• Sometimes quite a few for me! (Unless I type extra

slowly.)

 Interrupts normal activity
• Do you lock your computer when you leave for 5

minutes?
• Do you have to enter a password when your

computer first boots? (Sometimes it’s an option.)

And memorability is an issue!

Memorability [Anderson]

Hard to remember many PINs and passwords
One bank had this idea

• If pin is 2256, write your favorite 4-letter word in this
grid

• Then put random letters everywhere else

Memorability [Anderson]

 Problem!
Normally 10000 choices for the PIN --- hard to

guess on the first try
Now, only a few dozen possible English words

--- easy to guess on first try!

How should we store passwords on a server?
• In cleartext?
• Encrypted?
• Hashed?

UNIX-Style Passwords

How should we store passwords on a server?
• In cleartext?
• Encrypted?
• Hashed?

UNIX-Style Passwords

 t4h97t4m43
 fa6326b1c2
 N53uhjr438
 Hgg658n53
 …

user

system password file
“cypherpunk”

hash
function

Password Hashing

 Instead of user password, store H(password)
When user enters password, compute its hash

and compare with entry in password file
• System does not store actual passwords!
• System itself can’t easily go from hash to password

– Which would be possible if the passwords were encrypted

Hash function H must have some properties
• One-way: given H(password), hard to find password

– No known algorithm better than trial and error
– It should even be hard to find any pair p1,p2 s.t. H(p1)=H(p2)

UNIX Password System
Uses DES encryption as if it were a hash function

• Encrypt NULL string using password as the key
– Truncates passwords to 8 characters!

• Artificial slowdown: run DES 25 times
– Why 25 times? Slowdowns like these are important in

practice!

• Can instruct modern UNIXes to use MD5 hash function

 Problem: passwords are not truly random
• With 52 upper- and lower-case letters, 10 digits and

32 punctuation symbols, there are 948 ≈ 6 quadrillion
possible 8-character passwords (around 252)

• Humans like to use dictionary words, human and pet
names ≈ 1 million common passwords

Dictionary Attack
 Password file /etc/passwd is world-readable

• Contains user IDs and group IDs which are used by
many system programs

Dictionary attack is possible because many
passwords come from a small dictionary
• Attacker can compute H(word) for every word in the

dictionary and see if the result is in the password file
• With 1,000,000-word dictionary and assuming 10

guesses per second, brute-force online attack takes
50,000 seconds (14 hours) on average

– This is very conservative. Offline attack is much faster!
– As described, could just create dictionary of word-->H(word)

once!!

Salt

alice:fURxfg,4hLBX:14510:30:Alice:/u/alice:/bin/csh

/etc/passwd entry
salt
(chosen randomly when
password is first set)

hash(salt,pwd)Password

• Users with the same password have different entries
in the password file

• Dictionary attack is still possible!

Basically, encrypt NULL plaintext

Advantages of Salting

Without salt, attacker can pre-compute hashes of
all dictionary words once for all password entries
• Same hash function on all UNIX machines
• Identical passwords hash to identical values; one table

of hash values can be used for all password files

With salt, attacker must compute hashes of all
dictionary words once for each password entry
• With 12-bit random salt, same password can hash to

212 different hash values
• Attacker must try all dictionary words for each salt

value in the password file

Shadow Passwords

alice:x:14510:30:Vitaly:/u/alice:/bin/csh

• Store hashed passwords in /etc/shadow file which is
only readable by system administrator (root)

• Add expiration dates for passwords
• Early Shadow implementations on Linux called the

login program which had a buffer overflow!

Hashed password is not
stored in a world-readable file

/etc/passwd entry

Other Password Issues

Keystroke loggers
• Hardware
• Software / Spyware

 Shoulder surfing
• It’s happened to me!

Online vs offline attacks
• Online: slower, easier to respond

Multi-site authentication
• Share passwords?

Implementation Attacks

 Smartcard had a PIN-retry counter
• By monitoring power line, can detect if PIN incorrect
• If so, reset quickly
• Can now circumvent PIN-retry counter

 Timing attack in TENEX password verification
system

What About Biometrics?
Authentication: What you are
Unique identifying characteristics to authenticate

user or create credentials
• Biological and physiological: Fingerprints, iris scan
• Behaviors characteristics - how perform actions:

Handwriting, typing, gait

Advantages:
• Nothing to remember
• Passive
• Can’t share (generally)
• With perfect accuracy, could be fairly unique

Overview [Matsumoto]

Tsutomu Matsumoto’s image, from http://web.mit.edu/6.857/
OldStuff/Fall03/ref/gummy-slides.pdf

Dashed lines for enrollment; solid for verification or
identification

Biometric Error Rates (Non-Adversarial)

 “Fraud rate” vs. “insult rate”
• Fraud = system incorrectly accepts (false accept)
• Insult = system rejects valid user (false reject)

 Increasing acceptance threshold increases fraud
rate, decreases insult rate
• Pick a threshold so that fraud rate = insult rate

 For biometrics, U.K. banks set target fraud rate of
1%, insult rate of 0.01% [Ross Anderson]

• Common signature recognition systems achieve equal
error rates around 1% - not good enough!

Biometrics

 Face recognition (by a computer algorithm)
• Error rates up to 20%, given reasonable variations in

lighting, viewpoint and expression

 Fingerprints
• Traditional method for identification
• 1911: first US conviction on fingerprint evidence
• U.K. traditionally requires 16-point match

– Probability of false match is 1 in 10 billion
– No successful challenges until 2000

• Fingerprint damage impairs recognition
– Ross Anderson’s scar crashes FBI scanner

Other Biometrics
 Iris scanning

• Irises are very random, but stable through life
– Different between the two eyes of the same individual

• 256-byte iris code based on concentric rings between
the pupil and the outside of the iris

• Equal error rate better than 1 in a million
• Best biometric mechanism currently known

Hand geometry
• Used in nuclear premises entry control, INSPASS

(discontinued in 2002)

Other Biometrics
Vein

• Pattern on back of hand

Handwriting
 Typing

• Timings for character sequences

Gait
DNA

Issues with Biometrics

 Private, but not secret
• Maybe encoded on the back of an ID card?
• Maybe encoded on your glass, door handle, ...
• Sharing between multiple systems?

Revocation is difficult (impossible?)
• Sorry, your iris has been compromised, please create a

new one...

 Physically identifying
• Soda machine to cross-reference fingerprint with DMV?

Issues with Biometrics

Criminal gives an inexperienced policeman
fingerprints in the wrong order
• Record not found; gets off as a first-time offender

Can be attacked using recordings
• Ross Anderson: in countries where fingerprints are

used to pay pensions, there are persistent tales of
“Granny’s finger in the pickle jar” being the most
valuable property she bequeathed to her family

Birthday paradox
• With false accept rate of 1 in a million, probability of

false match is above 50% with only 1609 samples

Issues with Biometrics

Anecdotally, car jackings went up when it became
harder to steal cars without the key

But what if you need your fingerprint to start your
car?
• Stealing cars becomes harder
• So what would the car thieves have to do?

Risks of Biometrics

http://news.bbc.co.uk/2/hi/asia-pacific/4396831.stm

Biometric Error Rates (Adversarial)

Want to minimize “fraud” and “insult” rate
• “Easy” to test probability of accidental misidentification

(fraud)
• But what about adversarial fraud

– Besides stolen fingers

An adversary might try to steal the biometric
information
• Malicious fingerprint reader

– Consider when biometric is used to derive a cryptographic key

• Residual fingerprint on a glass

Voluntary: Making a Mold

http://web.mit.edu/6.857/OldStuff/Fall03/ref/gummy-slides.pdf

[Matsumoto]

Voluntary: Making a Finger

http://web.mit.edu/6.857/OldStuff/Fall03/ref/gummy-slides.pdf

[Matsumoto]

Voluntary

Only costs a few dollars

We will (hopefully!) try this later in the course
• I’ve ordered some supplies
• But they’re not here yet...

Involuntary

http://web.mit.edu/6.857/OldStuff/Fall03/ref/gummy-slides.pdf

[Matsumoto]

Involuntary

http://web.mit.edu/6.857/OldStuff/Fall03/ref/gummy-slides.pdf

[Matsumoto]

Involuntary

http://web.mit.edu/6.857/OldStuff/Fall03/ref/gummy-slides.pdf

[Matsumoto]

Maybe a computer could also forge some
biometrics

Authentication by Handwriting
[Ballard, Monrose, Lopresti]

Maybe a computer could also forge some
biometrics

Authentication by Handwriting
[Ballard, Monrose, Lopresti]

Generated by computer algorithm trained
on handwriting samples

Password Managers

• Idea: Software application that will store and
manage passwords for you.

• You remember one password.

• Each website sees a different password.

• Examples: PwdHash (Usenix Security 2005)
and Password Multiplier (WWW 2005).

Key ideas

• User remembers a single password

• Password managers

• On input: (1) the user’s single password
and (2) information about the website

• Compute: Strong, site-specific password

• Goal: Avoid problems with passwords

The problem
Alice needs passwords for all the websites that she visits

passwd passwd

passwd

Possible solutions

• Easy to remember: Use same password on all
websites. Use “weak” password.

- Poor security (don’t share password
between bank website and small website)

• More secure: Use different, strong passwords
on all websites.

- Hard to remember, unless write down.

Alternate solution:
Password managers

• Password managers handle creating and
“remembering” strong passwords

• Potentially:

• Easier for users

• More secure

• Examples:

• PwdHash (Usenix Security 2005)

• Password Multiplier (WWW 2005)

PwdHash Password Multiplier

@@ in front of passwords
to protect; or F2

sitePwd = func(pwd,domain)

Active with Alt-P or double-
click

sitePwd = func(usrname,
pwd, domain)

Both solutions target simplicity and transparency.

PwdHash Password Multiplier

@@ in front of passwords
to protect; or F2

sitePwd = func(pwd,domain)

Active with Alt-P or double-
click

sitePwd = func(usrname,
pwd, domain)

@@

Both solutions target simplicity and transparency.

PwdHash Password Multiplier

@@ in front of passwords
to protect; or F2

sitePwd = func(pwd,domain)

Active with Alt-P or double-
click

sitePwd = func(usrname,
pwd, domain)

pwd@@

Both solutions target simplicity and transparency.

PwdHash Password Multiplier

@@ in front of passwords
to protect; or F2

sitePwd = func(pwd,domain)

Active with Alt-P or double-
click

sitePwd = func(usrname,
pwd, domain)

pwd@@

Prevent phishing attacks

Both solutions target simplicity and transparency.

Usenix 2006:
Usabilty testing

• Are these programs usable? If not, what are
the problems?

• Two main approaches for evaluating usability:

• Usability inspection (no users)

• Cognitive walk throughs

• Heuristic evaluation

• User study

• Controlled experiments

• Real usage

Usenix 2006:
Usabilty testing

• Are these programs usable? If not, what are
the problems?

• Two main approaches for evaluating usability:

• Usability inspection (no users)

• Cognitive walk throughs

• Heuristic evaluation

• User study

• Controlled experiments

• Real usage

This paper stresses
need to observe real users

Study details

• 26 participants, across various backgrounds (4
technical)

• Five assigned tasks per plugin

• Data collection

• Observational data (recording task
outcomes, difficulties, misconceptions)

• Questionnaire data (initial attitudes,
opinions after tasks, post questionnaires)

[Chiasson, van Oorschot, Biddle]

Task completion results

http://www.scs.carleton.ca/~schiasso/Chiasson_UsenixSecurity2006_PwdManagers.ppt

[Chiasson, van Oorschot, Biddle]

Questionnaire responses

http://www.scs.carleton.ca/~schiasso/Chiasson_UsenixSecurity2006_PwdManagers.ppt

[Chiasson, van Oorschot, Biddle]

Problem: Transparency

• Unclear to users whether actions successful
or not.

• Should be obvious when plugin activated.

• Should be obvious when password
protected.

• Users feel that they should be able to know
their own password.

Problem: Mental model

Users seemed to have misaligned mental models

• Not understand that one needs to put
“@@” before each password to be
protected.

• Think different passwords generated for
each session.

• Think successful when were not.

• Not know to click in field before Alt-P.

• PwdHash: Think passwords unique to them.

When “nothing works”

• Tendency to try all passwords

• A poor security choice.

• May make the use of PwdHash or Password
Multiplier worse than not using any
password manager.

• Usability problem leads to security
vulnerabilities.

Challenge-Response (Over Network)

user systemsecret key

challenge value

f(key,challenge)

Why is this better than a password over a network?

secret key

key
key

Any problems remain?

Challenge-Response Authentication

User and system share a secret key
Challenge: system presents user with some string
Response: user computes response based on

secret key and challenge
• Secrecy: difficult to recover key from response

– One-way hashing or symmetric encryption work well

• Freshness: if challenge is fresh and unpredictable,
attacker on the network cannot replay an old response

– For example, use a fresh random number for each challenge

Good for systems with pre-installed secret keys
• Car keys; military friend-or-foe identification

MIG-in-the-Middle Attack [Ross Anderson]

AngolaNamibia

MIG-in-the-Middle Attack [Ross Anderson]

AngolaNamibia

South African bomber

MIG-in-the-Middle Attack [Ross Anderson]

AngolaNamibia

South African bomber

Secret key K

Secret key K

MIG-in-the-Middle Attack [Ross Anderson]

AngolaNamibia

South African bomberCuban MIG

Secret key K

Secret key K

MIG-in-the-Middle Attack [Ross Anderson]

AngolaNamibia

South African bomberCuban MIG

Challenge N

Secret key K

Secret key K

MIG-in-the-Middle Attack [Ross Anderson]

AngolaNamibia

South African bomberCuban MIG

Challenge N

Secret key K

Secret key K

Retransmit
challenge N

MIG-in-the-Middle Attack [Ross Anderson]

AngolaNamibia

South African bomberCuban MIG

Challenge N

Secret key K

Secret key K

Retransmit
challenge N

N

MIG-in-the-Middle Attack [Ross Anderson]

AngolaNamibia

South African bomberCuban MIG

Challenge N

Secret key K

Secret key K

Retransmit
challenge N

N

Response
{N}K

MIG-in-the-Middle Attack [Ross Anderson]

AngolaNamibia

South African bomberCuban MIG

Challenge N

Secret key K

Secret key K

Retransmit
challenge N

N

Response
{N}K

{N}K
{N}K

MIG-in-the-Middle Attack [Ross Anderson]

AngolaNamibia

South African bomberCuban MIG

Challenge N

Secret key K

Secret key K

Retransmit
challenge N

N

Response
{N}K

{N}K
{N}K

Response correct!

MIG-in-the-Middle Attack [Ross Anderson]

AngolaNamibia

South African bomberCuban MIG

Challenge N

Secret key K

Secret key K

Retransmit
challenge N

N

Response
{N}K

{N}K
{N}K

Response correct!

Authentication with Shared Secret

?

Alice and Bob share some secret.
How can they identify each other on the network?
What have we learned from the systems we’ve seen?

Alice Bob

“kiwifruit”
“kiwifruit”

Active
attacker

not just eavesdrops, but
inserts his own messages

Challenge-Response

Alice Bob

“kiwifruit”
“kiwifruit”

Active
attacker

Fresh, random RR

hash(“kiwifruit”,R) hash(“kiwifruit”,R)

 Man-in-the-middle attack on challenge-response
• Attacker successfully authenticates as Alice by simple replay

 This is an attack on authentication, not secrecy
• Attacker does not learn the shared secret

 However, response opens the door to offline dictionary attack

Encrypted Timestamp

Alice Bob

KEYKEY

EncryptKEY(time)

Encrypted Timestamp

Alice Bob

KEYKEY

EncryptKEY(time)

EncryptKEY(time)

Encrypted Timestamp

Alice Bob

KEYKEY

EncryptKEY(time)

EncryptKEY(time)

 Requires synchronized clocks
• Bob’s clock must be secure, or else attacker will roll it back and

reuse an old authentication message from Alice

Encrypted Timestamp

Alice Bob

KEYKEY

EncryptKEY(time)

EncryptKEY(time)

 Requires synchronized clocks
• Bob’s clock must be secure, or else attacker will roll it back and

reuse an old authentication message from Alice

 Attacker can replay within clock skew window

Replace with
(n-1, x)

Lamport’s Hash

Alice Bob

n, y=hashn(“kiwifruit”)

x=hash(…(hash(“kiwifruit”))

“kiwifruit”

n

n-1 times

Verifies y=hash(x)
?

 Main idea: “hash stalk”
• Moving up the stalk (computing the next hash) is easy,

moving down the stalk (inverting the hash) is hard
• n should be large (can only use it for n authentications)

 For verification, only need the tip of the stalk

hashm(“kiwifruit”)

“Small n” Attack

Alice Bob

n, y=hashn(“kiwifruit”)

 First message from Bob is not authenticated!
 Alice should remember current value of n

“kiwifruit”

Real n

Verifies y=hash(x)
Yes!

?Fake, small m

x=hashn-1(“kiwifruit”)

Easy to compute hashn-1(…)
if know hashm(…) with m<n

Adversaries To Consider

 Eavesdropper
 Pretend to be Bob and accept connections from

Alice
 Initiate conversation pretending to be Alice
Read Alice’s database
Read Bob’s database
Modify messages in transit between Alice and

Bob
Any combination of the above

What You Have

 Smartcard
• Little computer chip

in credit card form
factor

Smartcard Bank Cards [Drimer and
Murdoch]

Image from http://www.cl.cam.ac.uk/research/security/projects/banking/relay/

Smartcard Bank Cards [Drimer and
Murdoch]

Image from http://www.cl.cam.ac.uk/research/security/projects/banking/relay/

Magstripe Writer

http://www.tyner.com/magnetic/msr206-1.jpg

