
Tadayoshi Kohno

CSE 490K - Lecture 7

Physical Security and Computer
Security

and Public Key Cryptography

Some slides derived from Vitaly Shmatikov’s

Security Mindset
 The “security mindset” is > 1/2 of computer

security; maybe much more than 1/2
• Informal, heuristic, but seems to be true
• Technical tools help, but are ineffective if used

improperly
• Need to think like the “bad guy”

– But don’t be bad (recall the Ethics Form)!
– Every single line of code may be the target of an adversary
– Adversaries may be foreign nations
– Adversaries only need to find one way to “win”
– ...

• Goal: Think like the “bad guy” -- at least spot
problems, even if don’t know how to fix

Last Class
Relate physical security to computer security

• Locks, safes, etc

Why?
• More similar than you might think!!
• Lots to learn:

– Computer security issues are often very abstract; hard to
relate to

– But physical security issues are often easier to understand

• Hypothesis:
– Thinking about the “physical world” in new (security) ways

will help you further develop the “security mindset”
– You can then apply this mindset to computer systems, ...

• Plus, communities can learn from each other

Master Combination Locks
 40 positions, 3 numbers in “key:” 403 = 64000

possible combinations (theoretically)
But really only 2560 possibilities

And using some tricks, can figure out key:
• Average of 32 tries (old locks)

– Easy to “feel” last number in key; then only 64 remaining
possibilities

• Average of 128 tries (new locks)

Another example of a “shortcut attack” against
the key

Some “Big Picture” Issues

Don’t rely on “security through obscurity”
• Easy to learn how locks work

– Insiders
– Tinkerers

• Easy to learn how software works
– Insiders
– Tinkerers
– Examples: DRM, reverse engineering software patches

Have an open, peer-reviewed (or at least
outside expert-reviewed) design

Some “Big Picture” Issues

Usability is a major challenge
• Locks:

– If locks are too complicated, people may not use them
• But then locks don’t provide any security

– See Blaze’s “safecracking” paper for an example - class 1
safes are more secure, but have awkward security
mechanisms

• Computers:
– If security mechanisms are too difficult, people won’t use

them
– Example: Personal firewall or antivirus warnings

Make “secure option” the “default” or “option of
least resistance”

Some “Big Picture” Issues
Many potential ways to compromise security

• Physical security
– Attack locks
– Attack the door itself
– Attack windows
– Hide in bushes

• Computer security
– Attack the cryptography (if done poorly)
– Attack the configuration
– Attack the implementation
– Attack the user

 “Security only as strong as the weakest link”
 Systems are complex

Some “Big Picture” Issues

Not all systems require the same level of
security
• Locks

– Weak locks may be OK to protect you gym cloths
– But may want stronger locks to protect the contents of your

bank’s safes

• Computer security
– Different assets, adversaries, protection mechanisms

 “Security is risk management”

Some “Big Picture” Issues
Defense in depth

• Physical world
– Layers of locks in bank
– Layers of protection mechanisms around jails
– Castles: Moats, walls, arrows, ...

• Digital world
– Same concepts apply

Deterrents
• Physical world

– Video cameras
– ADT (home security alarm system)

• Digital world
– Digital forensics methods

Some “Big Picture” Issues
 Packaging (sometimes called “snake oil”)

• Physical world
– May look secure, but may be easy to circumvent

• Digital world
– May appear secure, but may actually be very insecure

How is a user supposed to figure out whether
something is secure?

Some “Big Picture” Issues
 Issues at all phases of development lifecycle

• Physical world
– Requirements: Master keys (whether to have or not)
– Design: Master keys (design choices, e.g., master pin

depths)
– Implementation: Lock picking

• Digital world
– Same issues apply

Better to address security issues as early in the
lifecycle as possible

Some “Big Picture” Issues
Denial of service

• Locks
– Chewing gum
– Super glue
– Break a key

• Computers
– Crash computer, consume resources

Accidents
• Locks

– Keys on both sides (fire hazard)

• Computers
– Encrypted filesystem (forget key)
– ...

Some “Big Picture” Issues

Many different adversaries
• Insiders
• Ex-insiders (past employees, with copies of keys)
• Pranksters
• Outsiders
• ...

Some “Big Picture” Issues
Arms race

• Physical world
– New lock designs, better safes

• Digital world
– New cryptography
– New software development practices
– Software updates

Some “Big Picture” Issues
Big difference: Connectedness

• Physical world
– Not very connected
– (Yes, some exceptions, e.g., postal system or air travel)

• Digital world
– Everyone is everyone else’s “neighbor”
– Plus quite a bit of anonymity

Basic Problem

?

Given: Everybody knows Bob’s public key
 Only Bob knows the corresponding private key

private key

Goals: 1. Alice wants to send a secret message to Bob
 2. Bob wants to authenticate himself

public key

public key

Alice Bob

Applications of Public-Key Crypto

 Encryption for confidentiality
• Anyone can encrypt a message

– With symmetric crypto, must know secret key to encrypt

• Only someone who knows private key can decrypt
• Key management is simpler (maybe)

– Secret is stored only at one site: good for open environments

Digital signatures for authentication
• Can “sign” a message with your private key

 Session key establishment
• Exchange messages to create a secret session key
• Then switch to symmetric cryptography (why?)

Diffie-Hellman Protocol (1976)

Alice and Bob never met and share no secrets
 Public info: p and g

• p is a large prime number, g is a generator of Zp*
– Zp*={1, 2 … p-1}; ∀a∈Zp* ∃i such that a=gi mod p

– Modular arithmetic: numbers “wrap around” after they reach p

Alice Bob

Pick secret, random X Pick secret, random Y

gy mod p

gx mod p

Compute k=(gy)x=gxy mod p Compute k=(gx)y=gxy mod p

Why Is Diffie-Hellman Secure?

Discrete Logarithm (DL) problem:
 given gx mod p, it’s hard to extract x

• There is no known efficient algorithm for doing this
• This is not enough for Diffie-Hellman to be secure!

Computational Diffie-Hellman (CDH) problem:
 given gx and gy, it’s hard to compute gxy mod p

• … unless you know x or y, in which case it’s easy

Decisional Diffie-Hellman (DDH) problem:
 given gx and gy, it’s hard to tell the difference

between gxy mod p and gr mod p where r is random

Properties of Diffie-Hellman

Assuming DDH problem is hard, Diffie-Hellman
protocol is a secure key establishment protocol
against passive attackers
• Eavesdropper can’t tell the difference between

established key and a random value
• Can use new key for symmetric cryptography

– Approx. 1000 times faster than modular exponentiation

Diffie-Hellman protocol (by itself) does not provide
authentication

Requirements for Public-Key Crypto

Key generation: computationally easy to generate
a pair (public key PK, private key SK)
• Computationally infeasible to determine private key SK

given only public key PK

 Encryption: given plaintext M and public key PK,
easy to compute ciphertext C=EPK(M)

Decryption: given ciphertext C=EPK(M) and private
key SK, easy to compute plaintext M
• Infeasible to compute M from C without SK
• Even infeasible to learn partial information about M
• Trapdoor function: Decrypt(SK,Encrypt(PK,M))=M

Some Number Theory Facts

 Euler totient function ϕ(n) where n≥1 is the
number of integers in the [1,n] interval that are
relatively prime to n
• Two numbers are relatively prime if their greatest

common divisor (gcd) is 1

 Euler’s theorem:
 if a∈Zn*, then aϕ(n)=1 mod n

 Special case: Fermat’s Little Theorem
 if p is prime and gcd(a,p)=1, then ap-1=1 mod p

RSA Cryptosystem [Rivest, Shamir, Adleman 1977]

Key generation:
• Generate large primes p, q

– Say, 1024 bits each (need primality testing, too)

• Compute n=pq and ϕ(n)=(p-1)(q-1)

• Choose small e, relatively prime to ϕ(n)
– Typically, e=3 or e=216+1=65537 (why?)

• Compute unique d such that ed = 1 mod ϕ(n)

• Public key = (e,n); private key = d

 Encryption of m: c = me mod n
• Modular exponentiation by repeated squaring

Decryption of c: cd mod n = (me)d mod n = m

Why RSA Decryption Works
 e⋅d=1 mod ϕ(n)

 Thus e⋅d=1+k⋅ϕ(n)=1+k(p-1)(q-1) for some k

 Let m be any integer in Zn

 If gcd(m,p)=1, then med=m mod p
• By Fermat’s Little Theorem, mp-1=1 mod p
• Raise both sides to the power k(q-1) and multiply by m
• m1+k(p-1)(q-1)=m mod p, thus med=m mod p
• By the same argument, med=m mod q

 Since p and q are distinct primes and p⋅q=n,

 med=m mod n

Why Is RSA Secure?

RSA problem: given n=pq, e such that
 gcd(e,(p-1)(q-1))=1 and c, find m such that
 me=c mod n

• i.e., recover m from ciphertext c and public key (n,e) by
taking eth root of c

• There is no known efficient algorithm for doing this

 Factoring problem: given positive integer n, find
primes p1, …, pk such that n=p1

e1p2
e2…pk

ek

 If factoring is easy, then RSA problem is easy, but
there is no known reduction from factoring to RSA
• It may be possible to break RSA without factoring n

Caveats

 e =3 is a common exponent
• If m < n1/3, then c = m3 < n and can just take the

cube root of c to recover m
– Even problems if “pad” m in some ways [Hastad]

• Let ci = m3 mod ni - same message is encrypted to
three people

– Adversary can compute m3 mod n1n2n3 (using CRT)
– Then take ordinary cube root to recover m

Don’t use RSA directly

Integrity in RSA Encryption
 Plain RSA does not provide integrity

• Given encryptions of m1 and m2, attacker can create
encryption of m1⋅m2

– (m1
e) ⋅ (m2

e) mod n = (m1⋅m2)e mod n

• Attacker can convert m into mk without decrypting
– (m1

e)k mod n = (mk)e mod n

 In practice, OAEP is used: instead of encrypting
M, encrypt M⊕G(r) ; r⊕H(M⊕G(r))
• r is random and fresh, G and H are hash functions
• Resulting encryption is plaintext-aware: infeasible to

compute a valid encryption without knowing plaintext
– … if hash functions are “good” and RSA problem is hard

OAEP (image from PKCS #1 v2.1)

Digital Signatures: Basic Idea

?

Given: Everybody knows Bob’s public key
 Only Bob knows the corresponding private key

private key

Goal: Bob sends a “digitally signed” message
1. To compute a signature, must know the private key
2. To verify a signature, enough to know the public key

public key

public key

Alice Bob

RSA Signatures

 Public key is (n,e), private key is d
 To sign message m: s = md mod n

• Signing and decryption are the same operation in RSA
• It’s infeasible to compute s on m if you don’t know d

 To verify signature s on message m:
 se mod n = (md)e mod n = m

• Just like encryption
• Anyone who knows n and e (public key) can verify

signatures produced with d (private key)

 In practice, also need padding & hashing (why?)

Encryption and Signatures

Book says: Encryption and decryption are
inverses.

 That’s a common view
• True for the RSA primitive

But not one we’ll take
• To really use RSA, we need padding
• And there are many other decryption methods

Digital Signature Standard (DSS)

U.S. government standard (1991-94)
• Modification of the ElGamal signature scheme (1985)

Key generation:
• Generate large primes p, q such that q divides p-1

– 2159 < q < 2160, 2511+64t < p < 2512+64t where 0≤t≤8

• Select h∈Zp* and compute g=h(p-1)/q mod p

• Select random x such 1≤x≤q-1, compute y=gx mod p

 Public key: (p, q, g, y=gx mod p), private key: x
 Security of DSS requires hardness of discrete log

• If could solve discrete logarithm problem, would
extract x (private key) from gx mod p (public key)

DSS: Signing a Message

Message

Hash function
(SHA-1)

Random secret
between 0 and q

Compute r = (gk mod p) mod q

Private key

Compute s = k-1⋅(H(M)+x⋅r) mod q

(r,s) is the
signature on M

DSS: Verifying a Signature

Message

Signature

Compute w = s’-1 mod q

Compute (gH(M’)w ⋅ yr’w mod q mod
p) mod q

Public key

If they match, signature is valid

Why DSS Verification Works

 If (r,s) is a legitimate signature, then
 r = (gk mod p) mod q ; s = k-1⋅(H(M)+x⋅r) mod q

 Thus H(M) = -x⋅r+k⋅s mod q

• Multiply both sides by w=s-1 mod q

H(M)⋅w + x⋅r⋅w = k mod q

• Exponentiate g to both sides

 (gH(M)⋅w + x⋅r⋅w = gk) mod p mod q

• In a valid signature, gk mod p mod q = r, gx mod p = y

Verify gH(M)⋅w⋅yr⋅w = r mod p mod q

Security of DSS

Can’t create a valid signature without private key
Given a signature, hard to recover private key
Can’t change or tamper with signed message
 If the same message is signed twice, signatures

are different
• Each signature is based in part on random secret k

 Secret k must be different for each signature!
• If k is leaked or if two messages re-use the same k,

attacker can recover secret key x and forge any
signature from then on

Advantages of Public-Key Crypto

Confidentiality without shared secrets
• Very useful in open environments
• No “chicken-and-egg” key establishment problem

– With symmetric crypto, two parties must share a secret before
they can exchange secret messages

– Caveats to come

Authentication without shared secrets
• Use digital signatures to prove the origin of messages

Reduce protection of information to protection of
authenticity of public keys
• No need to keep public keys secret, but must be sure

that Alice’s public key is really her true public key

Disadvantages of Public-Key Crypto

Calculations are 2-3 orders of magnitude slower
• Modular exponentiation is an expensive computation
• Typical usage: use public-key cryptography to establish

a shared secret, then switch to symmetric crypto
– We’ll see this in IPSec and SSL

Keys are longer
• 1024 bits (RSA) rather than 128 bits (AES)

Relies on unproven number-theoretic assumptions
• What if factoring is easy?

– Factoring is believed to be neither P, nor NP-complete

• (Of course, symmetric crypto also rests on unproven
assumptions)

Authenticity of Public Keys

?

Problem: How does Alice know that the public key
 she received is really Bob’s public key?

private key

Alice
Bob

public key

Bob’s key

Distribution of Public Keys

 Public announcement or public directory
• Risks: forgery and tampering

 Public-key certificate
• Signed statement specifying the key and identity

– sigAlice(“Bob”, PKB)

Common approach: certificate authority (CA)
• Single agency responsible for certifying public keys
• After generating a private/public key pair, user proves

his identity and knowledge of the private key to obtain
CA’s certificate for the public key (offline)

• Every computer is pre-configured with CA’s public key

Using Public-Key Certificates

Authenticity of public keys is reduced to
authenticity of one key (CA’s public key)

Hierarchical Approach

 Single CA certifying every public key is impractical
 Instead, use a trusted root authority

• For example, Verisign
• Everybody must know the public key for verifying root

authority’s signatures

Root authority signs certificates for lower-level
authorities, lower-level authorities sign certificates
for individual networks, and so on
• Instead of a single certificate, use a certificate chain

– sigVerisign(“UW”, PKUW), sigUW(“Alice”, PKA)

• What happens if root authority is ever compromised?

Many Challenges

Many Challenges

Alternative: “Web of Trust”

Used in PGP (Pretty Good Privacy)
 Instead of a single root certificate authority, each

person has a set of keys they “trust”
• If public-key certificate is signed by one of the “trusted”

keys, the public key contained in it will be deemed valid

 Trust can be transitive
• Can use certified keys for further certification

Alice
Friend of Alice

Friend of friend
Bob

sigAlice(“Friend”, Friend’s key)

sigFriend(“FoaF”, FoaF’s key)

I trust
Alice

X.509 Authentication Service

 Internet standard (1988-2000)
 Specifies certificate format

• X.509 certificates are used in IPSec and SSL/TLS

 Specifies certificate directory service
• For retrieving other users’ CA-certified public keys

 Specifies a set of authentication protocols
• For proving identity using public-key signatures

Does not specify crypto algorithms
• Can use it with any digital signature scheme and hash

function, but hashing is required before signing

X.509 Certificate

Added in X.509 versions 2 and 3 to address
usability and security problems

hash

Certificate Revocation

Revocation is very important
Many valid reasons to revoke a certificate

• Private key corresponding to the certified public key
has been compromised

• User stopped paying his certification fee to this CA and
CA no longer wishes to certify him

• CA’s certificate has been compromised!

 Expiration is a form of revocation, too
• Many deployed systems don’t bother with revocation
• Re-issuance of certificates is a big revenue source for

certificate authorities

Certificate Revocation Mechanisms

Online revocation service
• When a certificate is presented, recipient goes to a

special online service to verify whether it is still valid
– Like a merchant dialing up the credit card processor

Certificate revocation list (CRL)
• CA periodically issues a signed list of revoked certificates

– Credit card companies used to issue thick books of canceled
credit card numbers

• Can issue a “delta CRL” containing only updates

Question: does revocation protect against forged
certificates?

X.509 Certificate Revocation List

Because certificate serial numbers
 must be unique within each CA, this is

 enough to identify the certificate

hash

X.509 Version 1

Alice Bob

“Alice”, sigAlice(TimeAlice, “Bob”,

 encryptPublicKey(Bob)(message))

 Encrypt, then sign for authenticated encryption
• Goal: achieve both confidentiality and authentication
• E.g., encrypted, signed password for access control

Does this work?

Attack on X.509 Version 1

Alice Bob

“Alice”, sigAlice(TimeAlice, “Bob”,

 encryptPublicKey(Bob)(password))

 Receiving encrypted password under signature does not
mean that the sender actually knows the password!

Attacker extracts encrypted
password and replays it
under his own signature

“Charlie”, sigCharlie(TimeCharlie, “Bob”,

 encryptPublicKey(Bob)(password))

fresh random challenge C

Authentication with Public Keys

Alice Bob

PRIVATE
KEY

PUBLIC
KEY

“I am Alice”

sigAlice(C)

Verify Alice’s signature on c

1. Only Alice can create a valid signature
2. Signature is on a fresh, unpredictable challenge

fresh random challenge C

Authentication with Public Keys

Alice Bob

PRIVATE
KEY

PUBLIC
KEY

“I am Alice”

sigAlice(C)

Verify Alice’s signature on c

1. Only Alice can create a valid signature
2. Signature is on a fresh, unpredictable challenge

Potential problem: Alice will sign anything

Early Version of SSL (Simplified)

Alice Bob

encryptPublicKey(Bob)(“Alice”, KAB)

encryptKAB
(“Alice”, sigAlice(NB))

fresh session key

encryptKAB
(NB)

fresh random number

 Bob’s reasoning: I must be talking to Alice because…
• Whoever signed NB knows Alice’s private key… Only Alice knows

her private key… Alice must have signed NB… NB is fresh and
random and I sent it encrypted under KAB… Alice could have
learned NB only if she knows KAB… She must be the person who
sent me KAB in the first message...

Breaking Early SSL

Alice
Charlie

(with an evil side)

Charlie uses his legitimate conversation with Alice
to impersonate Alice to Bob
• Information signed by Alice is not sufficiently explicit

Breaking Early SSL

Alice

encryptPK(Charlie)(“Alice”,KAC)

Charlie
(with an evil side)

Charlie uses his legitimate conversation with Alice
to impersonate Alice to Bob
• Information signed by Alice is not sufficiently explicit

Breaking Early SSL

Alice

encryptPK(Charlie)(“Alice”,KAC)

Charlie
(with an evil side)

Bob

 encryptPK(Bob)(“Alice”,KCB)

Charlie uses his legitimate conversation with Alice
to impersonate Alice to Bob
• Information signed by Alice is not sufficiently explicit

Breaking Early SSL

Alice

encryptPK(Charlie)(“Alice”,KAC)

Charlie
(with an evil side)

Bob

 encryptPK(Bob)(“Alice”,KCB)

encryptKCB
(NB)

Charlie uses his legitimate conversation with Alice
to impersonate Alice to Bob
• Information signed by Alice is not sufficiently explicit

Breaking Early SSL

Alice

encryptPK(Charlie)(“Alice”,KAC)

Charlie
(with an evil side)

Bob

 encryptPK(Bob)(“Alice”,KCB)

encryptKCB
(NB)

encryptKAC
(NB)

Charlie uses his legitimate conversation with Alice
to impersonate Alice to Bob
• Information signed by Alice is not sufficiently explicit

Breaking Early SSL

Alice

encryptPK(Charlie)(“Alice”,KAC)

encKAC
(“Alice”, sigAlice(NB))

Charlie
(with an evil side)

Bob

 encryptPK(Bob)(“Alice”,KCB)

encryptKCB
(NB)

encryptKAC
(NB)

Charlie uses his legitimate conversation with Alice
to impersonate Alice to Bob
• Information signed by Alice is not sufficiently explicit

Breaking Early SSL

Alice

encryptPK(Charlie)(“Alice”,KAC)

encKAC
(“Alice”, sigAlice(NB))

Charlie
(with an evil side)

Bob

 encryptPK(Bob)(“Alice”,KCB)

encryptKCB
(NB)

encryptKAC
(NB)

encryptKCB
(“Alice”, sigAlice(NB))

Charlie uses his legitimate conversation with Alice
to impersonate Alice to Bob
• Information signed by Alice is not sufficiently explicit

Security Evaluation #2

 You’ll be looking at WinZip’s new AE-2
encryption scheme
• Based on “Encrypt-then-MAC” (recall a few classes

ago --- this is a provably secure mode)
• But things aren’t always that simple

– Many protocols seem secure but actually have problems

• Your job: Analyze AE-2

Very popular Windows compression utility. Also an
Outlook email plugin. Over 160 million downloads
from download.com alone [http://www.winzip.com/
empopp.htm].

WinZipFile Archive.zip

What is WinZip?

WinZip encryption

WinZip has the ability to encrypt files. Lots of
history, but we’ll look at the AE-2 method.

WinZipFile Archive.zip

Passphrase

Zipping a file without AE-2
(high level)

Zipping a file without AE-2
(high level)

File

Zipping a file without AE-2
(high level)

File

Zipping a file without AE-2
(high level)

Compression
AlgorithmFile

Zipping a file without AE-2
(high level)

Compression
AlgorithmFile

Compressed
Data

Zipping a file without AE-2
(high level)

Compression
AlgorithmFile

Compressed
Data

Filename

Zipping a file without AE-2
(high level)

Compression
AlgorithmFile

Compressed
Data

Filename

CRC-32

Zipping a file without AE-2
(high level)

Compression
AlgorithmFile

Compressed
Data

Filename

CRC-32

File date/size

Zipping a file without AE-2
(high level)

Compression
AlgorithmFile

Compressed
Data

Filename

CRC-32

File date/size

compression
type

Zipping a file without AE-2
(high level)

Compression
AlgorithmFile

Compressed
Data

Header

Filename

CRC-32

File date/size

compression
type

Zipping a file without AE-2
(high level)

Compression
AlgorithmFile

Archive.zip

Compressed
Data

Header

Filename

CRC-32

File date/size

compression
type

Zipping a file without AE-2
(high level)

Compression
AlgorithmFile

Archive.zip

Compressed
Data

Header

Filename

CRC-32

File date/size

compression
type

Zipping a file with AE-2
(high level)

Compression
AlgorithmFile

Compressed
Data

Header

Filename

CRC-32

File date/size

compression
type

Zipping a file with AE-2
(high level)

Compression
AlgorithmFile

Compressed
Data

Header

Filename

CRC-32

File date/size

compression
type

Zipping a file with AE-2
(high level)

Compression
AlgorithmFile

Header

Filename

CRC-32

File date/size

compression
type

Zipping a file with AE-2
(high level)

Compression
AlgorithmFile

Header

Filename

CRC-32

File date/size

compression
type

Zipping a file with AE-2
(high level)

Compression
AlgorithmFile

compression
type = AE

Header

Filename

CRC-32

File date/size

compression
type

Zipping a file with AE-2
(high level)

Compression
AlgorithmFile

CRC-32 = 0

compression
type = AE

Filename

Header

CRC-32 = 0

File date/size

compression
type = AE

Zipping a file with AE-2
(high level)

File Compression
Algorithm

Filename

Header

CRC-32 = 0

File date/size

compression
type = AE

Version = 2

Zipping a file with AE-2
(high level)

File Compression
Algorithm

Filename

Header

CRC-32 = 0

File date/size

compression
type = AE

compression
type

Version = 2

Zipping a file with AE-2
(high level)

File Compression
Algorithm

Filename

Header

CRC-32 = 0

File date/size

compression
type = AE

compression
type

Version = 2

Zipping a file with AE-2
(high level)

File

Passphrase

Compression
Algorithm

Filename

Header

CRC-32 = 0

File date/size

compression
type = AE

compression
type

Version = 2

Zipping a file with AE-2
(high level)

File

Passphrase

Compression
Algorithm

Filename

Header

CRC-32 = 0

File date/size

compression
type = AE

compression
type

Version = 2

Zipping a file with AE-2
(high level)

File

PBKDF
Passphrase

Compression
Algorithm

Filename

Header

CRC-32 = 0

File date/size

compression
type = AE

compression
type

Version = 2

Zipping a file with AE-2
(high level)

File

PBKDF
Passphrase

Compression
Algorithm

Filename

Header

CRC-32 = 0

File date/size

compression
type = AE

compression
type

Version = 2

Zipping a file with AE-2
(high level)

File

PBKDF
Passphrase

Compression
Algorithm

Filename

Header

CRC-32 = 0

File date/size

compression
type = AE

compression
type

Version = 2

Zipping a file with AE-2
(high level)

Key check val

Salt

File

PBKDF
Passphrase

Compression
Algorithm

Filename

Header

CRC-32 = 0

File date/size

compression
type = AE

compression
type

Version = 2

Zipping a file with AE-2
(high level)

Key check val

Salt

File

PBKDF
Passphrase

Compression
Algorithm

Filename

Header

CRC-32 = 0

File date/size

compression
type = AE

compression
type

Version = 2

Zipping a file with AE-2
(high level)

Key check val

Salt

File

PBKDF
Passphrase

Compression
Algorithm

Filename

Header

AES-CTR
then

HMAC-SHA1

CRC-32 = 0

File date/size

compression
type = AE

compression
type

Version = 2

Zipping a file with AE-2
(high level)

Key check val

Salt

File

PBKDF
Passphrase

Compression
Algorithm

Filename

Header

AES-CTR
then

HMAC-SHA1

CRC-32 = 0

File date/size

compression
type = AE

compression
type

Version = 2

Zipping a file with AE-2
(high level)

Key check val

Salt

File

PBKDF
Passphrase

Compression
Algorithm

Filename

Header

AES-CTR
then

HMAC-SHA1

CRC-32 = 0

File date/size

compression
type = AE

compression
type

Version = 2

Zipping a file with AE-2
(high level)

Key check val

Salt

File

PBKDF
Passphrase Encrypted

and MACed
Data

Compression
Algorithm

Filename

Header

AES-CTR
then

HMAC-SHA1

CRC-32 = 0

File date/size

compression
type = AE

compression
type

Version = 2

Zipping a file with AE-2
(high level)

Key check val

Salt

File

PBKDF
Passphrase Encrypted

and MACed
Data

Compression
Algorithm

Header

Filename

CRC-32 = 0

File date/size

compression
type = AE

compression
type

Version = 2

Key check val

Salt

Encrypted
and MACed

Data

