
Tadayoshi Kohno

CSE 490K

Cryptography:
Symmetric Foundations

Slides derived from Vitaly Shmatikov’s

Basic Problem

Alice Bob

M
M

Basic Internet model: Communications through untrusted
intermediaries.

Basic Problem

Alice Bob

M
M

Basic Internet model: Communications through untrusted
intermediaries.

Basic Problem

Alice Bob

M
M

Basic Internet model: Communications through untrusted
intermediaries.

I know M (attack privacy)

Basic Problem

Alice Bob

M
M

Basic Internet model: Communications through untrusted
intermediaries.

I know M (attack privacy)

I can change M (attack integrity)

M’

Basic Problem

Alice Bob

M
M

Basic Internet model: Communications through untrusted
intermediaries.

I know M (attack privacy)

I can change M (attack integrity)

M’

Important for: Secure remote logins, file transfers, web
access,

Symmetric Setting

M
Encapsulate Decapsulate

M

Adversary

Symmetric setting: Both parties share some secret
information, called a key.

Alice Bob

Solution: Encapsulate and decapsulate messages in some
secure way.

Symmetric Setting

M
Encapsulate Decapsulate

M

Adversary

Symmetric setting: Both parties share some secret
information, called a key.

Alice Bob

K K

Solution: Encapsulate and decapsulate messages in some
secure way.

Symmetric Setting

M
Encapsulate Decapsulate

M

Adversary

Symmetric setting: Both parties share some secret
information, called a key.

Alice Bob
K K

K K

Solution: Encapsulate and decapsulate messages in some
secure way.

Achieving Privacy

Encryption schemes

M C
Encrypt

K

Decrypt

K

M

Adversary

Key K

.Message M

.Ciphertext C

Alice Bob

K K

Achieving Integrity

Message authentication schemes or message authentication
codes or MACs

Alice Bob

K K

M
valid/
invalidT

MAC

K

(M,T)
Verify

K

Key K

.Message M

. Tag T Adversary

Achieving Both Privacy and Integrity

Authenticated encryption scheme

Alice Bob

K K

M/
invalid

K K

M
Encrypt Decrypt

C

Key K

.Message M

.Ciphertext C Adversary

(Authenticated encryption notion is “new” (around 2000),
so many books and protocols don’t discuss this. Can be
subtle!!!)

How this is achieved

! Layered approach:

• Cryptographic primitives, like block ciphers, stream
ciphers, and hash functions

• Cryptographic protocols, like CBC mode encryption,
CTR mode encryption, HMAC message authentication

! Today:

• Study the above. Basic concepts. Basic pitfalls.

block cipher hash functions

CBC encryption CTR encryption HMAC auth.

OCB auth. encryption CBC-MAC auth.

Asymmetric Setting (NOT today)

M
Encapsulate Decapsulate

M

Adversary

Asymmetric setting: Public and Secret keys. (Can help
establish shared secret keys K.)

Alice Bob

PKA,SKA PKB,SKB

Asymmetric Setting (NOT today)

M
Encapsulate Decapsulate

M

Adversary

Asymmetric setting: Public and Secret keys. (Can help
establish shared secret keys K.)

Alice Bob

PKA,SKA PKB,SKB

PKB PKA

Asymmetric Setting (NOT today)

M
Encapsulate Decapsulate

M

Adversary

Asymmetric setting: Public and Secret keys. (Can help
establish shared secret keys K.)

Alice Bob
PKA,SKBPKB,SKA

PKA,SKA PKB,SKB

PKB PKA

One-Time Pad

= 10111101…

= 00110010…

 10001111… !
00110010… =

 !
 10111101…

Key is a random bit sequence
as long as the plaintext

Encrypt by bitwise XOR of
plaintext and key:
ciphertext = plaintext ! key

Decrypt by bitwise XOR of
ciphertext and key:
ciphertext ! key =

(plaintext ! key) ! key =

plaintext ! (key ! key) =

plaintext

Cipher achieves perfect secrecy if and only if
there are as many possible keys as possible plaintexts, and
every key is equally likely (Claude Shannon)

Advantages of One-Time Pad

! Easy to compute

• Encryption and decryption are the same operation

• Bitwise XOR is very cheap to compute

!As secure as theoretically possible

• Given a ciphertext, all plaintexts are equally likely,
regardless of attacker’s computational resources

• …as long as the key sequence is truly random

– True randomness is expensive to obtain in large quantities

• …as long as each key is same length as plaintext
– But how does the sender communicate the key to receiver?

Disadvantages

= 10111101…

= 00110010…

 10001111… !
00110010… =

 !
 10111101…

Key is a random bit sequence
as long as the plaintext

Encrypt by bitwise XOR of
plaintext and key:
ciphertext = plaintext ! key

Decrypt by bitwise XOR of
ciphertext and key:
ciphertext ! key =

(plaintext ! key) ! key =

plaintext ! (key ! key) =

plaintext

Disadvantage #1: Keys as long as messages.
Impractical in most scenarios
Still used by intelligence communities

Disadvantages

= 10111101…

= 00110010…

 10001111… !
00110010… =

 !
 10111101…

Key is a random bit sequence
as long as the plaintext

Encrypt by bitwise XOR of
plaintext and key:
ciphertext = plaintext ! key

Decrypt by bitwise XOR of
ciphertext and key:
ciphertext ! key =

(plaintext ! key) ! key =

plaintext ! (key ! key) =

plaintext

Disadvantage #2: No integrity protection

Disadvantages

= 10111101…

= 00110010…

 10001111… !
00110010… =

 !
 10111101…

Key is a random bit sequence
as long as the plaintext

Encrypt by bitwise XOR of
plaintext and key:
ciphertext = plaintext ! key

Decrypt by bitwise XOR of
ciphertext and key:
ciphertext ! key =

(plaintext ! key) ! key =

plaintext ! (key ! key) =

plaintext

Disadvantage #2: No integrity protection

0

Disadvantages

= 10111101…

= 00110010…

 10001111… !
00110010… =

 !
 10111101…

Key is a random bit sequence
as long as the plaintext

Encrypt by bitwise XOR of
plaintext and key:
ciphertext = plaintext ! key

Decrypt by bitwise XOR of
ciphertext and key:
ciphertext ! key =

(plaintext ! key) ! key =

plaintext ! (key ! key) =

plaintext

Disadvantage #2: No integrity protection

0

0

Disadvantages

= 00000000…

= 00110010…

 00110010… !
00110010… =

 !
 00000000…

Disadvantage #3: Keys cannot be reused

= 11111111…

= 00110010…

 11001101… !
00110010… =

 !
 11111111…

P1

P2

C1

C2

Learn relationship between plaintexts:

C1⊕C2 = (P1⊕K)⊕(P2⊕K) = (P1⊕P2)⊕(K⊕K) = P1⊕P2

Reducing Keysize

!What do we do when we can’t pre-share huge
keys?

• When OTP is unrealistic

!We use special cryptographic primitives

• Single key can be reused (with some restrictions)

• But no longer provable secure (in the sense of the
OTP)

! Examples: Block ciphers, stream ciphers

Background: Permutation

1

2

3

4

1

2

3

4
CODE becomes DCEO

! For N-bit input, N! possible permutations

! Idea: split plaintext into blocks, for each block use
secret key to pick a permutation, rinse and repeat

• Without the key, permutation should “look random”

Block Ciphers

!Operates on a single chunk (“block”) of plaintext

• For example, 64 bits for DES, 128 bits for AES

• Same key is reused for each block (can use short keys)

Plaintext

Ciphertext

block
cipher

Key

Block Cipher Security

!Result should look like a random permutation

• “As if” plaintext bits were randomly shuffled

!Only computational guarantee of secrecy

• Not impossible to break, just very expensive

– If there is no efficient algorithm (unproven assumption!), then
can only break by brute-force, try-every-possible-key search

• Time and cost of breaking the cipher exceed the value
and/or useful lifetime of protected information

Block Cipher Operation (Simplified)

Block of plaintext

S S S S

S S S S

S S S S

Key

Block Cipher Operation (Simplified)

Block of plaintext

S S S S

S S S S

S S S S

Key

Block Cipher Operation (Simplified)

Block of plaintext

S S S S

S S S S

S S S S

Key

Add some secret key bits

to provide confusion

Block Cipher Operation (Simplified)

Block of plaintext

S S S S

S S S S

S S S S

Key

Add some secret key bits

to provide confusion

Each S-box transforms

its input bits in a

“random-looking” way

to provide diffusion

(spread plaintext bits

throughout ciphertext)

Block Cipher Operation (Simplified)

Block of plaintext

S S S S

S S S S

S S S S

Key

Add some secret key bits

to provide confusion

Each S-box transforms

its input bits in a

“random-looking” way

to provide diffusion

(spread plaintext bits

throughout ciphertext)

Block Cipher Operation (Simplified)

Block of plaintext

S S S S

S S S S

S S S S

Key

Add some secret key bits

to provide confusion

Each S-box transforms

its input bits in a

“random-looking” way

to provide diffusion

(spread plaintext bits

throughout ciphertext)

repeat for several rounds

Block Cipher Operation (Simplified)

Block of plaintext

S S S S

S S S S

S S S S

Key

Add some secret key bits

to provide confusion

Each S-box transforms

its input bits in a

“random-looking” way

to provide diffusion

(spread plaintext bits

throughout ciphertext)

repeat for several rounds

Block of ciphertext

Block Cipher Operation (Simplified)

Block of plaintext

S S S S

S S S S

S S S S

Key

Add some secret key bits

to provide confusion

Each S-box transforms

its input bits in a

“random-looking” way

to provide diffusion

(spread plaintext bits

throughout ciphertext)

repeat for several rounds

Block of ciphertext
Procedure must be reversible

(for decryption)

Feistel Structure (Stallings Fig 2.2)

⊕

⊕

DES

! Feistel structure

• “Ladder” structure: split input in half, put one half
through the round and XOR with the other half

• After 3 random rounds, ciphertext indistinguishable
from a random permutation (Luby & Rackoff)

!DES: Data Encryption Standard

• Feistel structure

• Invented by IBM, issued as federal standard in 1977

• 64-bit blocks, 56-bit key + 8 bits for parity

DES and 56 bit keys (Stallings Tab 2.2)

! 56 bit keys are quite short

! 1999: EFF DES Crack + distibuted machines

• < 24 hours to find DES key

!DES ---> 3DES

• 3DES: DES + inverse DES + DES (with 2 or 3 diff keys)

Advanced Encryption Standard (AES)

!New federal standard as of 2001

!Based on the Rijndael algorithm

! 128-bit blocks, keys can be 128, 192 or 256 bits

!Unlike DES, does not use Feistel structure

• The entire block is processed during each round

!Design uses some very nice mathematics

Basic Structure of Rijndael

128-bit plaintext

(arranged as 4x4 array of 8-bit bytes)

128-bit key

Basic Structure of Rijndael

128-bit plaintext

(arranged as 4x4 array of 8-bit bytes)

128-bit key

!

Basic Structure of Rijndael

128-bit plaintext

(arranged as 4x4 array of 8-bit bytes)

128-bit key

!

S shuffle the array (16x16 substitution table)

Basic Structure of Rijndael

128-bit plaintext

(arranged as 4x4 array of 8-bit bytes)

128-bit key

!

S shuffle the array (16x16 substitution table)

Shift rows shift array rows

(1st unchanged, 2nd left by 1, 3rd left by 2, 4th left by 3)

Basic Structure of Rijndael

128-bit plaintext

(arranged as 4x4 array of 8-bit bytes)

128-bit key

!

S shuffle the array (16x16 substitution table)

Shift rows shift array rows

(1st unchanged, 2nd left by 1, 3rd left by 2, 4th left by 3)

Mix columns
mix 4 bytes in each column

(each new byte depends on all bytes in old column)

Basic Structure of Rijndael

128-bit plaintext

(arranged as 4x4 array of 8-bit bytes)

128-bit key

!

S shuffle the array (16x16 substitution table)

Shift rows shift array rows

(1st unchanged, 2nd left by 1, 3rd left by 2, 4th left by 3)

Expand key

Mix columns
mix 4 bytes in each column

(each new byte depends on all bytes in old column)

Basic Structure of Rijndael

128-bit plaintext

(arranged as 4x4 array of 8-bit bytes)

128-bit key

!

S shuffle the array (16x16 substitution table)

Shift rows shift array rows

(1st unchanged, 2nd left by 1, 3rd left by 2, 4th left by 3)

add key for this round!

Expand key

Mix columns
mix 4 bytes in each column

(each new byte depends on all bytes in old column)

Basic Structure of Rijndael

128-bit plaintext

(arranged as 4x4 array of 8-bit bytes)

128-bit key

!

S shuffle the array (16x16 substitution table)

Shift rows shift array rows

(1st unchanged, 2nd left by 1, 3rd left by 2, 4th left by 3)

add key for this round!

Expand key

repeat 10 times

Mix columns
mix 4 bytes in each column

(each new byte depends on all bytes in old column)

Encrypting a Large Message

! So, we’ve got a good block cipher, but our
plaintext is larger than 128-bit block size

! Electronic Code Book (ECB) mode

• Split plaintext into blocks, encrypt each
one separately using the block cipher

!Cipher Block Chaining (CBC) mode

• Split plaintext into blocks, XOR each block with the
result of encrypting previous blocks

!Counter (CTR) mode

• Use block cipher to generate keystream, like a stream
cipher

! ...

ECB Mode

plaintext

ciphertext

block
cipher

block
cipher

block
cipher

block
cipher

block
cipher

ECB Mode

! Identical blocks of plaintext produce identical
blocks of ciphertext

plaintext

ciphertext

block
cipher

block
cipher

block
cipher

block
cipher

block
cipher

ECB Mode

! Identical blocks of plaintext produce identical
blocks of ciphertext

! No integrity checks: can mix and match blocks

plaintext

ciphertext

block
cipher

block
cipher

block
cipher

block
cipher

block
cipher

CBC Mode: Encryption

! Identical blocks of plaintext encrypted differently

! Last cipherblock depends on entire plaintext
• Still does not guarantee integrity

plaintext

ciphertext

block
cipher

block
cipher

block
cipher

block
cipher

!
Initialization
vector
(random)

! ! !

CBC Mode: Decryption

plaintext

ciphertext

decrypt decrypt decrypt decrypt

!Initialization
vector ! ! !

CTR Mode: Encryption

! Identical blocks of plaintext encrypted differently

! Still does not guarantee integrity

ctr ctr+1 ctr+2 ctr+3

ciphertext

block
cipher

block
cipher

block
cipher

block
cipher

Initial ctr
(random)

! ! ! !ptpt pt pt

ct ct ctct

CTR Mode: Decryption

ctr ctr+1 ctr+2 ctr+3

block
cipher

block
cipher

block
cipher

block
cipher

Initial ctr

! ! ! !

pt pt pt pt

ECB vs. CBC

AES in ECB mode AES in CBC mode

Similar plaintext
blocks produce
similar ciphertext
blocks (not good!)

[Picture due to Bart Preneel]

Information Leakage in ECB Mode
[Wikipedia]

Encrypt in ECB mode

CBC and Electronic Voting

Initialization
vector
(supposed to
 be random)

plaintext

ciphertext

DES DES DES DES

! ! ! !

Found in the source code for Diebold voting machines:

DesCBCEncrypt((des_c_block*)tmp, (des_c_block*)record.m_Data,

 totalSize, DESKEY, NULL, DES_ENCRYPT)

When Is a Cipher “Secure”?

!Hard to recover the key?

• What if attacker can learn plaintext without learning
the key?

!Hard to recover plaintext from ciphertext?

• What if attacker learns some bits or some function of
bits?

! Fixed mapping from plaintexts to ciphertexts?

• What if attacker sees two identical ciphertexts and
infers that the corresponding plaintexts are identical?

• Implication: encryption must be randomized or stateful

How Can a Cipher Be Attacked?

!Assume that the attacker knows the encryption
algorithm and wants to decrypt some ciphertext

!Main question: what else does attacker know?
• Depends on the application in which cipher is used!

!Ciphertext-only attack
!Known-plaintext attack (stronger)

• Knows some plaintext-ciphertext pairs

!Chosen-plaintext attack (even stronger)
• Can obtain ciphertext for any plaintext of his choice

!Chosen-ciphertext attack (very strong)
• Can decrypt any ciphertext except the target

• Sometimes very realistic model

Chosen-Plaintext Attack Chosen-Plaintext Attack

Crook #1 changes

his PIN to a number

of his choice

Chosen-Plaintext Attack

Crook #1 changes

his PIN to a number

of his choice

cipher(key,PIN)

PIN is encrypted and

transmitted to bank

Chosen-Plaintext Attack

Crook #1 changes

his PIN to a number

of his choice

cipher(key,PIN)

PIN is encrypted and

transmitted to bank

Crook #2 eavesdrops

on the wire and learns

ciphertext corresponding

to chosen plaintext PIN

Chosen-Plaintext Attack

Crook #1 changes

his PIN to a number

of his choice

cipher(key,PIN)

PIN is encrypted and

transmitted to bank

Crook #2 eavesdrops

on the wire and learns

ciphertext corresponding

to chosen plaintext PIN

… repeat for any PIN value

The Chosen-Plaintext Game

!Attacker does not know the key

!He chooses as many plaintexts as he wants, and
learns the corresponding ciphertexts

!When ready, he picks two plaintexts M0 and M1

• He is even allowed to pick plaintexts for which he
previously learned ciphertexts!

!He receives either a ciphertext of M0, or a

ciphertext of M1

!He wins if he guesses correctly which one it is

Defining Security

! Idea: attacker should not be able to learn

 even a single bit of the encrypted plaintext
!Define Enc(M0,M1,b) to be a function that returns

encrypted Mb

• Given two plaintexts, Enc returns a ciphertext of one or
the other depending on the value of bit b

• Think of Enc as a magic box that computes ciphertexts
on attacker’s demand. He can obtain a ciphertext of
any plaintext M by submitting M0=M1=M, or he can try

to learn even more by submitting M0!M1.

!Attacker’s goal is to learn just one bit b

0 or 1

Why Hide Everything?

! Leaking even a little bit of information about the
plaintext can be disastrous

! Electronic voting

• 2 candidates on the ballot (1 bit to encode the vote)

• If ciphertext leaks the parity bit of the encrypted
plaintext, eavesdropper learns the entire vote

!D-Day: Pas-de-Calais or Normandy?

• Allies convinced Germans that invasion will take place
at Pas-de-Calais

– Dummy landing craft, feed information to double spies

• Goal: hide a 1-bit secret

!Also, want a strong definition, that implies others

Chosen-Plaintext Security

!Consider two experiments (A is the attacker)
 Experiment 0 Experiment 1

 A interacts with Enc(-,-,0) A interacts with Enc(-,-,1)

 and outputs bit d and outputs bit d

• Identical except for the value of the secret bit

• d is attacker’s guess of the secret bit

!Attacker’s advantage is defined as

| Prob(A outputs 1 in Exp0) - Prob(A outputs 1 in Exp1)) |

! Encryption scheme is chosen-plaintext secure if
this advantage is negligible for any efficient A

If A “knows” secret bit, he
should be able to make his
output depend on it

Simple Example

Simple Example

!Any deterministic, stateless symmetric encryption
scheme is insecure

Simple Example

!Any deterministic, stateless symmetric encryption
scheme is insecure

• Attacker can easily distinguish encryptions of different
plaintexts from encryptions of identical plaintexts

Simple Example

!Any deterministic, stateless symmetric encryption
scheme is insecure

• Attacker can easily distinguish encryptions of different
plaintexts from encryptions of identical plaintexts

• This includes ECB mode of common block ciphers!

Simple Example

!Any deterministic, stateless symmetric encryption
scheme is insecure

• Attacker can easily distinguish encryptions of different
plaintexts from encryptions of identical plaintexts

• This includes ECB mode of common block ciphers!

 Attacker A interacts with Enc(-,-,b)

Simple Example

!Any deterministic, stateless symmetric encryption
scheme is insecure

• Attacker can easily distinguish encryptions of different
plaintexts from encryptions of identical plaintexts

• This includes ECB mode of common block ciphers!

 Attacker A interacts with Enc(-,-,b)

 Let X,Y be any two different plaintexts

Simple Example

!Any deterministic, stateless symmetric encryption
scheme is insecure

• Attacker can easily distinguish encryptions of different
plaintexts from encryptions of identical plaintexts

• This includes ECB mode of common block ciphers!

 Attacker A interacts with Enc(-,-,b)

 Let X,Y be any two different plaintexts

 C1 " Enc(X,Y,b); C2 " Enc(Y,Y,b);

Simple Example

!Any deterministic, stateless symmetric encryption
scheme is insecure

• Attacker can easily distinguish encryptions of different
plaintexts from encryptions of identical plaintexts

• This includes ECB mode of common block ciphers!

 Attacker A interacts with Enc(-,-,b)

 Let X,Y be any two different plaintexts

 C1 " Enc(X,Y,b); C2 " Enc(Y,Y,b);

 If C1=C2 then b=1 else say b=0

Simple Example

!Any deterministic, stateless symmetric encryption
scheme is insecure

• Attacker can easily distinguish encryptions of different
plaintexts from encryptions of identical plaintexts

• This includes ECB mode of common block ciphers!

 Attacker A interacts with Enc(-,-,b)

 Let X,Y be any two different plaintexts

 C1 " Enc(X,Y,b); C2 " Enc(Y,Y,b);

 If C1=C2 then b=1 else say b=0

! The advantage of this attacker A is 1

Simple Example

!Any deterministic, stateless symmetric encryption
scheme is insecure

• Attacker can easily distinguish encryptions of different
plaintexts from encryptions of identical plaintexts

• This includes ECB mode of common block ciphers!

 Attacker A interacts with Enc(-,-,b)

 Let X,Y be any two different plaintexts

 C1 " Enc(X,Y,b); C2 " Enc(Y,Y,b);

 If C1=C2 then b=1 else say b=0

! The advantage of this attacker A is 1

Prob(A outputs 1 if b=0)=0 Prob(A outputs 1 if b=1)=1

Integrity

goodFile

Software manufacturer wants to ensure that the executable file

 is received by users without modification.

It sends out the file to users and publishes its hash in NY Times.

The goal is integrity, not secrecy

Idea: given goodFile and hash(goodFile),
 very hard to find badFile such that hash(goodFile)=hash(badFile)

BigFirm™ User

VIRUS

badFile

The Times

hash(goodFile)

Integrity vs. Secrecy

! Integrity: attacker cannot tamper with message

! Encryption does not always guarantee integrity

• Intuition: attacker may able to modify message under
encryption without learning what it is

– One-time pad: given key K, encrypt M as M!K

– This guarantees perfect secrecy, but attacker can easily change
unknown M under encryption to M!M’ for any M’

– Online auction: halve competitor’s bid without learning its value

• This is recognized by industry standards (e.g., PKCS)
– “RSA encryption is intended primarily to provide confidentiality…

It is not intended to provide integrity” (from RSA Labs Bulletin)

Motivation: Authentication

msg, MAC(KEY,msg)

Alice wants to make sure that nobody modifies message in transit

Idea: given msg, very hard to compute MAC(KEY,msg) without KEY;
 very easy with KEY

Alice Bob

KEY
KEY

Hash Functions: Main Idea

bit strings of any length n-bit bit strings

. .

.
.
.

x’
x’’

x

y’

y

hash function H

! H is a lossy compression function

• Collisions: h(x)=h(x’) for distinct inputs x, x’

• Result of hashing should “look random” (make this precise later)

– Intuition: half of digest bits are “1”; any bit in digest is “1” half the time

! Cryptographic hash function needs a few properties…

message
“digest”

message

One-Way

! Intuition: hash should be hard to invert

• “Preimage resistance”

• Let h(x’)=y#{0,1}n for a random x’

• Given y, it should be hard to find any x such that h(x)
=y

!How hard?

• Brute-force: try every possible x, see if h(x)=y

• SHA-1 (common hash function) has 160-bit output

– Suppose have hardware that’ll do 230 trials a pop

– Assuming 234 trials per second, can do 289 trials per year

– Will take around 271 years to invert SHA-1 on a random
image

Collision Resistance

! Should be hard to find distinct x, x’ such that
h(x)=h(x’)

• Brute-force collision search is only O(2n/2), not O(2n)

• For SHA-1, this means O(280) vs. O(2160)

!Birthday paradox (informal)

• Let t be the number of values x,x’,x’’… we need to look
at before finding the first pair x,x’ s.t. h(x)=h(x’)

• What is probability of collision for each pair x,x’?

• How many pairs would we need to look at before
finding the first collision?

• How many pairs x,x’ total?

• What is t?

Collision Resistance

! Should be hard to find distinct x, x’ such that
h(x)=h(x’)

• Brute-force collision search is only O(2n/2), not O(2n)

• For SHA-1, this means O(280) vs. O(2160)

!Birthday paradox (informal)

• Let t be the number of values x,x’,x’’… we need to look
at before finding the first pair x,x’ s.t. h(x)=h(x’)

• What is probability of collision for each pair x,x’?

• How many pairs would we need to look at before
finding the first collision?

• How many pairs x,x’ total?

• What is t?

1/2n

Collision Resistance

! Should be hard to find distinct x, x’ such that
h(x)=h(x’)

• Brute-force collision search is only O(2n/2), not O(2n)

• For SHA-1, this means O(280) vs. O(2160)

!Birthday paradox (informal)

• Let t be the number of values x,x’,x’’… we need to look
at before finding the first pair x,x’ s.t. h(x)=h(x’)

• What is probability of collision for each pair x,x’?

• How many pairs would we need to look at before
finding the first collision?

• How many pairs x,x’ total?

• What is t?

1/2n

O(2n)

Collision Resistance

! Should be hard to find distinct x, x’ such that
h(x)=h(x’)

• Brute-force collision search is only O(2n/2), not O(2n)

• For SHA-1, this means O(280) vs. O(2160)

!Birthday paradox (informal)

• Let t be the number of values x,x’,x’’… we need to look
at before finding the first pair x,x’ s.t. h(x)=h(x’)

• What is probability of collision for each pair x,x’?

• How many pairs would we need to look at before
finding the first collision?

• How many pairs x,x’ total?

• What is t?

1/2n

O(2n)

Choose(2,t)=t(t-1)/2 $ O(t2)

Collision Resistance

! Should be hard to find distinct x, x’ such that
h(x)=h(x’)

• Brute-force collision search is only O(2n/2), not O(2n)

• For SHA-1, this means O(280) vs. O(2160)

!Birthday paradox (informal)

• Let t be the number of values x,x’,x’’… we need to look
at before finding the first pair x,x’ s.t. h(x)=h(x’)

• What is probability of collision for each pair x,x’?

• How many pairs would we need to look at before
finding the first collision?

• How many pairs x,x’ total?

• What is t?

1/2n

O(2n)

2n/2

Choose(2,t)=t(t-1)/2 $ O(t2)

One-Way vs. Collision Resistance

One-Way vs. Collision Resistance

!One-wayness does not imply collision resistance

• Suppose g is one-way

• Define h(x) as g(x’) where x’ is x except the last bit
– h is one-way (to invert h, must invert g)

– Collisions for h are easy to find: for any x, h(x0)=h(x1)

One-Way vs. Collision Resistance

!One-wayness does not imply collision resistance

• Suppose g is one-way

• Define h(x) as g(x’) where x’ is x except the last bit
– h is one-way (to invert h, must invert g)

– Collisions for h are easy to find: for any x, h(x0)=h(x1)

!Collision resistance does not imply one-wayness

• Suppose g is collision-resistant

• Define h(x) to be 0x if x is n-bit long, 1g(x) otherwise
– Collisions for h are hard to find: if y starts with 0, then there are

no collisions, if y starts with 1, then must find collisions in g

– h is not one way: half of all y’s (those whose first bit is 0) are
easy to invert (how?); random y is invertible with probab. 1/2

Weak Collision Resistance

!Given randomly chosen x, hard to find x’ such
that h(x)=h(x’)

• Attacker must find collision for a specific x. By
contrast, to break collision resistance, enough to
find any collision.

• Brute-force attack requires O(2n) time

• AKA second-preimage collision resistance

!Weak collision resistance does not imply
collision resistance

Which Property Do We Need?

!UNIX passwords stored as hash(password)

• One-wayness: hard to recover password

! Integrity of software distribution

• Weak collision resistance

• But software images are not really random… maybe
need full collision resistance

!Auction bidding

• Alice wants to bid B, sends H(B), later reveals B

• One-wayness: rival bidders should not recover B

• Collision resistance: Alice should not be able to change
her mind to bid B’ such that H(B)=H(B’)

Common Hash Functions

!MD5

• 128-bit output

• Designed by Ron Rivest, used very widely

• Collision-resistance broken (summer of 2004)

!RIPEMD-160

• 160-bit variant of MD5

! SHA-1 (Secure Hash Algorithm)

• 160-bit output

• US government (NIST) standard as of 1993-95

– Also the hash algorithm for Digital Signature Standard (DSS)

Basic Structure of SHA-1

Against padding attacks

Split message into 512-bit blocks

Compression function
• Applied to each 512-bit block
 and current 160-bit buffer
• This is the heart of SHA-1

160-bit buffer (5 registers)
initialized with magic values

How Strong Is SHA-1?

! Every bit of output depends on every bit of input

• Very important property for collision-resistance

!Brute-force inversion requires 2160 ops, birthday
attack on collision resistance requires 280 ops

! Some very recent weaknesses (2005)

• Collisions can be found in 263 ops

Authentication Without Encryption

Alice Bob

KEY
KEY

message

Authentication Without Encryption

Alice Bob

KEY
KEY

message

MAC
(message authentication code)

Authentication Without Encryption

Alice Bob

KEY
KEY

message

MAC
(message authentication code)

message, MAC(KEY,message)

Authentication Without Encryption

Alice Bob

KEY
KEY

message

MAC
(message authentication code)

message, MAC(KEY,message)

Authentication Without Encryption

Alice Bob

KEY
KEY

message

MAC
(message authentication code)

message, MAC(KEY,message)

=
?

Recomputes MAC and verifies whether it is

equal to the MAC attached to the message

Authentication Without Encryption

Integrity and authentication: only someone who knows KEY can

 compute MAC for a given message

Alice Bob

KEY
KEY

message

MAC
(message authentication code)

message, MAC(KEY,message)

=
?

Recomputes MAC and verifies whether it is

equal to the MAC attached to the message

HMAC

!Construct MAC by applying a cryptographic hash
function to message and key

• Could also use encryption instead of hashing, but…

• Hashing is faster than encryption in software

• Library code for hash functions widely available

• Can easily replace one hash function with another

• There used to be US export restrictions on encryption

! Invented by Bellare, Canetti, and Krawczyk (1996)

• HMAC strength established by cryptographic analysis

!Mandatory for IP security, also used in SSL/TLS

Structure of HMAC

Embedded hash function
(strength of HMAC relies on

strength of this hash function)

“Black box”: can use this HMAC
construction with any hash function
(why is this important?)

Block size of embedded hash function

Secret key padded
to block size

magic value (flips half of key bits)

another magic value
(flips different key bits)

hash(key,hash(key,message))

“Amplify” key material
(get two keys out of one)

Very common problem:
given a small secret, how to
derive a lot of new keys?

Achieving Both Privacy and Integrity

Authenticated encryption scheme

Alice Bob

K K

M/
invalid

K K

M
Encrypt Decrypt

C

Key K

.Message M

.Ciphertext C Adversary

Recall: Often desire both privacy and integrity. (For SSH,
SSL, IPsec, etc.)

Some subtleties! Encrypt-and-MAC

Natural approach for authenticated encryption: Combine an encryption
scheme and a MAC.

Some subtleties! Encrypt-and-MAC

DKe,KmEKe,Km

Natural approach for authenticated encryption: Combine an encryption
scheme and a MAC.

Some subtleties! Encrypt-and-MAC

DKe,KmEKe,Km
M

Natural approach for authenticated encryption: Combine an encryption
scheme and a MAC.

Some subtleties! Encrypt-and-MAC

DKe,KmEKe,Km
M

C’

EncryptKe

Natural approach for authenticated encryption: Combine an encryption
scheme and a MAC.

Some subtleties! Encrypt-and-MAC

DKe,KmEKe,Km
M

C’

EncryptKe

T

MACKm

Natural approach for authenticated encryption: Combine an encryption
scheme and a MAC.

Some subtleties! Encrypt-and-MAC

DKe,KmEKe,Km
M

C’

EncryptKe

T

MACKm

Ciphertext

Natural approach for authenticated encryption: Combine an encryption
scheme and a MAC.

Some subtleties! Encrypt-and-MAC

DKe,KmEKe,Km
M

C’

EncryptKe

T

MACKm

Ciphertext

TC’

Ciphertext

Natural approach for authenticated encryption: Combine an encryption
scheme and a MAC.

Some subtleties! Encrypt-and-MAC

M

DecryptKe

DKe,KmEKe,Km
M

C’

EncryptKe

T

MACKm

Ciphertext

TC’

Ciphertext

Natural approach for authenticated encryption: Combine an encryption
scheme and a MAC.

Some subtleties! Encrypt-and-MAC

valid/invalid

M

DecryptKe VerifyKm

DKe,KmEKe,Km
M

C’

EncryptKe

T

MACKm

Ciphertext

TC’

Ciphertext

Natural approach for authenticated encryption: Combine an encryption
scheme and a MAC.

Some subtleties! Encrypt-and-MAC

valid/invalid

M

DecryptKe VerifyKm

DKe,KmEKe,Km
M

C’

EncryptKe

T

MACKm

Ciphertext

TC’

Ciphertext

Return M if
valid

Natural approach for authenticated encryption: Combine an encryption
scheme and a MAC.

But insecure! [BN, Kra]

Assume Alice sends messages:

M2

C’2

EncryptKe

T2

MACKm

M1

C’1

EncryptKe

T1

M3

C’3

EncryptKe

T3

MACKm MACKm

If Ti = Tj then Mi = Mj

! Adversary learns whether two plaintexts are equal.

Especially problematic when M1, M2, ... take on only a small
number of possible values.

But insecure! [BN, Kra]

Assume Alice sends messages:

M2

C’2

EncryptKe

T2

MACKm

M1

C’1

EncryptKe

T1

M3

C’3

EncryptKe

T3

DON’T FIREFIRE FIRE

MACKm MACKm

If Ti = Tj then Mi = Mj

! Adversary learns whether two plaintexts are equal.

Especially problematic when M1, M2, ... take on only a small
number of possible values.

But insecure! [BN, Kra]

Assume Alice sends messages:

M2

C’2

EncryptKe

T2

MACKm

M1

C’1

EncryptKe

T1

M3

C’3

EncryptKe

T3

DON’T FIREFIRE FIREFIRE FIRE

MACKm MACKm

If Ti = Tj then Mi = Mj

! Adversary learns whether two plaintexts are equal.

Especially problematic when M1, M2, ... take on only a small
number of possible values.

But insecure! [BN, Kra]

Assume Alice sends messages:

M2

C’2

EncryptKe

T2

MACKm

M1

C’1

EncryptKe

T1

M3

C’3

EncryptKe

T3

DON’T FIREFIRE FIREFIRE FIRE

MACKm MACKm

T1 T3

If Ti = Tj then Mi = Mj

! Adversary learns whether two plaintexts are equal.

Especially problematic when M1, M2, ... take on only a small
number of possible values.

The Secure Shell (SSH) protocol is designed to provide:

• Secure remote logins.

• Secure file transfers.

Where security includes:

• Protecting the privacy of users’ data.

• Protecting the integrity of users’ data.

OpenSSH is included in the default installations of OS X
and many Linux distributions. C’

paddingpdlpl

1 byte4 bytes

M

T

EncryptKe MACKm

M
Data to be

communicated

ctr

4 bytes

Maintained internally;
not transmitted

EKe,Km

Ciphertext packet

Authenticated encryption in SSH

M2M1

Assume Alice sends messages M1 and M2 that are the same.

What’s different about SSH?

Then the tags T1 and T2 will be different with high probability.

T1C’1

EncryptKe MACKm

M1ctr1

M2M1

Assume Alice sends messages M1 and M2 that are the same.

What’s different about SSH?

T2C’2

EncryptKe MACKm

M2ctr2

Then the tags T1 and T2 will be different with high probability.

T1C’1

EncryptKe MACKm

M1ctr1

M2M1 FIREFIRE

Assume Alice sends messages M1 and M2 that are the same.

What’s different about SSH?

T2C’2

EncryptKe MACKm

M2ctr2

Then the tags T1 and T2 will be different with high probability.

T1C’1

EncryptKe MACKm

M1ctr1

M2M1 FIREFIRE

Assume Alice sends messages M1 and M2 that are the same.

What’s different about SSH?

T2C’2

EncryptKe MACKm

M2ctr2 FIREFIRE

Then the tags T1 and T2 will be different with high probability.

T1C’1

EncryptKe MACKm

M1ctr1

M2M1 FIREFIRE

Assume Alice sends messages M1 and M2 that are the same.

What’s different about SSH?

T2C’2

EncryptKe MACKm

M2ctr2 FIREFIRE

Then the tags T1 and T2 will be different with high probability.

10

T1C’1

EncryptKe MACKm

M1ctr1

T2T1

M2M1 FIREFIRE

Assume Alice sends messages M1 and M2 that are the same.

What’s different about SSH?

T2C’2

EncryptKe MACKm

M2ctr2 FIREFIRE

Then the tags T1 and T2 will be different with high probability.

10

T1C’1

EncryptKe MACKm

M1ctr1

T2T1

M2M1 FIREFIRE

Assume Alice sends messages M1 and M2 that are the same.

What’s different about SSH?

T2C’2

EncryptKe MACKm

M2ctr2 FIREFIRE

Then the tags T1 and T2 will be different with high probability.

10

But if counters repeat, tags may once
again leak private information about

data.

Results of [BN00,Kra01]

Strong (CTXT)

Strong (CCA) Weak (CPA) InsecurePrivacy

Integrity Weak (PTXT) Weak (PTXT)

MAC-then-EncryptEncrypt-then-MAC Encrypt-and-MAC

M MACKm

TM

EncryptKe

C
Ciphertext C

M

EncryptKe MACKm

TC’
Ciphertext C

EncryptKe

M

MACKmC’

TC’
Ciphertext C

Provable security

To prove that a scheme X is secure using reductions
[GM]: Show that

• if one can compromise the security of X efficiently,

• then one can compromise the security of Y
efficiently,

where Y is believed to be secure.

If Y is secure, an efficient adversary against X cannot
exist.

Security Evaluations

! First one out today

!Due next Tuesday

!Consider the security of the U.S.
telecommunications system

! (Much like in-class study last week.)

Project 1

!Out today

! Part 1: Due next Thursday (April 19, 11:59pm)

! Part 2: Due following Thursday (April 26,
11:59pm)

! Topic: Buffer overflow, format string, and
double free vulnerabilities

! Seven vulnerable programs

! Your job: Attack them and obtain a root shell

!Readings on website will help!

Project 1

! Start early! (That’s why there’s two deadlines.)

!Groups up to three people OK

• Email Nick if you’d like us to pair you up

• Goal is not to divide the vulnerable programs
amongst yourselves

• Goal is to work together on all vulnerable programs

– You may be tested on how to attack these programs, and
best way to deeply know the material is to do the attacks

GDB will be helpful too!

! disassemble

! run

! continue

! break

• break main

• break *0x08048643

! step / stepi

! info register

! x

• x/200x buf

• x/200i buf

• x/200a buf

• x/200x $sp - 16

Example

! Let’s try attacking an example program

! Some of the following slides will not be online

target0.c

int foo(char *arg, char *out) {

 strcpy(out, arg);

 return 0;

}

int main(int argc, char *argv[]) {

 char buf[64]; /* we want to overflow this buffer */

 if (argc != 2) { ... }

 foo(argv[1], buf);

 return 0;

}

ret/IPSaved SPbuf

64 bytes

