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Goals for Today

 Software security
• Buffer overflow attacks
• Other software security issues

 Practice thinking about the security issues 
affecting real systems



Software problems are ubiquitous
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Software problems are ubiquitous

 NASA Mars Lander
• Bug in translation between English and metric units
• Cost taxpayers $165 million

 Denver Airport baggage system
• Bug caused baggage carts to become out of “sync,” 

overloaded, etc.
• Delayed opening for 11 months, at $1 million per day

Other fatal or potentially fatal bugs
• US Vicennes tracking software
• MV-22 Ospray
• Medtronic Model 8870 Software Application Card

From Exploiting Software and http://www.fda.gov/cdrh/recalls/recall-082404b-pressrelease.html



Adversarial Failures

 Software bugs are bad
• Consequences can be serious

 Even worse when an intelligent adversary wishes 
to exploit them!
• Intelligent adversaries:  Force bugs into “worst 

possible” conditions/states
• Intelligent adversaries:  Pick their targets

 Buffer overflows bugs:  Big class of bugs
• Normal conditions:  Can sometimes cause systems to 

fail
• Adversarial conditions:  Attacker able to violate security 

of your system (control, obtain private information, ...)



A Bit of History: Morris Worm

Worm was released in 1988 by Robert Morris
• Graduate student at Cornell, son of NSA chief scientist
• Convicted under Computer Fraud and Abuse Act, 

sentenced to 3 years of probation and 400 hours of 
community service

• Now an EECS professor at MIT

Worm was intended to propagate slowly and 
harmlessly measure the size of the Internet

 Due to a coding error, it created new copies as fast 
as it could and overloaded infected machines

 $10-100M worth of damage



Morris Worm and Buffer Overflow

We’ll consider the Morris worm in more detail 
when talking about worms and viruses

One of the worm’s propagation techniques was a 
buffer overflow attack against a vulnerable version 
of fingerd on VAX systems
• By sending special string to finger daemon, worm 

caused it to execute code creating a new worm copy
• Unable to determine remote OS version, worm also 

attacked fingerd on Suns running BSD, causing them 
to crash (instead of spawning a new copy)



Buffer Overflow These Days

 Very common cause of Internet attacks
• In 1998, over 50% of advisories published by CERT 

(computer security incident report team) were caused by 
buffer overflows

Morris worm (1988): overflow in fingerd
• 6,000 machines infected

 CodeRed (2001): overflow in MS-IIS server
• 300,000 machines infected in 14 hours

 SQL Slammer (2003): overflow in MS-SQL server
• 75,000 machines infected in 10 minutes (!!)



 Buffer is a data storage area inside computer 
memory (stack or heap)
• Intended to hold pre-defined amount of data

– If more data is stuffed into it, it spills into adjacent memory

• If executable code is supplied as “data”, victim’s machine 
may be fooled into executing it – we’ll see how

– Code will self-propagate or give attacker control over machine 

 First generation exploits: stack smashing
 Second gen: heaps, function pointers, off-by-one
 Third generation: format strings and heap 

management structures

Attacks on Memory Buffers



Stack Buffers

 Suppose Web server contains this function
  void func(char *str) {

           char buf[126];
           ...
           strcpy(buf,str);
           ...
      }

 No bounds checking on strcpy()
 If str is longer than 126 bytes

• Program may crash
• Attacker may change program behavior

buf
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Stack Buffers

 Suppose Web server contains this function
  void func(char *str) {

           char buf[126];
           ...
           strcpy(buf,str);
           ...
      }

 No bounds checking on strcpy()
 If str is longer than 126 bytes

• Program may crash
• Attacker may change program behavior

buf uh oh!



buf authenticated

Changing Flags

 Suppose Web server contains this function
  void func(char *str) {

           int authenticated = 0;
           char buf[126];
           ...
           strcpy(buf,str);
           ...
      }

 Authenticated variable non-zero when user has 
extra privileges

Morris worm also overflowed a buffer to overwrite 
an authenticated flag in in.fingerd
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buf authenticated11 (yeah!)

Changing Flags

 Suppose Web server contains this function
  void func(char *str) {

           int authenticated = 0;
           char buf[126];
           ...
           strcpy(buf,str);
           ...
      }

 Authenticated variable non-zero when user has 
extra privileges

Morris worm also overflowed a buffer to overwrite 
an authenticated flag in in.fingerd



Memory Layout

 Text region:  Executable code of the program
 Heap:  Dynamically allocated data
 Stack:  Local variables, function return addresses; 

grows and shrinks as functions are called and 
return

Text region Heap Stack
Addr 0x00...0 Addr 0xFF...F
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 Suppose Web server contains this function
  void func(char *str) {

           char buf[126];
           strcpy(buf,str);
      }

When this function is invoked, a new frame with 
local variables is pushed onto the stack

Stack Buffers

Allocate local buffer
(126 bytes reserved on stack)

Copy argument into local buffer

Caller’s frame

Addr 0xFF...F
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      }

When this function is invoked, a new frame with 
local variables is pushed onto the stack

Stack Buffers
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Memory pointed to by str is copied onto stack…
  void func(char *str) {

           char buf[126];
           strcpy(buf,str);
      }

 If a string longer than 126 bytes is copied into 
buffer, it will overwrite adjacent stack locations

What If Buffer is Overstuffed?

strcpy does NOT check whether the string 
at *str contains fewer than 126 characters

ret/IP Caller’s frame

Addr 0xFF...F

Saved SPbuf

Local variables

str

Args
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Memory pointed to by str is copied onto stack…
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 Suppose buffer contains attacker-created string
• For example, *str contains a string received from the 

network as input to some network service daemon

When function exits, code in the buffer will be 
executed, giving attacker a shell
• Root shell if the victim program is setuid root

Executing Attack Code

ret/IPSaved SPbuf Caller’s stack frame

Addr 0xFF...F

Caller’s framestr
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 Suppose buffer contains attacker-created string
• For example, *str contains a string received from the 

network as input to some network service daemon

When function exits, code in the buffer will be 
executed, giving attacker a shell
• Root shell if the victim program is setuid root

Executing Attack Code

ret/IPSaved SPbuf Caller’s stack frame

Addr 0xFF...F

Attacker puts actual assembly 
instructions into his input string, e.g.,

binary code of execve(“/bin/sh”)

exec(“/bin/sh”)

In the overflow, a pointer back
into the buffer appears in

the location where the system
expects to find return address

Caller’s framestr



 Executable attack code is stored on stack, inside 
the buffer containing attacker’s string 
• Stack memory is supposed to contain only data, but…

Overflow portion of the buffer must contain correct 
address of attack code in the RET position
• The value in the RET position must point to the 

beginning of attack assembly code in the buffer
– Otherwise application will crash with segmentation violation

• Attacker must correctly guess in which stack position his 
buffer will be when the function is called

Buffer Overflow Issues



Problem: No Range Checking

 strcpy does not check input size
• strcpy(buf, str) simply copies memory contents into buf 

starting from *str until “\0” is encountered, ignoring 
the size of area allocated to buf

Many C library functions are unsafe
• strcpy(char *dest, const char *src)
• strcat(char *dest, const char *src)
• gets(char *s)
• scanf(const char *format, …)
• printf(const char *format, …) 



 strncpy(char *dest, const char *src, size_t n)
• If strncpy is used instead of strcpy, no more than n 

characters will be copied from *src to *dest
– Programmer has to supply the right value of n

 Potential overflow in htpasswd.c (Apache 1.3):
strcpy(record,user);

strcat(record,”:”);

strcat(record,cpw); …

 Published “fix” (do you see the problem?):

   … strncpy(record,user,MAX_STRING_LEN-1);
         strcat(record,”:”);
         strncat(record,cpw,MAX_STRING_LEN-1); …

Does Range Checking Help?

Copies username (“user”) into buffer (“record”),
then appends “:” and hashed password (“cpw”)



 Published “fix” for Apache htpasswd overflow:

   … strncpy(record,user,MAX_STRING_LEN-1);
         strcat(record,”:”);
         strncat(record,cpw,MAX_STRING_LEN-1); …

Misuse of strncpy in htpasswd “Fix”

MAX_STRING_LEN bytes allocated for record buffer
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 Published “fix” for Apache htpasswd overflow:

   … strncpy(record,user,MAX_STRING_LEN-1);
         strcat(record,”:”);
         strncat(record,cpw,MAX_STRING_LEN-1); …

Misuse of strncpy in htpasswd “Fix”

MAX_STRING_LEN bytes allocated for record buffer

contents of *user

Put up to MAX_STRING_LEN-1
characters into buffer

:

Put “:”

contents of *cpw

Again put up to MAX_STRING_LEN-1
characters into buffer



 Home-brewed range-checking string copy
   void notSoSafeCopy(char *input) {

          char buffer[512]; int i; 
             for (i=0; i<=512; i++)
                 buffer[i] = input[i]; 
        }
        void main(int argc, char *argv[]) {
             if (argc==2) 
                notSoSafeCopy(argv[1]);
        }

Off-By-One Overflow
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 Home-brewed range-checking string copy
   void notSoSafeCopy(char *input) {

          char buffer[512]; int i; 
             for (i=0; i<=512; i++)
                 buffer[i] = input[i]; 
        }
        void main(int argc, char *argv[]) {
             if (argc==2) 
                notSoSafeCopy(argv[1]);
        }

Off-By-One Overflow

 1-byte overflow: can’t change RET, but can change 
pointer to previous stack frame
• On little-endian architecture, make it point into buffer
• RET for previous function will be read from buffer!

This will copy 513
characters into
buffer. Oops!



Memory Layout

 Text region:  Executable code of the program
 Heap:  Dynamically allocated data
 Stack:  Local variables, function return addresses; 

grows and shrinks as functions are called and 
return

Text region Heap Stack
Addr 0x00...0 Addr 0xFF...F

Top Bottom



Overflowing buffers on heap can change pointers 
that point to important data
• Sometimes can also transfer execution to attack code
• Can cause program to crash by forcing it to read from an 

invalid address (segmentation violation)
 Illegitimate privilege elevation: if program with 

overflow has sysadm/root rights, attacker can use it 
to write into a normally inaccessible file
• For example, replace a filename pointer with a pointer 

into buffer location containing name of a system file
– Instead of temporary file, write into AUTOEXEC.BAT

Heap Overflow



 C uses function pointers for callbacks: if pointer to F 
is stored in memory location P, then another 
function G can call F as (*P)(…)

Function Pointer Overflow

Buffer with attacker-supplied 
input string

Callback
pointer

Heap

Legitimate function F

(elsewhere in memory)
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 C uses function pointers for callbacks: if pointer to F 
is stored in memory location P, then another 
function G can call F as (*P)(…)

Function Pointer Overflow

attack code

Buffer with attacker-supplied 
input string

Callback
pointer

Heap

Legitimate function F

overflow

(elsewhere in memory)



 Proper use of printf format string:
  … int foo=1234; 

      printf(“foo = %d in decimal, %X in hex”,foo,foo); …
– This will print 

  foo = 1234 in decimal, 4D2 in hex

 Sloppy use of printf format string:
  … char buf[13]=“Hello, world!”; 

      printf(buf);
         // should’ve used printf(“%s”, buf); …

– If buffer contains format symbols starting with %, location 
pointed to by printf’s internal stack pointer will be interpreted as 
an argument of printf.  This can be exploited to move printf’s 
internal stack pointer.

Format Strings in C



%x format symbol tells printf to output data on 
stack

  … printf(“Here is an int:  %x”,i); …

What if printf does not have an argument?
  … char buf[16]=“Here is an int:  %x”; 

      printf(buf); …

– Stack location pointed to by printf’s internal stack pointer will be 
interpreted as an int.  (What if crypto key, password, ...?)

Or what about:
  … char buf[16]=“Here is a string:  %s”; 

      printf(buf); …

– Stack location pointed to by printf’s internal stack pointer will be 
interpreted as a pointer to a string

Viewing Memory



%n format symbol tells printf to write the number 
of characters that have been printed

  … printf(“Overflow this!%n”,&myVar); …

– Argument of printf is interpeted as destination address

– This writes 14 into myVar (“Overflow this!” has 14 characters)

What if printf does not have an argument?
  … char buf[16]=“Overflow this!%n”; 

      printf(buf); …

– Stack location pointed to by printf’s internal stack pointer will be 
interpreted as address into which the number of characters will 
be written.

Writing Stack with Format Strings



More Buffer Overflow Targets

 Heap management structures used by malloc()
 URL validation and canonicalization

• If Web server stores URL in a buffer with overflow, then 
attacker can gain control by supplying malformed URL

– Nimda worm propagated itself by utilizing buffer overflow in 
Microsoft’s Internet Information Server

 Some attacks don’t even need overflow
• Naïve security checks may miss URLs that give attacker 

access to forbidden files
– For example, http://victim.com/user/../../autoexec.bat may pass 

naïve check, but give access to system file
– Defeat checking for “/” in URL by using hex representation:             

%5c or %255c.



Preventing Buffer Overflow

 Use safe programming languages, e.g., Java
• What about legacy C code?

Mark stack as non-executable
 Randomize stack location or encrypt return address 

on stack by XORing with random string
• Attacker won’t know what address to use in his or her 

string
 Static analysis of source code to find overflows
 Run-time checking of array and buffer bounds

• StackGuard, libsafe, many other tools

 Black-box testing with long strings



Non-Executable Stack

 NX bit on every Page Table Entry
• AMD Athlon 64, Intel P4 “Prescott”
• Code patches marking stack segment as non-executable 

exist for Linux, Solaris, OpenBSD
 Some applications need executable stack

• For example, LISP interpreters
 Does not defend against return-to-libc exploits

• Overwrite return address with the address of an existing 
library function (can still be harmful)

…nor against heap and function pointer overflows
…nor changing stack internal variables (auth 

flag, ...)



buf

 Embed “canaries” in stack frames and verify their 
integrity prior to function return
• Any overflow of local variables will damage the canary

 Choose random canary string on program start
• Attacker can’t guess what the value of canary will be

 Terminator canary: “\0”, newline, linefeed, EOF
• String functions like strcpy won’t copy beyond “\0”

Run-Time Checking: StackGuard

ret/IPSaved SPbuf Caller’s stack frame

ret/IPSaved SP Caller’s stack frame0000canary
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StackGuard Implementation

 StackGuard requires code recompilation
 Checking canary integrity prior to every function 

return causes a performance penalty
• For example, 8% for Apache Web server

 PointGuard also places canaries next to function 
pointers and setjmp buffers
• Worse performance penalty

 StackGuard can be defeated! 
• Phrack article by Bulba and Kil3r 



Defeating StackGuard (Sketch)

 Idea: overwrite pointer used by some strcpy and 
make it point to return address (RET) on stack
• strcpy will write into RET without touching canary!

buf sfp RET

Return execution to
this address

canarydst

Suppose program contains strcpy(dst,buf)
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Defeating StackGuard (Sketch)

 Idea: overwrite pointer used by some strcpy and 
make it point to return address (RET) on stack
• strcpy will write into RET without touching canary!

buf sfp RET

Return execution to
this address

canarydst

Suppose program contains strcpy(dst,buf)

sfp RETcanaryBadPointer, attack code &RET

Overwrite destination of strcpy with RET position strcpy will copy 
BadPointer here



Run-Time Checking: Libsafe

 Dynamically loaded library
 Intercepts calls to strcpy(dest,src)

• Checks if there is sufficient space in current stack 
frame 

   |frame-pointer – dest| > strlen(src)
• If yes, does strcpy; else terminates application  



PointGuard

 Attack: overflow a function pointer so that it points 
to attack code

 Idea: encrypt all pointers while in memory
• Generate a random key when program is executed
• Each pointer is XORed with this key when loaded from 

memory to registers or stored back into memory
– Pointers cannot be overflown while in registers

 Attacker cannot predict the target program’s key
• Even if pointer is overwritten, after XORing with key it will 

dereference to a “random” memory address



CPU

Memory Pointer
0x1234 Data

1. Fetch pointer value

0x1234

2. Access data referenced by pointer

Normal Pointer Dereference   [Cowan]

0x1234 0x1340

CPU

Memory
Corrupted pointer
0x1234
0x1340

Data

1. Fetch pointer value

2. Access attack code referenced
 by corrupted pointer

Attack
code



CPU

Memory Encrypted pointer
0x7239 Dat

a

1. Fetch pointer 
    value

0x1234

2. Access data referenced by pointer

PointGuard Dereference  [Cowan]

0x1234

Decrypt

0x1234 0x1340

CPU

Memory
Corrupted pointer
0x7239
0x1340

Data

2. Access random address;
    segmentation fault and crash

Attack
code

1. Fetch pointer 
    value

0x9786

Decrypt

Decrypts to
random value

0x9786



PointGuard Issues

Must be very fast
• Pointer dereferences are very common

 Compiler issues
• Must encrypt and decrypt only pointers
• If compiler “spills” registers, unencrypted pointer values 

end up in memory and can be overwritten there
 Attacker should not be able to modify the key

• Store key in its own non-writable memory page
 PG’d code doesn’t mix well with normal code

• What if PG’d code needs to pass a pointer to OS kernel?



Integer Overflow and Implicit Cast

 If len is negative, may copy huge amounts of 
input into buf

char buf[80]; 
void vulnerable() { 

int len = read_int_from_network(); 
char *p = read_string_from_network(); 
if (len > sizeof buf) { 

error("length too large, nice try!"); 
return; 

} 
memcpy(buf, p, len); 

}

(from www-inst.eecs.berkeley.edu—implflaws.pdf)



Integer Overflow and Implicit Cast

 If len is negative, may copy huge amounts of 
input into buf

char buf[80]; 
void vulnerable() { 

int len = read_int_from_network(); 
char *p = read_string_from_network(); 
if (len > sizeof buf) { 

error("length too large, nice try!"); 
return; 

} 
memcpy(buf, p, len); 

}

void *memcpy(void *dst, const void * src, size_t n);

typedef unsigned int size_t;

(from www-inst.eecs.berkeley.edu—implflaws.pdf)



Integer Overflow and Implicit Cast

What if len is large (e.g., len = 0xFFFFFFFF)?
 Then len + 5 = 4 (on many platforms)
 Result:  Allocate a 4-byte buffer, then read a lot of 

data into that buffer.

(from www-inst.eecs.berkeley.edu—implflaws.pdf)

size_t len = read_int_from_network(); 
char *buf; 
buf = malloc(len+5); 
read(fd, buf, len);



TOCTOU

 TOCTOU == Time of Check to Time of Use

 Goal:  Open only regular files (not symlink, etc)
 Attacker can change meaning of path between stat 

and open (and access files he or she shouldn’t)

int openfile(char *path) { 
struct stat s; 
if (stat(path, &s) < 0) 

return -1; 
if (!S_ISRREG(s.st_mode)) { 

error("only allowed to regular files!"); 
return -1; 

} 
return open(path, O_RDONLY); 

}



Randomness issues

Many applications (especially security ones) 
require randomness

 “Obvious” uses:
• Generate secret cryptographic keys
• Generate random initialization vectors for encryption

Other “non-obvious” uses:
• Generate passwords for new users
• Shuffle the order of votes (in an electronic voting 

machine)
• Shuffle cards (for an online gambling site)



C’s rand() Function
 C has a built-in random function:  rand()

unsigned long int next = 1; 

/* rand:  return pseudo-random integer on 0..32767 */ 

int rand(void) {

next = next * 1103515245 + 12345;

return (unsigned int)(next/65536) % 32768;

} 

/* srand:  set seed for rand() */

void srand(unsigned int seed) { 

next = seed;

} 

 Problem:  don’t use rand() for security-critical 
applications!
• Given a few sample outputs, you can predict 

subsequent ones





Problems in Practice
One institution used (something like) rand() to 

generate passwords for new users
• Given your password, you could predict the passwords 

of other users

 Kerberos (1988 - 1996)
• Random number generator improperly seeded
• Possible to trivially break into machines that rely upon 

Kerberos for authentication
Online gambling websites

• Random numbers to shuffle cards
• Real money at stake
• But what if poor choice of random numbers?
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Big news...  CNN, etc..



Obtaining Pseudorandom Numbers

 For security applications, want “cryptographically 
secure pseudorandom numbers”

 Libraries include:
• OpenSSL
• CryptoAPI (Microsoft)

 Linux:
• /dev/random
• /dev/urandom

 Internally:
• Pool from multiple sources (interrupt timers, 

keyboard, ...)
• Physical sources (radioactive decay, ...)



Security Analyses

 Recall
• Assets:  What you are protecting
• Security Goals

– Confidentiality
– Integrity
– Availability

• Adversaries:  Who might try to attack the system
• Threats:  What they might try to do
• Potential Vulnerabilities:  Possible weaknesses in 

system
• Protection mechanisms:  How to protect/deter attacks

 Last time:  Voting machines



Your Turn
 Talk amongst your neighbors (2 to 3 people per 

group)
 Consider one (or two) of the following products:

• [[Removed before posting online]]
• Product of your choice

 Write-down (around 1 - 3 sentences for each)
• Summary of product
• 2 - 3 assets + security goals
• 2 - 3 adversaries + threats
• 2 - 3 potential weaknesses + protection mechanisms

 We’ll discuss in N minutes.  Turn in papers at end of 
class for extra credit.  (1 per group; names/student 
IDs at top.)  I have paper.



Reading Assignment

 Chapter 11 of Stamp

 Read Smashing the Stack for Fun and Profit to 
understand details of overflow exploits
• Will really help with the project without it!

 Read Exploiting Format String Vulnerabilities
 Read Blended Attacks by Chien and Szor to better 

understand buffer overflows


