CSE 482 B

Lecture 04 Global Covid Data and Modeling

Announcements

Covid Pandemic

Global Cases

New reported cases

Disease Modelling

- Naïve Assumptions
 - Uniform Population
 - Three types of people: Susceptible, Infected, Recovered
 - Disease lasts one unit of time
 - Each Infected exposes r other people
 - A person Susceptible person that is exposed becomes infected

Model predictions

- Exponential growth for r > 1
- Decline in cases when r < 1
- New cases: $r \times |I| \times (|S| / n)$
- Effective r value decreases as susceptible population decreases
- Decline starts when r = (n / |S|)

Making the model continuous

- Shrink the time interval and allow multiple time periods in I
- Parameters β and γ for transition from S to I and from I to R
- Time step to zero to make a differential equation

Expanding the models

- SIRD Susceptible, Infectious, Recovered, Dead
- SEIRD Susceptible, Exposed, Infectious, Recovered, and Dead
- Adding Vaccines
- Adding Reinfection

Covid Epidemic: South Africa

Covid Epidemic: India

Covid Epidemic – CA, FL, WA

Where does this data come from

- Different country reporting strategies and aggregation
 - Tremendous variation on levels of accuracy and sources of case data
- Reported to centralized authorities
- Aggregators, such as JHU curate data sets
 - Labor intensive group of research assistants collect daily data
- Data made available for download
 - Github or other sources

	SandData / COVID-19 Public	
↔ Code	⊙ Issues 1.5k 1"1 Pull requests 289 ⊙ Actions	Projects 🖽 Wiki 🕕 Security 🗠 Insigh
C7 Code	C Issues Law 11 Poil requests 289 C Actions	E Projects E Wiki O security E insign
	P master + COVID-19 / csse_covid_19_data /	csse_covid_19_daily_reports /
	CSSEGISandData Automated update for delayed data for US	
		update
	01-01-2021.csv	patch thailand data from 07-22-2020 to 01-05-202
	D 01-01-2022.csv	patch jordan data from 12-24-2021 to 01-10-2022
	01-02-2021.csv	patch thailand data from 07-22-2020 to 01-05-202
	D 01-02-2022.csv	patch jordan data from 12-24-2021 to 01-10-2022
	D1-03-2021.csv	patch thailand data from 07-22-2020 to 01-05-20
	01-03-2022.csv	patch jordan data from 12-24-2021 to 01-10-2022
	01-04-2021.csv	patch thailand data from 07-22-2020 to 01-05-202
	01-04-2022.csv	patch jordan data from 12-24-2021 to 01-10-2022
	D 01-05-2021.csv	patch thailand data from 07-22-2020 to 01-05-202
	D 01-05-2022.csv	patch jordan data from 12-24-2021 to 01-10-2022
	01-06-2021.csv	patch thailand data from 07-22-2020 to 01-05-20
	D 01-06-2022.csv	patch jordan data from 12-24-2021 to 01-10-2022
	D 01-07-2021.csv	patch thailand data from 07-22-2020 to 01-05-202

Data repositories

- Johns Hopkins University
 - Source for majority of dashboards
- Our World in Data (Our world in data)
- US Specific sources CDC
- Other countries
 - https://coronavirus.data.gov.uk/
 - <u>https://sacoronavirus.co.za/</u>

- Global data: WHO
 - https://covid19.who.int/

Data types

- Case counts and death counts
- Vaccine delivery
 - Quantity of vaccines delivered to countries is know
 - Reporting of number of immunizations is fairly good
- Covid variants percent of different variants detected around the world
- Covid restrictions time scale of restriction by geography
- Excess deaths
- Country demographics and maps

Many dashboards and studies are already available

- What is left to be done?
- How to compete against New York Times or Johns Hopkins University or Institute of Health Metrics and Evaluation
- Sources of data exist
 - Possible to build on top of existing data sets
 - Infrastructure exists to work with large data sets
- Identify specific directions that are not components of these existing tools
- Tools give very good overviews and summaries
 - Opportunity is doing deeper analysis: combining data sources and refining geographical analysis

Applications of modeling

- Obviously, predicting the future
 - When will Omicron peak in Seattle?
 - This quarter Omicron will sweep round the world
 - So tools would need to be designed for Omicron but ready for Pi, Rho, and Sigma
- Matching SIR model against previous waves
 - Picking out previous waves is a start!
- Tying modeling to other data sets
 - Vaccination, Public Health Restrictions

Geographic refinement

- Predict and understand the epidemic across geographic areas using data from sub regions (e.g., county level data in the US)
- This is missing from the aggregation sources which give good summaries but tend to be "one dimensional"
- Sub-national data is often not on aggregation sources (which was part of the motivation for one of the project areas)
 - There will be technical challenges in building appropriate data tools
- Reasons for paying attention to subnational data
 - Identify geographic structure in events
 - Correlations between different data can be stronger at the subnational level

Exploring the interaction of data sources

- Significant opportunities to investigate correlations between data sources
 - Rural-Urban vs impact
 - Cases vs death rate vs variant
 - Variant vs wave vs impact
 - Vaccine status vs public health intervention vs impact
 - Season vs climate vs wave
- Recommendation
 - Pick a subset of factors with plausible relations and build tools around good data sets
 - Option of emphasizing either tool building or data exploration
 - Map based tools or other visualizations could be included

Existing tools (from fall project)

- Available on local github, as csv files
 - Time series processing of JHU case count data
 - Decomposition of time series into waves with statistics
 - USA county adjacency map
 - CDC vaccination data (by county)
 - Co-variant data by country