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Lecture 04
Global Covid Data and Modeling



Announcements



Covid Pandemic



Global Cases
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Disease Modelling

* Naive Assumptions
e Uniform Population
* Three types of people: Susceptible, Infected, Recovered
* Disease lasts one unit of time
* Each Infected exposes r other people
* A person Susceptible person that is exposed becomes infected

Susceptible > Recovered



Model predictions

Number of People

* Exponential growth forr>1

* Decline in cases whenr<1

* New cases: r x|I| x (|S| /n)

 Effective r value decreases as susceptible
population decreases

* Decline starts when r=(n/ |S|)



Making the model
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Susceptible

Expanding the models

» SIRD — Susceptible, Infectious, Recovered,
Dead

e SEIRD - Susceptible, Exposed, Infectious,
Recovered, and Dead

* Adding Vaccines
* Adding Reinfection

Vaccinated

Recovered



Covid Epidemic: South Africa
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Covid Epidemic: India
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Covid Epidemic — CA, FL, WA

Reported cases or deaths
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Where does this data come from

 Different country reporting strategies and aggregation
 Tremendous variation on levels of accuracy and sources of case data

* Reported to centralized authorities

» Aggregators, such as JHU curate data sets
e Labor intensive — group of research assistants collect daily data

equests lssues Marketplace Explore

e Data made available for download
e Github or other sources



Data repositories

 Johns Hopkins University
* Source for majority of dashboards

e Our World in Data (Our world in data)
e US Specific sources CDC

e Other countries
* https://coronavirus.data.gov.uk/
* https://sacoronavirus.co.za/

* Global data: WHO
* https://covid19.who.int/


https://coronavirus.data.gov.uk/
https://sacoronavirus.co.za/

Data types

e Case counts and death counts

* Vaccine delivery

e Quantity of vaccines delivered to countries is know
e Reporting of number of immunizations is fairly good

* Covid variants — percent of different variants detected around the
world

* Covid restrictions — time scale of restriction by geography
e Excess deaths
* Country demographics and maps



Many dashboards and studies are already
available

e What is left to be done?

* How to compete against New York Times or Johns Hopkins University
or Institute of Health Metrics and Evaluation

* Sources of data exist
* Possible to build on top of existing data sets
* Infrastructure exists to work with large data sets

* |dentify specific directions that are not components of these existing
tools

* Tools give very good overviews and summaries

e Opportunity is doing deeper analysis: combining data sources and refining
geographical analysis




Applications of modeling

* Obviously, predicting the future
* When will Omicron peak in Seattle?
* This quarter Omicron will sweep round the world

* So tools would need to be designed for Omicron — but ready for Pi, Rho, and
Sigma

* Matching SIR model against previous waves

* Picking out previous waves is a start!

* Tying modeling to other data sets
e Vaccination, Public Health Restrictions



Geographic refinement

* Predict and understand the epidemic across geographic areas using
data from sub regions (e.g., county level data in the US)

* This is missing from the aggregation sources — which give good
summaries but tend to be “one dimensional”

* Sub-national data is often not on aggregation sources (which was part
of the motivation for one of the project areas)
* There will be technical challenges in building appropriate data tools

* Reasons for paying attention to subnational data

* Identify geographic structurein events
* Correlations between different data can be stronger at the subnational level



Exploring the interaction of data sources

e Significant opportunities to investigate correlations between data sources
* Rural-Urban vs impact
e Cases vs death rate vs variant

* Variant vs wave vs impact
* Vaccine status vs public health intervention vs impact

* Season vs climate vs wave

 Recommendation
* Pick a subset of factors with plausible relations and build tools around good data sets

* Option of emphasizing either tool building or data exploration
* Map based tools or other visualizations could be included



Existing tools (from fall project)

* Available on local github, as csv files
* Time series processing of JHU case count data
 Decomposition of time series into waves with statistics
USA county adjacency map
CDC vaccination data (by county)
Co-variant data by country



