ICTD Capstone
Software Design for
Underserved Populations

CSE 482b
Projects! April 1, 2021
Richard Anderson, Samia Ibtasam, Naveena Karusala
Schedule

• Today
 • Project Assignment
 • Capstone Process
 • Break into groups

• Next Week
 • Covid-19 vaccine background
 • Cold chain information system
 • Group meetings with course staff
Projects

1. Vaccine Stock Tracker
 - Ali Byott, XY Lim, Elijah Greisz, Young Bin Cho, Michael Wiem

2. Vaccine Passport
 - Corbin Phipps, Eric Fan, Tevin Stanley, Bethany Kassala

3. Immunization Campaign Planning System
 - Simplicio DeLeon, George Zhang, Linda Do, Mayki Hu

4. Notification / Registration tool
 - Kaytlin Melvin, Livia Kong, Tianao Shi, Emily O’Neill

5. Vaccine Impact Modelling tool
 - Joseph Ammatelli, Joely Nelson, Kenny Krivanek, Tevin Stanley
1. Vaccine Stock Tracker

• Problem: A country needs to keep track of vaccines as they are used in immunization campaigns
 • This is going to be particularly important for Covid vaccines as they are expensive, limited in availability, and are likely to supplied irregularly
 • Tracking vaccines needed for initial allocation as well as collecting unused vaccines after a campaign

• This project could be integrated into our existing Cold-Chain Information System
 • Mobile application for vaccine logisticians
 • Dashboard for ministry of health
 • Deployment in Uganda underway
2. Vaccine Passport

- Allow verification of vaccination status
- Basic model allows established authorities to enter vaccine information and others to verify credentials
- Should have some basis in cryptography or digital signatures
- Could involve mobile apps for vaccinated and/or verifiers
- Need to consider multiple different components of the system
- Topical and controversial!
3. Immunization Campaign Planning Tool

• Developing countries will likely rely on campaigns for Covid immunization
 • Identify population group and locations
 • Plan for campaign with supplies and schedule
 • Required data: demographics and health system information
• Create various web based planning tools
• Will require some background research and domain knowledge
• Possible applications of Algorithms or AI
4. Notification and registration tool

• Tool to support tracking of individuals for immunization
• Possibly target needs of a developing country (such as Uganda)
• Multi-dose vaccines complicate this problem
• Integrate across multiple messaging technologies
5. Vaccine impact modelling tool

• Develop framework for modeling impact of Covid vaccination
• Framework would allow various different models to be used
 • Fairly naïve models could be implemented initially with a mechanism for domain experts to add models later
• Scenario: tracking progress of global immunization and predicting impacts of different immunization approaches and coverages
• Variables to consider: Vaccine type, populations, coverage by dose, efficacy on different strains
• Possibly set up as a global modelling tool
CSE Capstone courses

• **Capstone Goals**
 • Projects must be large enough to require teams of several students to work on over one quarter.
 • Students must apply concepts from more than one sub-area of CSE (at the 300-level and above).
 • The work must involve a substantial design effort.
 • Students must present their work using formal oral presentations and written reports.
 • Efforts must culminate in an interesting, working artifact.
What we expect in a capstone

• Group projects
 • About five people
 • Different roles
• Design and Implementation
• Multiple check points and expert review
• Working, useful software
• Reasonable software process
• Presentation of results
Schedule

Schedule (Dates tentative)

<table>
<thead>
<tr>
<th>Event</th>
<th>Dates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project Pitch</td>
<td>April 13</td>
</tr>
<tr>
<td>Progress Report and Prototype</td>
<td>May 11 / May 13</td>
</tr>
<tr>
<td>Final Presentations</td>
<td>June 1 / June 3</td>
</tr>
<tr>
<td>Deliverables due: Code, Write up</td>
<td>June 11</td>
</tr>
</tbody>
</table>
Course Mechanics

• Group development of projects
• Lectures/class meetings for first few weeks
• Regular group meetings with course staff
• Later class sessions for presentations and demos
• Specific deliverables will be specified during the quarter
• Final turn in will include code and a paper (~10 pages)
Deliverables

• Weekly progress reports
 • Templates will be provided
• Specific artifacts
 • E.g., key use cases, architectural diagram, minimum viable product definition
• Codebase
• Working prototype / demo
• Paper
 • 10-page paper, conference format, LaTeX (overleaf)

• Turn in (and comments) through Gradescope
Project Teams

• Select a PM (Project Manager)
 • Manage schedule
 • Track tasks
 • Organize meetings

• Document plans and tasks

• Divide work based on rolls
 • Allow some specialization

• Set up mechanism for communication

• Regular meetings
Software Process

• “Good Process”
 • Practice what you learned in Software Engineering
 • Software tests, code reviews, etc.

• Version control (probably Git)

• Documentation

• Early prototype and minimum viable product

• Bug and task tracking
Architecture and Software Choices

• Flexibility in choice of design, languages, and tools
• Vaccine stock tracker should be based on CCIS
• Several Android phones will be available for groups choosing a mobile component
• Scope technology choices
Design Choices

• There is lots of flexibility in the projects
• You will need to choose what to emphasize
• Choose scenarios / use cases early
• Some projects can apply to developed world (and it is fine to focus on developed world)
• Discuss ideas with course staff
Course grading

• Composite grade for project and adjustment by individual
• Not curved
• Multiple aspects will contribute to the grade
 • Domain research
 • Quality of the solution
 • Software quality
 • Documentation
 • Supporting artifacts
 • Presentations
 • Paper
• Teams will have input on weighting of criteria
Goals for course projects

• Develop realistic prototypes of systems that could have significant social impact
• Gain understanding of global covid vaccination efforts
• Build a working system
 • Robust enough to show off to others
 • Prototype that could be refined to a real system for at scale deployment
Advice for successful projects

• Start work on design and scoping immediately
• Plan to work as a team
 • Schedule and roles
 • Determine supporting technologies
 • Communicate with the course staff
 • Share responsibilities on components
• Identify a minimum viable product
 • Implement a “narrow path”
 • Extend a working system
• Presentations, Documentation, Write up and Communication about project is very important
 • There is much more to technology projects than coding