CS

= 4871: NLP Capstone
Spring 2017

Yejin Choi
University of Washington



Office Hour News

Hannah:

— Wed2-3pm @ CSE 220
Maarten:

— Wed 2 - 3pm @ CSE 220
Yejin:

—  Tue Z2pm - 3:30pm

— Wed 5pm - 5:30pm @ CSE 578

All:
— Thu 12pm - 1:25pm @ 77?7 for some weeks

Google doc sign up required



Week Dates Topic Leader

1 Mar 28, 30 Course Overview, Project Pitch, Hannah,
TensorFlow Tutorial Maarten

2 Apr4,6  Project Proposal Presentations & Yejin
Discussion

3 Apr 11,13 Lecture on Deep Learning & Project Yejin
Update Meetings

4 Apr 18,20 Lecture on Deep Learning & Project Yejin
Update Meetings

5 Apr 25,27 In Class Project Update Presentations! All Students

6 May 2,4  Lecture on Deep Learning & Project Yejin
Update Meetings

7 May 9,11 Lecture on Deep Learning & Project Yejin
Update Meetings

8 May 16, 18 In Class Project *Demo™ and Presentations! All Students

9 May 23, 25 Lecture on Deep Learning & Project Yejin
Update Meetings

10 May 30, Finale! - final poster presentation & demo All Students
Jun 1 @ CSE Atrium




GPU NEWS!



GPU NEWS!

1. Back in stock!
— desktop with 2 GPUs can be set up at $4000

2. Microsoft Azure kindly agreed to donate

3. You can sign up to Azure today for free
$200 credits



RECURRENT NEURAL
NETWORKS



Recurrent Neural Networks (RNNs)

Each RNN unit computes a new hidden state using the previous

state and a new input he = f(xy, hi1)
Each RNN unit (optionally) makes an output using the current hidden
state y; = softmax(V h;)
ht € R”
Hidden states are continuous vectors

— Can represent very rich information
— Possibly the entire history from the beginning

Parameters are shared (tied) across all RNN units (unlike feedforward
NNs) I I

1 !
;IJWTJW1 HJW

xd1 xd2 xd3



Recurrent Neural Networks (RNNs)

e Generic RNNs:  ht = f(ae, hi—1)
y: = softmax(V h;)

* Vanilla RNN: hy = tanh(Uxy + Why_1 + 1)
y; = softmax(V h;)

I I I T

o il iy i it

xd1 xd2 xd3 xl4



Recurrent Neural Networks (RNNs)

* Generic RNNs:
* Vanilla RNNs:

xd1

cll
nd1

¢ = tanh(U@z, + WO hy_y + b))

he = f(xe, he1)
hy = tanh(Uxy + Why_1 + b)

e LSTMs (Long Short-term Memory Networks):
iv = o (UDzy + WOhy_y + )
fo=c(UPz, + WHhy_1 4 b))
0p = J(U(O)a;t +WOh, |+ b(o))

ct = ftoci_1+ 1 0¢

hy = o; o tanh(cy)

xd2

cl2
nd2

T

xd3

cl3

w

/43

x4

\ There are many

known variations
to this set of
equations!

cl4 clt: cell state

—
4 Al t hidden state



Many uses of RNNs

1. Classitication (seq to one)

* Input: a sequence
* QOutput: one label (classification)
« Example: sentiment classification

hy = f(iUt, ht—l)

y = softmax(V h,,)
hl4

|

I |

xd1 xd3



Many uses of RNNs
2. one to seq

* |nput: one item

 Qutput: a sequence
X X hy = f(xtv ht—l)

* Example: Image captioning y; = softmax(V h;)

Cat sitting on top of ...
Al hd2 43 hl4
! ! | |




Many uses of RNNs
3. sequence tagging

Input: a sequence
Output: a sequence (of the same length)
Example: POS tagging, Named Entity Recognition

How about Language Models?
— Yes! RNNs can be used as LMs!

— RNNs make markov assumption: T/F? he = f(@e, he—1)
y; = softmax(V hy)

/zll /zJZ /z¢3 /zl4



Many uses of RNNs
4. Language models

In ut: a sequence Of WOFdS
P . hy = f(fL’t; ht—l)

Output: one next word
X y; = softmax(V h;)

Output: or a sequence of next words
During training, x_t is the actual word in the training sentence.

During testing, x_t is the word predicted from the previous time
step.

Does RNN LMs make Markov assumption?

— i.e., the next word depends only on the previous N words

pit pi2 A3 A
iz




Many uses of RNNs
5. seqgZseq (aka “encoder-decoder”)

* Input: a sequence
« Qutput: a sequence (of different length)
* Examples?

he = f(xt, he—1)
y: = softmax(V hy)




Many uses of RNNs
4. segZseq (aka "encoder-decoder”)

« Conversation and Dialogue
* Machine Translation

ENCO

[l

DER

I

Are

I

you

free

125l
l

l

tomorrow?

Reply

ught vector )

J

BRE

Yes,

[

-
3 5
. . h

what's __

]

] |
.-
X

up? —

[

+* X
3 . S
X .

<END>

A

Incoming Email

( tho

I

<START>

e

-
J| .

DECODER

i

Figure from http://www.wildml.com/category/conversational-agents/



Many uses of RNNs
4. segZseq (aka "encoder-decoder”)

Parsing!
- “Grammar as Foreign Language” (Vinyals et al., 2015)

S

|

| ~ N
NNP VBZ NP
PN
DT NN

(S (NP NNP )xp (VP VBZ (NP DT NN )xp )vp - )s




Recurrent Neural Networks (RNNs)

e Generic RNNs:  ht = f(ae, hi—1)
y: = softmax(V h;)

* Vanilla RNN: hy = tanh(Uxy + Why_1 + 1)
y; = softmax(V h;)

I I I T

o il iy i it

xd1 xd2 xd3 xl4



Recurrent Neural Networks (RNNs)

* Generic RNNs:
* Vanilla RNNs:

xd1

cll
nd1

¢ = tanh(U@z, + WO hy_y + b))

he = f(xe, he1)
hy = tanh(Uxy + Why_1 + b)

e LSTMs (Long Short-term Memory Networks):
iv = o (UDzy + WOhy_y + )
fo=c(UPz, + WHhy_1 4 b))
0p = J(U(O)a;t +WOh, |+ b(o))

ct = ftoci_1+ 1 0¢

hy = o; o tanh(cy)

xd2

cl2
nd2

T

xd3

cl3

w

/43

x4

\ There are many

known variations
to this set of
equations!

cl4 clt: cell state

—
4 Al t hidden state



LSTMS (LONG SHORT-TERM MEMORY
NETWORKS

O — >

Neural Network Pointwise Vector
Layer Operation Transfer

Concatenate Copy

t t t
~ Nl Nelt( )
—=P{—® —(bx gy > = g
A [ el f% A
"CTL'J . i s b . N
\I  hit | )/le‘\| /
—1

Figure by Christopher Olah (colah.github.io)



LSTMS (LONG SHORT-TERM MEMORY
NETWORKS

s(i)g1moid: Forget gate: forget the past or not
[0,1] | fy = O’(U(f)l't +WWHh, |+ b(f))

ft

s

Figure by Christopher Olah (colah.github.io)



LSTMS (LONG SHORT-TERM MEMORY

sigmoid:
[0,1]

tanh(z)

tanh:
[_111]

Figure by Christopher Olah (colah.github.io)

NETWORKS

Forget gate: forget the past or not
fo=o(UWz, + W hy_1 + b))

Input gate: use the input or not
it = oUWz, + WOh,_ + @)

New cell content (temp):
¢ = tanh(U @z, + WO hy_q + b))



LSTMS (LONG SHORT-TERM MEMORY
NETWORKS

s(i)g1moid: Forget gate: forget the past or not
[0,1] | fy = O’(U(f)l't +WWHh, |+ b(f))

e Input gate: use the input or not

tanh: _ | '
A = (U D s + WOk, 1 5®)
New cell content (temp):
¢ = tanh(U 9z, + W D hy_q 4 b))
Cy
CL@-@—> New cell content:

% - mix old cell with the new temp cell
t

ct = froci_1+1ir0¢

Figure by Christopher Olah (colah.github.io)



LSTMS (LONG SHORT-TERM MEMORY
NETWORKS

Output gate: output from the Forget gate: forget the past or not
new cell or not fi=oc(UWDz, + WHh,_y + )

Ot = O'(U(O).flft + W(O) ht_l + b(o))
|nput gate: use the input or not

Hidden state: i = oc(UD gy + WOhy_y +50)
hy = o4 o tanh(c;)

New cell content (temp):
¢ = tanh(U @z, + WO hy_q + b))

htT
New cell content:

- mix old cell with the new temp cell
Ct = ftoci1+i0¢

Figure by Christopher Olah (colah.github.io)



LSTMS (LONG SHORT-TERM MEMORY

Forget gate: forget the past or not fi=o(UDg, + WHh,_q + )
Input gate: use the input or not iy = a(U(i)xt +WOh, ; + b(i))
Output gate: output from the new or = o(Uzy + Why_y + b))
cell or not

New cell content (temp): ¢ = tanh(U @z, + WO h,_; +bl9)

New cell content:

. : Ct = ftoci—1+i06¢
- mix old cell with the new temp cell

D,

A
Hidden state:
hy = o4 o tanh(c;) o _}f _ _ ) > clt
X——®
-1 Ganh>
Toe Mo
R
At = » 4l
1 N J

|
©



vanishing gradient problem for

RNNSs.
® O OO C

Hidden
Layer

nputs O O O O O O
2 3 4 5 6 7

Time 1

« The shading of the nodes in the unfolded network indicates their
sensitivity to the inputs at time one (the darker the shade, the greater
the sensitivity).

« The sensitivity decays over time as new inputs overwrite the activations
of the hidden layer, and the network ‘forgets’ the first inputs.

Example from Graves 2012



Preservation of gradient information by
LSTM

= Z77777 0]

- - — O —_ ®) —
Hidden
s -@-@--@--@-- @@
- - - - - O

O

Forget gate /
Input gate
Inputs
Time 1 2 3 4 5 6 7

For simplicity, all gates are either entirely open (‘O’) or closed ('—).

The memory cell ‘remembers’ the first input as long as the forget gate is
open and the input gate is closed.

The sensitivity of the output layer can be switched on and off by the output
gate without affecting the cell.

Example from Graves 2012



Recurrent Neural Networks (RNNs)

e Generic RNNs:  ht = f(ae, hi—1)
* Vanilla RNNs: hy = tanh(Uxy + Why_1 + b)
 GRUs (Gated Recurrent Units):

2t = U(U(z)xt + W(z)ht_1 + b(z))
re = oUWz + Why g +b17))
hy = tanh(U(h)aBt + W(h)(rt ohi_1) + b(h))

B B N Z: Update gate
ht — (]. Zt) O ht—l _|_ <t O ht \ R: Reset gate

Less parameters

T than LSTMs.
T T nl
ri2 2

Easier to train for
comparable
nd
w1 1

performance!

nd nd
xl3 3 ria 4



Gates

« Gates contextually control information
flow

* Open/close with sigmoid

* In LSTMs and GRUs, they are used to
(contextually) maintain longer term history



Bi-directional RNNs

Outputs e Yt—1 Y Yt+1

s
Backward Layer <«—— Zt:/} Wt > %hq

, — — [—=
Forward Layer ht_1 \ h Kh AR
[nputs e Tt—1 Ty Tt41

« Can incorporate context from both directions
« Generally improves over uni-directional RNNs

29



Google NMT (Oct 2016)

Y, —> yz—-) e =P <[5>
... | 3 -7
\\\\\ .\ .’.’.
------------------------------------------------------------------- .;\_ ’_,"

;

H - I’ ~

: | S S S

- - 7 ~ b
”

.~” Detoder LSTMs ™« .

( /]7[ }—»—»(j GPUSE

GPU8 [

8 §Iayers

A

f

—'—> Attention

GPU3 L

GPU3 |

GPU2

GPUZE (1 GPUZE

GPUL [ GPU1




Recursive Neural Networks

« Sometimes, inference over a tree structure makes more sense
than sequential structure

« An example of compositionality in ideological bias detection
(red — conservative, blue — liberal, gray — neutral) in which
modifier phrases and punctuation cause polarity switches at
higher levels of the parse tree

They “ deathtax ” and created a its adverse effects

dubbed it big lie about on small
the businesses

Example from lyyer et al., 2014



Recursive Neural Networks

« NNs connected as a tree
* Tree structure is fixed a priori
« Parameters are shared, similarly as RNNs

Pe = so-called climate change

x (000000 >
© TR
W WR p.. = climate change
/ \ c~
xdzCOOOOOOD xcz(OOOOOO)
Wy = so-called // \...
weow

e
Xa=COOOOOO> xb=®.0000>

w, = climate wy, = change

Example from lyyer et al., 2014



Tree LSTMs

n Y2 Y3 Yy
T ) T3 T4

(73|

Ir4 xIrs5 I6

Figure 1: Top: A chain-structured LSTM net-
work. Bottom: A tree-structured LSTM network
with arbitrary branching factor.

Are tree LSTMs more

expressive than sequence
LSTMs?

|.e., recursive vs recurrent

When Are Tree Structures
Necessary for Deep
Learning of
Representations?

Jiwei Li, Minh-Thang
Luong, Dan Jurafsky and

Eduard Hovy. EMNLP
2015.

33



Neural Probabilistic Language Model (Bengio 2003)

i-th output = P(w, = i | context)

softmax
o0 .- 000 )
A
most| computation here * \
\
\
\
1
) tanh :
. iy o0 ) l'
| !
! /
| ’
1 /
/
7’

C(Wt—n+ - C(Wt_z) C(Wt_l) _ s

(eeo - . 0) (ee o)
Table .~ ~. Matrix C R
look—up | Trerreeeemseeee e pe e
inC P shared parameters
' across words
index for w;_p41 index for w;_» index for w,_4

34



Neural Probabilistic Language Model (Bengio 2003)

i-th output = P(w, = i | context)
fptme oo « Each word prediction is a
nod]compuatontere . separate feed forward
\ neural network
B « Feedforward NNLM is a
Markovian language
\ model
S LG Chn) ¢ Dashed lines show

optional direct
connections

shared parameters
across words

index for wy_, 41 index for w;_» index for w,_;

NNpmip1(x) = [tanh(xW! + bl), x] W? + b?

» WL € R%n*dnia pl ¢ R1%%ia: first affine transformation

» W2 € R(dhiatdin)xdour ph2 ¢ RI*dout: second affine transformation 35



LEARNING:
BACKPROPAGATION



Next 10 slides on back propagation are adapted from Andrew Rosenberg

“rror Backpropagation

. 2
Model parameters: g = fw), wi wi

for brevity:0 = {wi;, w,, wi}

w'H ey
jk




Learning: Gradient Descent

S Q| = =
SE S S| 2
= & =

_ _
t_”w NN
3 3 3
I I I
m”w HM 1m
3 3 3




Backpropagation

Starts with a forward sweep to compute all the intermediate function 23
values 5 OR

Through backprop, computes the partial derivatives recurswely Ow;

A form of dynamic programming
— Instead of considering exponentially many paths between a weight w_ij and the final loss
(risk), store and reuse intermediate results.
A type of automatic differentiation. (there are other variants e.g., recursive

differentiation onlv throuiah farward nronaaation
Inputs Outputs

Forward

/ . \ .
}‘wu w ‘:P.‘ w, Gradient
WA ,.ww' AN

\\
XX
7 O§ ‘,{tl (‘v‘ v;} I‘}\

ORK 2
202\

\/w\
M




Backpropagation

Primary Interface Language

TensorFlow (https://www.tensorflow.org/) * Python
Torch (http://torch.ch/) * Lua
Theano (http://deeplearning.net/software/theanc/) Python
CNTK (https://github.com/Microsoft/CNTK) e C++

cnn (https://qithub.com/clab/cnn) o CH++
Caffe (http://caffe.berkeleyvision.org/) o« C++
Forward Inputs Outputs

/
> OV
/\“

w"\ K%

‘\" 0*’ /‘w' Gradient
V ( /\"5

bl ‘\/, EOSHIORRR

"} ‘\/ I'( ‘v v. ‘) ‘\/ I'( ‘v

205\ »"‘4 KR
N\ P &! % X




Cross Entropy Loss (aka log loss, logistic

Ioss)
Cross Entropy Zp log q(y) L
\ Predicted prob
Related quantities Hip Zp Jog p(y True prob

— Entropy

— KL divergence (the dlstance between two distributions p and q)

Dia(plle) = vl g y;

H(p,Q)—E[ log q] = H(p) + Dk r(pllq)

Use Cross Entropy for models that should have more probabilistic
flavor (e.g., language models)

Use Mean Squared Error loss for models that focus on correct/

incorrect predictiong (. _ %(y — f(x))?



RNN Learning: Backprop Through Time
(BPTT)

Similar to backprop with non-recurrent NNs

But unlike feedforward (non-recurrent) NNs, each unit in
the computation graph repeats the exact same
parameters...

Backprop gradients of the parameters of each unit as if
they are different parameters

When updating the parameters using the gradients, use
the average gradients throughout the entire chain of

units.

| | | |
TJWTJWM



LEARNING: TRAINING DEEP
NETWORKS



Vanishing / exploding Gradients

» Deep networks are hard to train
» Gradients go through multiple layers

* The multiplicative effect tends to lead to
exploding or vanishing gradients
* Practical solutions w.r.t.

— network architecture
— numerical operations



Vanishing / exploding Gradients

 Practical solutions w.r.t. network
architecture
— Add skip connections to reduce distance
 Residual networks, highway networks, ...

— Add gates (and memory cells) to allow longer
term memory
* LSTMs, GRUs, memory networks, ...



Gradients of deep networks

NNjsyer(x) = ReLU(xW?! + b?)

» Can have similar issues with vanishing gradients.

oL oL
=Y 1(hy; > OOW, ;o
ahn—l,jn_l JZn ( Jn > ) Jn—1.Jn ahn,jn




Effects ot Skip Connections on Gradients

* Thought Experiment: Additive Skip-Connections

1 1
NNy (x) = 5 ReLU(xW! 4 b') + S

hnfl
_ 1 i >0V W,
| ahn—ljn . 2 Z Jn > Jn—1:Jn athn) T
hy |
cl oL
’ h; % (hn_lvjn—l ath ) )



Effects ot Skip Connections on Gradients

* Thought Experiment: Dynamic Skip-Connections

NNgo(x) = (1—t)ReLU(xW* +b') + tx
t = o(xW'+bh)

Wl c ]Rdhidthid

Wt c Rdhid x 1



nghway Network (Srivastava et al., 2015)

* A plain feedforward neural network:
Y = H(X7 WH)

— H is a typical affine transformation followed by a non-
linear activation

* Highway network:
y = H(X7 WH) T(X7 WT) +X- C(Xa WC)
— T is a "transform gate”

— Cis a “carry gate”
— Often C =1 -T for simplicity



e Plaint net

X

\ 4

weight

layer

anytwo
stacked layers

relu
v

weight

layer

Hx) ¥

relu

Residual Networks

e Residual net

F(x)

H(x)=F(x)+x

X

weight layer

relu
\ 4

weight layer

« ResNet (He et al. 2015): first very deep (152 layers)
network successfully trained for object recognition

identity
X



Residual Networks

e Plaint net

X
\ 4

weight layer

anytwo
stacked layers v relu

weight layer

relu
H(x) Y

e Residual net

X

weight layer

F(x)

relu
\ 4

weight layer

H(x)=F(x)+x

F(x) is a residual mapping with respect to identity

Direct input connection +x leads to a nice property w.r.t. back
propagation --- more direct influence from the final loss to any

deep layer

identity
X

In contrast, LSTMs & Highway networks allow for long distance
input connection only through “gates”.



Residual Networks

Revolution of Depth

B
=4
| 11x11 conv, 96, /4, pool/2 | | 3x3 conv, 64 | [ |
AlexNet, 8 layers VGG, 19 layers GoogleNet, 22 layers mmemm
[ 55 conv, 256, pool/2 ] [ 3x3conv, 64, pool/2 ] R BER R
(ILSVRC 2012) v (ILSVRC 2014) (ILSVRC 2014) =
[ 3x3 conv, 384 | [ 3x3 conv, 128 | EAEAERED
v ) 2 £ B R
[ 3x3 conv, 384 | [ 3x3 conv, 128, pool/2 | [ -]
v v == s
[ 3x3 cony, 256, pool/2 ] [ 3x3 conv, 256 | =0 A 50 5 Ea
v v ) B e
[ fc, 4096 | [ 3x3 conv, 256 | =
v v 0 5 B
[ fc, 4096 | [ 3x3 conv, 256 | B0 B R
v v .-
[ fc, 1000 | [ 3x3 conv, 256, pool/2 ] O A B B
v EEE @
[ 3x3 conv, 512 | = @
v R D 0 2
[ 3x3 conv, 512 | £ o
v =
[ 3x3 conv, 512 | B0 B B B
v
[ 3x3 conv, 512, pool/2 ] mmmm
2 =
[ 3x3 conv, 512 | Eifl Badl Bl BE
v R 0
[ 3x3 conv, 512 | =
v T
[ 3x3 conv, 512 | R B R
2
[ 3x3 conv, 512, pool/2 ] 3
v A
[ fc, 4096 | =
v
[ fc, 4096 | g
| Z
[ fc, 1000 | -

Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. “Deep Residual Learning for Image Recogr;‘ition". CVPR 201t
52



Residual Networks

Revolution of Depth

AlexNet, 8 layers % VGG, 19 layers % ResNet, 152 layers
(ILSVRC 2012) (ILSVRC 2014) + (ILSVRC 2015)

Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. “Deep Residual Learning for Image Recognition”. CVPR 2016.

53



Residual Networks

Revolution of Depth 282
‘ 152 layers ’ '

\ 16.4

\ 11.7
‘ 22 layers 19 layers ’

\

6.7 7.3
2 I

ILSVRC'15 ILSVRC'14 ILSVRC'14  ILSVRC'13  ILSVRC'12 ILSVRC'11 ILSVRC'10
ResNet GoogleNet VGG AlexNet

shallow

ImageNet Classification top-5 error (%)

Kaiming He, Xiangyu Zhang, Shaoging Ren, & Jian Sun. “Deep Residual Learning for Image Recognition”. CVPR 2016.

54



nghway Network (Srivastava et al., 2015)

* A plain feedforward neural network:
Y = H(X7 WH)

— H is a typical affine transformation followed by a non-
linear activation

* Highway network:
y = H(X7 WH) T(X7 WT) +X- C(Xa WC)
— T is a "transform gate”

— Cis a “carry gate”
— Often C =1 -T for simplicity



@Schmidhubered

56



Vanishing / exploding Gradients

* Practical solutions w.r.t. numerical operations

— Gradient Clipping: bound gradients by a max
value

— Gradient Normalization: renormalize gradients
when they are above a fixed norm

— Careful initialization, smaller learning rates

— Avoid saturating nonlinearities (like tanh, sigmoid)
* RelU or hard-tanh instead

57



Sigmoid

Often used for gates 1
o(z) = =
l4e?*

Pro: neuron-like,
differentiable

Con: gradients saturate to
zero almost everywhere
except X near zero =>
vanishing gradients

o'(x) = o(z)(1 - o(z))

Batch normalization helps



Tanh

e Often used for
hidden states & cells tanh(z) = et —e”
in RNINs, LSTMs er + e~ 7T

« Pro: differentiable,
often converges
faster than. SlngId. tanh(z) = 20(2z) — 1

e Con: gradients easily

saturate to zero =>
vanishing gradients

x

tanh’(x) = 1 — tanh®(x)



* Pro: computationally

Hard Tanh

cheaper

Con: saturates to

zero easily, doesn't
differentiate at 1, -1

-1.0

1 t< -1
hardtanh(t) =<+ —-1<t<1

1 t>1

\

10

05

0.0




Rel.U

Pro: doesn't saturate for ReLU(z) = max(0, z)
x > 0, computationally

cheaper, induces sparse 1 x>0

NN d ReLU(x)
dx =

0 x <0
Con: non-differentiable
at 0

Used widely in deep

NN, but not as much in
RNNs

We informally use
subgradients:

\1 or0 o.w




Vanishing / exploding Gradients

* Practical solutions w.r.t. numerical operations

— Gradient Clipping: bound gradients by a max
value

— Gradient Normalization: renormalize gradients
when they are above a fixed norm

— Careful initialization, smaller learning rates

— Avoid saturating nonlinearities (like tanh, sigmoid)
* RelU or hard-tanh instead

— Batch Normalization: add intermediate input
normalization layers

62



Batch Normalization

Input: Values of x over a mini-batch: B = {21 };
Parameters to be learned: v, S
Output: {y; = BN, g(x;)}

1 & L
Up — — Z X // mini-batch mean
L
1 ™m
O - Z(azz — uB)* // mmi-batch variance
=1
—~ Ty — :
Ti ¢ — BB // normalize

yi — yx; + B = BN, g(x;) // scale and shift

63



Reqgularization

* Regularization by objective term
L£(0) = ) max{0,1— (Jc — yer) } + All6] |
=1

— Modify loss with L1 or L2 norms

» Less depth, smaller hidden states, early stopping

* Dropout
— Randomly delete parts of network during training

— Each node (and its corresponding incoming and outgoing
edges) dropped with a probability p

— P is higher for internal nodes, lower for input nodes
— The full network is used for testing

— Faster training, better results

— Vs. Bagging



Convergence of backprop

* Without non-linearity or hidden layers, learning is
convex optimization

— Gradient descent reaches global minima

* Multilayer neural nets (with nonlinearity) are not
convex

— Gradient descent gets stuck in local minima

— Selecting number of hidden units and layers = fuzzy
process

— NNs have made a HUGE comeback in the last few years

 Neural nets are back with a new name
— Deep belief networks

— Huge error reduction when trained with lots of data on GPUs



RECAP



Vanishing / exploding Gradients

» Deep networks are hard to train
» Gradients go through multiple layers

* The multiplicative effect tends to lead to
exploding or vanishing gradients
* Practical solutions w.r.t.

— network architecture
— numerical operations



Vanishing / exploding Gradients

 Practical solutions w.r.t. network
architecture
— Add skip connections to reduce distance
 Residual networks, highway networks, ...

— Add gates (and memory cells) to allow longer
term memory
* LSTMs, GRUs, memory networks, ...



segZseq (aka "encoder-decoder”)

N . am fine <EOL>

How are you <EOL>

LSTM Encoder LSTM Decoder



Google NMT (Oct 2016)

Y, —> yz—-) e =P <[5>
... | 3 -7
\\\\\ .\ .’.’.
------------------------------------------------------------------- .;\_ ’_,"

;

H - I’ ~

: | S S S

- - 7 ~ b
”

.~” Detoder LSTMs ™« .

( /]7[ }—»—»(j GPUSE

GPU8 [

8 §Iayers

A

f

—'—> Attention

GPU3 L

GPU3 |

GPU2

GPUZE (1 GPUZE

GPUL [ GPU1




ATTENTION!



Seg-to-Seqg with Attention

Network B focuses on different
information from network A at B > B > B >
every step.

3 ¢

Y

A

Diagram from http://distill.pub/2016/augmented-rnns/ 72



The attending RNN generates a

query describing what it wants
to focus on

softmax

®y\ @v\ ‘\ @‘\ Each item is dot producted with the
)

( query to produce a score, describing
. § i

Diagram from http://distill.pub/2016/augmented-rnns/ 73

how well it matches the query. The
scores are fed into a softmax to

create the attention distribution.




Trial: Hard Attention

t
At each step generating the target word S;

5
. J
And incorporate the source word to generate the target

word t t s
w; 1 = argmax,, O(w, s 1, 5)

Compute the best alignment to the source word S

Contextual hard alignment. How?

zj = tanh([sj, s5]W + b)

J = argmax;z;

Problem?



Encoder — Decoder Architecture

Sequence-to-Sequence

the red dog

y1 ) y3
s s3 s3 s! S5 s;
X1 X2 X3 X1 X5 X3
the red dog <s>

Diagram borrowed from Alex Rush 75



Attention: Soft Alignments

: t
At each step generating the target word S,
Compute the attention ¢ to the source sequence g

And incorporate the attention to generate the target

word t ¢
Wit1 = argmanO(wa Si+1; C)

Contextual attention as soft alignment. How?
t s
z; = tanh(|[s;, s3|W +b)

a = softmax(z)
c= D as;
J

— Step-1: compute the attention weights
— Step-2: compute the attention vector as interpolation



Attention function parameterization

» Feedforward NNs
* Dot product
» Cosine similarity

e Bi-linear models

zj = tanh([s;; s5]W +b)

zj = tanh([s;; s3; s; 0 s5]W 4+ b)
z; = 8, - S

L st S

SIEHTE

T S
zj =8; Ws;



Figure 1: Schematic of our proposed “feed-forward” attention mechanism (cf. (Cho, 2015) Figure
1). Vectors in the hidden state sequence h; are fed into the learnable function a(h;) to produce a
probability vector a. The vector c is computed as a weighted average of h;, with weighting given
by a.



| earned Attention!

=
=
=
1=
=
.
)
wn
)
O

of

the
equipment
means
that
Syria
can

no
longer
produce
new
chemical
weapons
<end>

La
destruction
de

II
équipement
signifie
que

la

Syrie

ne

peut

plus
produire

de
nouvelles
armes
chimiques

<end>

Diagram borrowed from Alex Rush



“Soft”

Qualitative results
Figure 2. Attention over time. As the model generates each word, its attention changes to reflect the relevant parts of the image

(top row) vs “hard” (bottom row) attention. (Note that both models generated the same captions in this example.)

over

body water

bird

Figure 3. Examples of attendlng to the correct object (white indicates the attended regions, underlines indicated the corresponding word)
- " - \n
A stop sign is on a road with a
mountain in the background.

flying

A dog is standing on a hardwood floor.

A woman is throwing a frisbee in a park

A giraffe standing in a forest with
trees in the background.

A group of people sitting on a boat
in the water.
27

A little girl sitting on a bed with
a teddy bear.
M. Malinowski

lllpll




POINTER NETWORKS



Convex haul,

Delaunay

Triangulation, Traveling Salesman

Can we model these problems using seg-to-seq?

I

(a) Input P = {Py,..., Py}, and the output se- (b) Input P = {P,..., Ps}, and the output C* =
quence C¥ = {=,2,4,3,5,6,7,2, <} represent- {=,(1,2,4),(1,4,5),(1,3,5),(1,2,3), <} repre-
ing its convex hull. senting its Delaunay Triangulation.

82



Pointer Networks! winyals et al. 2015)

* NNs with attention: content-based attention to input
* Pointer networks: location-based attention to input

I

(a) Input P = {Py,..., Py}, and the output se- (b) Input P = {P,..., Ps}, and the output C* =
quence C¥ = {=,2,4,3,5,6,7,2, <} represent- {=,(1,2,4),(1,4,5),(1,3,5),(1,2,3), <} repre-

ing its convex hull. senting its Delaunay Triangulation. .



Pointer Networks

N R R A A

g

> > B P P P P P P

t tt t 1

> | e P B P e P

ttttttt 14

(b) Ptr-Net

(a) Sequence-to-Sequence

84



Pointer Networks

Attention Mechanism vs Pointer Networks

€ij =v, tanh (W,s;_1 + Ush;) & =, tanh (W,s;_1 + U.h;)
- o (i) PCiCh... . Con,P) = P (e35)
3onr exp (ei) >k X (eir)

T,
C; = E (Jc%‘jhj
=1

G’.ij

Attention mechanism Ptr-Net

Softmax normalizes the vector ejito be an output distribution over the dictionary of inputs

Diagram borrowed from Keon Kim

85



CopyNet cuetal 2014

e Conversation

— I: Hello Jack, my name 1is Chandralekha

— R: Nice to meet you, Chandralekha

— I: This new guy doesn’t perform exactly as expected.

— R: what do you mean by “doesn’t perform exactly as
expected?”

e Translation

86



CopyNet @uetal 2014

(b) Generate-Mode & Copy-Mode
Prob(“Jebara”)=Prob(“Jebara”, g) + Prob(“Jebara”, c)

h Tony | Jebara | Softmax
5,  Tony 1 Jebara Gecieeessssssssssssssssssssnsssnssnnnnnnnnnnns o) e e e e e
S Y A 00 .00000000080;
!--_--- - VocabularyI Source
. M
ittt el
LUONOHOL
AL L l
. S
Attentive Read She - :I Y Ermbedding
for “Tony”
Selective Read
: \ J for“Tony”
g— —  — {e— —  — “T 2
C ] b | b b ] b e | ony M
|

|
|
|
|
|

hello s my name 1is Tony Jebara

(a) Attention-based Encoder-Decoder (RNNSearch)

[
-
[ ]
[ ]
]
[ ]
[ ]
]
E::]

(c)StateUpdate —I DDDDD.DD I

87




CopyNet @uetal 2014

« Key idea: interpolation between generation model &

p(ytlst,yt—l,ct,M) — p(Qt;Q!St,yt—l,CtyM)

copy model
1 Yg(yt)
26 9 , Yt cV
p(ye,9-)= 0, y € XNV (5)
Luww  ygvux
1
p(yt; Cl): Z Z]:xj:yt € J ’ Yt - X (6)
0 otherwise

+p(yt7C’St7yt—17ct7M) (4)

Generate-Mode: The same scoring function as
in the generic RNN encoder-decoder (Bahdanau et
al., 2014) is used, 1.e.

¢g(yt =) = Vz-TWost, v; € VUUNK (7)

where W, € RWH1Xds and v; is the one-hot in-
dicator vector for v;.

Copy-Mode: The score for “copying” the word
x; 18 calculated as

Velyn = ;) =0 (W] W) i, @€ X (8)



BIDAF

Start End Query2Context
! ? N g MG
Output Layer Dense + Softmax »| LSTM + Softmax T~T-TT = e o
. Ly < L
§ —> >
Modeling Layer 1 1 1 3 -
% < > < > > - h1 h2 hT
Al AL Ab Al
O 92 ' Or
] | | B Context2Query
Atterkion Flow t Query2Context and Context2Query b O O
L Attention L Yralralrs
) [ 4} 3 é
h1I hy hr U4 U Cletisiieriel
Phrase Embed = = e 4
Leyer 5 T } 2 # .
A A A A A A A Y A
hy h h
Word Embed 5 172 T
Layer ] — 1 - ]
Character Word Character
Embed Layer (S R N R, - - L _— Embedding Embedding
X4 X2 X3 Xt o qu
L ) L J GLOVE Char-CNN
Context Query




NEURAL CHECK LIST



Neural Checklist Models
(Kiddon et al., 2016)

* What can we do with gating & attention?



“ncoder--

Chop

[
f

<s>

garlic tomato salsa

Decoder Architecture

the tomatoes : Add

! ! ! !
f ! I f

Chop the tomatoes
Want to update
Doesn’t ingredient
address information as
changing ingredients are
ingredients™ used




—ncode title - decode recipe

sausage sandwiches == Cut each sandwich in halves.
Sandwiches with sandwiches.
Sandwiches, sandwiches, Sandwiches,
sandwiches, sandwiches
sandwiches, sandwiches, sandwiches,
sandwiches, sandwiches, sandwiches, or
sandwiches or triangles, a griddle, each
sandwich.
Top each with a slice of cheese, tomato,
and cheese.
Top with remaining cheese mixture.
Top with remaining cheese.
Broil until tops are bubbly and cheese is
melted, about 5 minutes.



Recipe generation vs machine
translation

decode recipe token by token

1 1 1 1

—

1
1 1 1 1 1
<S> decode recipe token by
recipe title ——  Only ~6-10% words align
between input and output.
ingredient | * The rest must be generated

i dient 2 . -
i from context (and implicit
ingredient 3 .
ingredient 4 knowledge about cooking)

« Contextual switch between

: two different input sources
Two input sources



Encoder--Decoder with Attention

Chop the tomatoes : Add
T "~
T\\ T\\ T\\ Sa ,A
<s>'s_ Chopn,  the 'y tomatoes 1, .
e @  Want to update
Doesn’t ingredient
address information as
changing ingredients are

ingredients™ ., used
garlic tomato salsa é = Pa



Neural checklist model

update checklist

language model

Update available and used agenda items

key r

used

new
o — gate Et+1 Et+1

@ sum

Update checklist

@ sigmoid

@ linear projection
() multtiplication
() softmax

@Iinear interpolation

—-select dimension i o state : dy e ug;:ﬁ?%:;
projected into ' ) t
agenda space lPh Ert\ew a\{tallable E agenda ' k- N\-----|-- '.\./
—».Ph; items % ,
GRU language model @ — : D) —»> !
TS v i Ot :
' ' Generate
. X _,2 output
: : f
' ' hidden state
classifier
-«

» ref-typefh,)

new available
x‘t g Et ‘\it_ems

hy

\/




L et’s make salsal

Garlic tomato salsa

tomatoes
onions
garlic
salt




Neural checklist model

Chop

hidden state classifier:
non-ingredient
new ingredient

used ingredient \

LM
/ which ingredients
are still available
/ ‘ \ <S> |
w2 »:

garlic tomato salsa =

new hidden state




Neural checklist model

Chop the

t

0.85

0.10

0.01

tomatoes

L~

0.04 | »

=

~~

non- ew
ingredient gredient

\p\ the

[~}

~

tomatoes

4

=
A

-

w I
¥4




Neural checklist model

Dice the onions
1 t t
0.00 | &g

J

0.94 |
0.03] »
0.01| °

®

— —

~

NN\ ),
. Dice the onions
@I @I o

=
A

-

¥4

¥4




Neural checklist model

Add to tomatoes
| | t

0.94 | é@
0.04 [\ @
0.01 ] »
0.01]

sed
gredient
—_— —

AN
. Add to
@ &

[~}

~

Vv

tomatoes

03 >

<]

=

-

¥4




Checklist is probabilistic

Add 10 tomatoes a?ezg new ingredient prob. distribution

| | t new new
a =P h;)  «

0.90 | &g 0.85 t (@h) - e

) L new
0.08 | & 1.00 a; 1 = a; + a,
0.01| » 0.04

<

0.01]| _ 0.02

sed
gredient

—

I Adclj { I { ’[/
: O - a-t omaloes .at—l—l
@‘3 a  F @‘J o F

|
D

-

‘0.85 1.00 ‘0.04 ‘0.02 0.85](1.00{10.04{|0.02




Hidden state classifier is soft

tomatoes
Adq to“
@ 0.85
P 1.00
0.50/0.04 0.01 | » 0.04
0.?0 2 002 [001] 2 0.02

I&\ 1 > yd /
. Add to tomatoes
@%3 L = @\3 L =

~

‘0.85 1.00 ‘0.04 ‘0.02 0.85]|1.00(10.04}|0.




Interpolation
W &b «

EER T [ W, € RIVIx#
probability distribution over vocabulary
w; = softmax(W,h;)
. new
Attention model Attention model -+ P(‘ ht)C
over available over used
ingredients ingredients 4 P( ‘|ht) used

o0 M/ AT




Choose ingredient via attention

available ingredient embeddings

LM) E;rzew

new

a; "’ = softmax(yFE;"“"c,

/

temperature term content vector from

language model
available ingredient J1ad

embeddings

hidden state ? ﬁl 0.01

Attention models for other NLP tasks
MT (Balasubramanian et al. 13,
Bahdanau et al. 14)
Slente)nce summarization (Rush et
al. 15

I\/Ia;chine reading (Cheng et al. \§3
16 ‘

Image captioning (Xu et al. 15)

0.24

CT T T T T s s




Attention-generated embeddings

ingredient embeddings

Can generate an ET
embedding from
the attention
probabilities

attention embedding

&\

CT T T T e ——

.
C?ew _ ETanew

CT T T T




Discussion Points

 Strength and challenges of deep learning?



Hafez: Neural Sonnet Writer
(Ghazvininejad et al. 2016)

Hafez v0.9 Auto Advanced

Language ¢ English Espaiol

#Line 2lines @ 4lines 14 lines

Genre Lyrical

Meter lambic

Format Shakespearean sonnet

Vocabulary Encourage words discourage words

Style curse words repetition alliteration word length
; 0 + ; 0 + 0 + 0 +
topical words monosyllable words sentiment concrete words
6 7 + - 0 - - 0 - - 0 +

machine comprehension Generate Re-generate with same rhyme words
Poem

108



Neural Sonnets

Deep Convolution Network
Qutrageous channels on the wrong connections,
An empty space without an open layer,
A closet full of black and blue extensions,
Connections by the closure operator.

Theory
Another way to reach the wrong conclusion!
A vision from a total transformation,
Created by the great magnetic fusion,
Lots of people need an explanation.



Discussion Points

« Strength and challenges of deep learning?

* Representation learning

— Less efforts on feature engineering (at the cost of more
hyperparameter tuning!)

— In computer vision: NN learned representation is significantly
better than human engineered features

— In NLP: often NN induced representation is concatenated with
additional human engineered features.

e Data
— Most success from massive amount of clean (expensive) data

— Recent surge of data creation type papers (especially Al
challenge type tasks)

— Which significantly limits the domains & applications

— Need stronger models for unsupervised & distantly supervised
approaches



Discussion Points

 Strength and challenges of deep learning?

* Architecture
— allows for flexible, expressive, and creative modeling

 Easier entry to the field

— Recent breakthrough from engineering advancements
than theoretic advancements

— Several NN platforms, code sharing culture



Neural
Recipe
Example #1

title: oven eggplant

eggplant
cheese cottage

lowfat
chopped onion

bay ground leaf
basil

oregano
tomato sauce
provolone

In a small bowl , combine the cheese , eggplant,
basil , oregano , tomato sauce and onion . Mix well .
Shape mixture into 6 patties , each about 3/4-inch
thick.

Place on baking sheet .

Bake at 350 degrees for 30 minutes or until lightly
browned .

Southern living magazine , sometime in 1980 .
Typed for you by nancy coleman .

Cook eggplant in boiling water , covered , for 10 min .
Drain and cut in half lengthwise . scoop out insides
leaving 1/2 "' shell . Mash insides with cottage cheese
onion , bay leaf , basil , oregano and tomato sauce .
Preheat oven to 350 /A stuff eggplant halves , place in
casserole dish and bake covered for 15 min .

Add a little water to bottom of pan to keep eggplant
moist . top with provolone cheese .

Bake 5 more min uncovered 1 serving =



CONVOLUTION NEURAL
NETWORK

Next several slides borrowed from Alex Rush



Models with Sliding Windows

 Classification/prediction with sliding windows
— E.g., neural language model

» Feature representations with sliding window
— E.g., sequence tagging with CRFs or structured perceptron

Wi wo W3 Wy ws| We Wy wg
wy (wo w3 wy ws we| wy wg

wy wo (w3 wy ws W wy| wa

114



Sliding Windows w/ Convolution

Let our input be the embeddings of the full sentence, X € R’

X=[v(w), v(iwa),v(wz),..., v(wp)]
Define a window model as NN, indon : R (dwind®) y R1Xdhia,

NNWindow(xwin) — xwinwl + bl

L 0 | |
The convolution is defined as NNcopy : R"*9" — R(7~dwint1)Xdhia.

NNwindow (Xlzdwin )
NN yindow (X2:d, .. +1)

NNop, (X) = tanh

_NNWindow (Xn_dwin:n)



Pooling Operations

» Pooling “over-time” operations f : R"*™ — R1x™
L. fmax(X)1, = max; X
2. fmin(X)1,j = min; X; ;
3. fmean(X)1; = XL Xij/n
b 4 ...
b 4 ...

oy



Convolution + Pooling

¥ = softmax(fmax (NNeony (X))W? + b?)

> W2 e RdhidXdout’ b2 e R]-Xdout

» Final linear layer W? uses learned window features



Multiple Convolutions

y = softmax([f(NNL (X)), F(NNZ_ (X)),..., f (NN

conv

(X))]W? +b?)

» Concat several convolutions together.
» Each NN, NN?, etc uses a different dyip

» Allows for different window-sizes (similar to multiple n-grams)



Convolution Diagram (kim 2014)

wait
for
the
video
and
do
nt
rent
it

n x k representation of Convolutional layer with Max-over-time Fully connected layer
sentence with static and multiple filter widths and pooling with dropout and
non-static channels feature maps softmax output

> n=29, dhia =4, dout = 2

> red- dywin = 2, blue- dwin = 3, (ignore back channel)
119



Text Classification «im 2014

Model MR | SST-1 | SST-2 | Subj | TREC| CR MPQA
CNN-rand 76.1 45.0 82.7 89.6 | 91.2 79.8 | 834
CNN-static 81.0 | 45.5 86.8 93.0 | 92.8 | 84.7 | 89.6
CNN-non-static 81.5 | 48.0 87.2 93.4 | 93.6 | 84.3 | 89.5
CNN-multichannel 81.1 474 | 88.1 | 93.2 | 92.2 | 85.0 | 89.4
RAE (Socher et al., 2011) 7.7 43.2 82.4 — — — 86.4
MV-RNN (Socher et al., 2012) 79.0 44.4 82.9 — — — —
RNTN (Socher et al., 2013) — 45.7 85.4 — — — —
DCNN (Kalchbrenner et al., 2014) — 48.5 86.8 — 93.0 — —
Paragraph-Vec (Le and Mikolov, 2014) — 48.7 | 87.8 — — — —

120



A‘ eXN et (krizhevsky et al., 2012)

5 L s X EAN I y
_____________ EN / - 3 i =
s 192 192 128 2048 2 dense
128 : ]
27 R ) SN
N AN\ 13 13
3 N e [ Nee———2 1
S 3} R 3 R R
N — 13 = ] dense’| |dense
: 27 3\ AP B
3 1000
192 192 128 Max | L
pooling pooling

48

Figure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities
between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts
at the bottom. The GPUs communicate only at certain layers. The network’s input is 150,528-dimensional, and
the number of neurons in the network’s remaining layers is given by 253,440-186,624—64,896—-64,896—43,264—
4096-4096-1000.

121



