
MixList
Developed by Josh Bean, Jeremy Cruz and Gerard Gaimari
CSE 481 I: Sound Design Capstone, Winter 2019

Problem Description
The plethora of music services available allow users to 
play the songs that they like and collect them into groups 
called playlists. While these services offer massive 
catalogues of music, they lack the ability to create 
intelligent and fluid mixes as a DJ would.

MixList aims to bridge this gap and create a platform that 
can intelligently mix a users songs with little to no musical 
knowledge or experience with DJ’ing.

Use Cases
• Don’t want to hire a DJ for a party? Use MixList to 

make a mix instead.
• You want a fast paced workout mix to play when you’re 

at the gym or on a run.
• You curated the best playlist in the world and want to 

know what it would sound like if a DJ mixed your songs
• Your yoga studio wants you to create a relaxed mix to 

use for future classes.

Future Work
• Improve on the beat and tempo detection algorithms, 

account for variations in tempo throughout the songs
• Segment the songs into various sections and analyze 

the sections separately
• Label sections as well as “mixable” or “un-mixable” 

to avoid mixing at unfavorable sections of a song
• Refine criteria for goals which outline a mixtape
• Improve feature comparison and mixtape construction 

algorithm
• Add different effects and transition types to expand 

the possible mixes
• Integrate with an existing music platform like Spotify 

which already has a massive music library and analysis

Reflections
• The quality of the mixes is strongly dictated by 

the accuracy of the beats and tempo.
• Digital signal processing problems (musical 

analysis) are extremely difficult.

• Certain songs are simply not great when mixed 
together, there’s a reason DJ’s won’t mix certain 
songs!

• Vocals are difficult to mix, automixers should 
identify sections of the song with vocals and label 
them un-mixable

Responsibility: Gather data about the 
songs selected by the user to in order to 
provide the optimizer with the musical 
profiles of each song.
Collects data through:
• Internal analysis (DSP with LibROSA)
• External analysis (query song metadata 

on Spotify)
Populates an Analysis data structure 
containing the following features:
• Tempo
• Beat locations (annotated with 

downbeats)
• Valence (mood)
• Energy
• Danceability
• Musical key

Responsibility: Use song data provided by 
the analyzer to create an optimal mix and 
transition sequence defined by a “style” 
and high level goals.
• Songs are compared to create “mixes”
• Mixes are scored on probabilistic 

comparison to style
• Mixes are ordered based on progress 

to goals
• Transitions are created by taking into 

account individual song data, mix 
comparison, style and progress to a 
goal

Output: A mixtape script to be parsed by 
the composer containing an ordered list 
of songs as well as the effects and 
transitions to apply.

Responsibility: Parse the optimizer’s mix 
“recipe” into a sequence of instructions to 
pass to a Digital Audio Workstation (DAW) 
to perform the audio manipulation.
Our solution uses Audacity along with a 
scripting language that they have defined 
in Python.
Steps:
• Imports the audio files into the DAW in 

the order provided by the recipe
• Aligns the tracks according to where 

(temporally) they will be mixed
• Applies effects and time stretching 

from end of the mix to the start to 
preserve time alignment


