
1

Adapted from Perry R. Cook 
Princeton Computer Science 

(also Music) 
 

prc@cs.princeton.edu 
www.cs.princeton.edu/~prc 

 

Physical Modeling Synthesis 
of Sound 

2

One View of Sound 
Sound is a waveform; we can record it, 

store it, and play it back accurately 
 

PCM playback is all we need for 
interactions, movies, games, etc. 

 

But, take one visual analogy: 
 “If I take lots of polaroid images, I can flip through 
them real fast and make any image sequence” 

 

Interaction? We manipulate lots of PCM 
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Views of Sound 
•     Time Domain       x( t )    

   (from physics, and time’s arrow) 
 

•     Frequency Domain  X( f )    
   (from math, and perception) 

•     Production   what caused it 

•     Perception    our “image” of it 
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Views of Sound 

•  The Time Domain     
 is most closely related to 
      
 Production 

•  The Frequency Domain    
 is most closely related to 
      
 Perception 
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Views of Sound: Time Domain 

Sound is produced/modeled by physics, 
described by quantities of 

 

–  Force   force = mass * acceleration 

–  Position  x(t)     actually [ x(t), y(t), z(t) ]  

–  Velocity  Rate of change of position   dx/dt 

–  Acceleration Rate of change of velocity   dv/dt 
   (2nd derivative of position)  d2x/dt2 

 

Examples:  Mass,Spring,Damper      Wave Equation 
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Mass/Spring/Damper 

F = ma = - ky - rv - mg 
       ma = - ky - rv 
      (if gravity negligible) 
 
Solution: 

(         ) 



7

2nd Order Linear Diff Eq. Solution 
1) Underdamped:          

y(t) = Y0 e-t/τ  cos(ω t ) 
exp. * oscillation 

 
 2) Critically damped:   

fast exponential decay 

3) Overdamped:     
slow exponential decay 
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The Wave Equation 

dfy = (T sinθ) x+dx - (Tsinθ)x   (for each dx of string) 
 

f(x+dx) = f(x) + δf/δx dx + …    (Taylor’s series in space) 

  assume sin θ = θ   (for small θ) 
F = ma = ρ dx d2y/dt2            (ρ = mass/length) 
 

 Solution: 
         The wave equation 

            (c2 = T / ρ) 
2
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Traveling Wave String Solution 

D’Alembert Solution of    
 2nd order wave equation 
 (left and right going waves) 

“Digital Waveguide Filter” Model (Smith) 
 

– Bi-directional           
delay lines  

– Filters                
for  loss,              
radiation,           
other 
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“Digital Waveguide Filter” Model 
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“Digital Waveguide Filter” Model 
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“Digital Waveguide Filter” Model 
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“Digital Waveguide Filter” Model 
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Karplus-Strong Model 
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Modal String Solution 

•  Superimposed spatial sine waves            
(modes derive from spatial “boundary conditions”) 

•  Modes result in frequency “partials” (in time) 
•  Harmonic (f, 2f, 3f, etc.) relationship  

 (speed of sound c = constant) 
•  Stiffness can cause minor stretching of 

harmonic frequencies ( c(f) ) 
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Modal Solution for Bars 

•  Bars are often free at one or both ends 

•  Spatial modal solution still holds 
•  Modes no longer harmonic.  Stiffness of 

rigid bars “stretches” frequencies. 
•  Modes: f, 2.765f, 5.404f, 8.933f, etc. 
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Modal Synthesis (Adrien) 

– Impulse generator 
excites filters 

– Filters shape 
spectrum, model 
eigenmodes 

– Filter parameters 
can be time-varying 

“2nd order resonator” 
digital filter 

y[n] = g*x[n];
y[n] += b1*y[n-1];
y[n] += b2*y[n-2];
n++;
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Stiffness in Bars 
•  Stiffness makes wave 

propagation frequency 
dependent ( c(f) ) 
  

•  Models:  
–  Modal partials 
–  Use all-pass phase filter          

to “stretch” waveguide 
harmonics 

–  Merge waveguide with   
modal by modeling each   
mode with filter and delay 
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Stiffness 

•  Acoustics View:       
Wave train closures 

•  Filter View:             Comb 
filters with one 
resonance each 

Banded waveguides (Essl) 

•  Acoustics View: Frequency 
dependent propagation 

•  Filter View: Stretch comb 
filter harmonics 

All-pass waveguide   
 (Smith & Jaffe) 

Or a purely modal model (lacks space and time) 
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•  Open or closed at either end 
•  Wave equation solution same as strings 
•  Modes always harmonic because speed 

of sound is constant with frequency 
•  Solutions: 
     Waveguide 
 
 
     or Modal 

                     Open + Closed:   odd 1/4 wavelengths 

Tubes 
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Two and Higher Dimensions 

•  2 (N) Dimensional Waveguide Meshes 

•  or Finite Elements and Finite Differences 
•  Discretize objects into cells (elements) 
•  Express interactions between them 
•  Express differential equation for system 
•  Solve by discrete steps in space and time 

•  or Modal Solution  
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Finite Elements 
(with O’Brien and Essl) 
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Hi-D Modal Solutions 
Modes of Plates are inharmonic 

Center strike     Edge strike          Square Plate Modes 
 round = Bessel function roots           = sqrt(I) factors 

Modes in higher dimensions are problematic 
(impossible analytically except in very simple cases) 
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Where Are We So Far? 
•  Physical descriptions (equations)  
•  Give rise to solutions: 

1. Traveling Waves 
2. Spatial/Frequency Modes 

•  We can solve the equations 
directly using 
3. Finite Elements/Meshes 

•  How to choose?  Are there more? 
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Waveguides 
•  Strengths: 

–  Cheap in both computation and memory 
–  Parametrically meaningful, extensible for   

more realism 

•  Weaknesses: 
–  Little in the real world looks, behaves, or 

sounds exactly like a plucked string, flute, etc. 
–  Each family needs a different model 
–  No general blind signal model 
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Modal Modeling 
•  Strengths: 

–  Generic, flexible, cheap if only a few modes 
–  Great for modeling struck objects of   

 metal, glass, wood 

•  Weaknesses:  
–  No inherent spatial sampling 
–  No (meaningful) phase delay 
–  Hard to interact directly and continuously   

 (rubbing, damping, etc). 
–  No general blind signal model (closest) 
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Meshes, Finite Elements 
•  Strengths 

–  (somewhat) arbitrary geometries 
–  Fewer assumptions than parametric forms 
–  Can strike, damp, rub, introduce non-linearities 

at arbitrary points 

•  Weaknesses: 
–  Expensive 
–  Don’t know all the computational solutions 
–  Sampling in space/time (high Q problems) 
–  Dispersion is strange (diagonals vs. not) 
–  No general blind signal model 
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Sound Views: Frequency Domain 
–  Many physical systems have modes  

  (damped oscillations) 

–  Wave equation (2nd order) or   
 Bar equation (4th order) need 2 or 4
 “boundary conditions” for solution 

–  Once boundary conditions are set 
solutions are sums of exponentially 
damped sinusoidal modes 
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References and Resources 

•  STK: a set of classes in C++ for rapid 
experimentation with sound synthesis.   
Available for free (source, multi-platform) 

•   http://www.cs.princeton.edu/~prc 

•   http://www-ccrma.stanford.edu/~gary 

•   http://www-ccrma.stanford.edu/software/stk 

•  Based on “Unit Generators,” the classical 
computer music/sound building blocks: 

•  Oscillators, Filters, Delay Lines, etc. 

•  Build your own algorithms from these 

Synthesis ToolKit in C++ (STK) Book on 
interactive 

sound synthesis 

Many examples and 
figures from these notes 
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