
The Virtual Conductor

Gene Kim
genelkim@cs.washington.edu

Dustin Walde
dwalde@cs.washington.edu

Michael Wiktorek
wiktorek@cs.washington.edu

ABSTRACT
The Virtual Conductor is a software program that immerses the
user in a 3D environment with high-level control over the
generation and playback of music using hand gestures and
movement. An Oculus Rift immerses the user in a 3D
environment and the user’s gestures are communicated through a
Leap Motion Controller. Music is generated from an algorithmic
composer which takes input from the gestures read by the Leap
Motion. The Virtual Conductor synthesizes the concept of musical
conducting with computational music generation and new
immersive technologies to create a novel, immersive, and realistic
set of interactions with generated music.

1. INTRODUCTION
With advances in human-computer interface technology,
programs for conducting recorded music have been created in
recent years. Our aim in creating the Virtual Conductor was to
synthesize the idea of a natural conducting interface for music
with the ability to computationally generate music for several
different virtual instruments on the fly. To make the experience
more natural and realistic, we use the Oculus Rift and Leap
Motion controller as an interface with the virtual environment.

The hand gestures used to interact with the music combine
motions from real conducting and from digital user interfaces so
that the set of hand motions used feel natural to the user and can
be recognized by the program.

2. RELATED WORK
There has been previous work in creating programs for
conducting and for generating music, but we have not found any
examples that merge the two into a single application as we have
done. Preexisting examples of virtual conductors generally
simulate conducting but not composition. That is, the user can
influence the playback of pre-composed or pre-recorded music.
The Mendelssohn Effektorium, an installation in Leipzig's
Mendelssohn-Bartholdy Museum, allows the user to conduct a
virtual orchestra using a baton. Their interface combines a Leap
Motion Controller and a touchscreen [1]. A related but different
project animates a virtual human to act as a conductor [2].

Extensive research has gone into algorithmic composition. We
looked at two papers that summarize previous algorithmic
composition research [3,4]. These papers go over more topics than
are appropriate to review here, but several examples represent the
breadth of research that has taken place in this field. Music
generation algorithms have been designed using rule-based
systems/logic, genetic algorithms, statistical machine learning,
many variations of Markov chains, fractal models, and other
variations on machine learning. These algorithms have achieved
melody composition, harmonization, jazz improvisation, and the
generation of variations on a theme, among other compositional
techniques. We chose a probabilistic rule-based system in order to
create an intuitive model that generates enough variation to keep
providing interest over time.

3. SOLUTION
3.1 Overall Design
The Virtual Conductor uses a client-server model, with the music
composition system and the virtual environment as the server and
client, respectively. The user interacts with the virtual
environment using the Oculus Rift and the Leap Motion
Controller. Any changes the user makes via hand controls are sent
over the network to the server, which takes those changes into
account when generating further notes.

The environment is built in the Unity game engine and provides
the user with 3D representations of the stage, audience,
instruments, sound playback, and hands as recognized by the Leap
Motion. The user can examine the environment by rotating or
translating their head, just as they might while standing still on a
stage in real life. The user begins in the instrument selection phase
by placing selecting and placing objects onto a stage and moving
the go object, as described in the virtual environment section. The
selected instruments are sent as a message to the composition
server, which begins composing with the given instruments and
default parameters. The user can then manipulate the composition
in real-time with a variety of gestures using the Leap Motion and
Oculus Rift.
The virtual environment keeps the composer in sync by sending
messages with its current playback sample position to the
composer. The composer uses this information to fill the audio
stream as necessary. The stream acts as a buffer between the
composer and the playback system and ensures continuous
playback even though the composer must switch between feeding
the stream and composing the next sequence of notes.

3.2 Virtual Environment
The virtual environment that makes up the directly interactive part
of the program consists of two distinct scenarios, instrument
selection and onstage conducting.

In most interactive virtual environments, functions like selecting
an instrument and placing it on a stage might be done with a two-
dimensional text-based menu. However, in the fully three-
dimensional environment produced by the Oculus Rift, a two-
dimensional menu can become awkward at best. Giving the user
only hand control makes the problem worse; buttons pushed by a
user with the Leap Motion virtual hands provide no tactile
feedback, and don’t feel particularly natural. Our solution to this
problem was to take the functionality of a game menu and build it
using manipulable objects that can be grabbed and moved by the
user.

Our instrument selection phase places a set of spheres labeled
with instrument names in front of the user, along with a small
scale model of the conducting stage, complete with individually-
marked spots where instruments may be placed. Using the “grab”
recognition described in the interface controls section, the user
picks up and places individual instruments into their respective

positions on the stage. When done, the user then grabs a sphere
labeled “go” and places it into a specially-labeled object to their
left. The motions involved in grabbing and placing individual
instruments provide a level of tactility that buttons or text alone
could not, and further serve to immerse the user in the virtual
environment. Upon receiving the “go” signal, a controller sends
the number and names of the instruments to be used to the server.

Figure 1. Instrument Selection

The second scenario we simulate in our virtual environment is, as
the name of the program suggests, a stage on which the user is
free to conduct a musical ensemble composed of the instruments
selected in the instrument selection scenario. Many of the
challenges in this scenario involved the implementation and feel
of Leap Motion controls.

A particularly notable issue regarding the Leap Motion controller
was where it should be placed relative to the user. A natural
solution places the controller directly on the Oculus Rift, facing
forwards, so that in both the virtual environment and real world,
the user’s hands will be detected in the same region in front of
their field of vision. This solution feels the most natural and
provides the most intuitive level of control over the virtual hands
provided by the program. However, we found that this solution
made for extremely unreliable hand gesture detection, since the
user’s fingers are obscured from the view of the stereo infrared
camera on the Leap Motion controller by the user’s hands and
arms. Instead we used a solution that leaves the Leap Motion
controller on the desk in front of the user, but moves the virtual
region of hand control along with the user’s virtual head. While
this forces the user to move their hands separately from their head
in a slightly non-intuitive way, it provides the best compromise
between range of motion and accuracy of gesture detection. This
gave us access to gestures like pointing and making a fist, while
also allowing the user to direct their hand motions at any
instrument in their visual field.

We used the head pointing information from the Oculus Rift to
differentiate between controls for individual instruments and for
the ensemble as a whole. Individual instruments detect when the
user’s virtual head is pointing directly at them. This gives the user
a way to select individual instruments to control without having to
use a hand gesture that could be used for more direct musical
control. A gesture controller constructs control messages based on
whichever instrument is currently being looked at. If two hands
are used in a gesture, the gesture controls the ensemble. In this
manner, the user has direct control over the musical articulation of
individual instruments as well over the ensemble as a whole.

Raw audio samples sent by the server are converted to the correct
format and then written into an audio buffer in a single object on
the stage in front of the user, which plays them back as a
continuous stream of music. The Unity game engine provides
support for three-dimensional sound, which initially led us to
attempt to stream audio into individual buffers for each instrument
simultaneously for a more realistic soundscape. However, we
found that this approach led to significant synchronization issues,
which led us to our current single audio source approach. Even
with a single audio source, the music produced on stage sounds
three-dimensional in the sense that if the user turns their head,
they will hear the audio pan from one ear to the other. While this
is a compromise, we consider it realistic enough for the level of
immersion we wish to produce.

3.3 Interface Controls
Hand gestures are used in two different in-game states: instrument
selection and music conducting. Gestures are detected using the
Leap Motion VR package in Unity with code written by us
specifically for this project. After instrument selection is
complete, whenever a conducting command is detected in Unity,
the command is sent to the composition server. Conductor
controls include single instrument volume change, full orchestra
volume change, music style selection, instrument role selection,
instrument play and rest, and a separate mode for setting tempo.
In instrument selection, grabbing an instrument is initiated when a
hand is close enough to an instrument while that hand's thumb
point is close enough to the point or joint of another finger on that
hand. Once an instrument is grabbed, the instrument follows the
motion of the hand until the thumb tip position breaks a different
distance threshold from the other fingers' joints.

All other controls are available in the conducting state. Volume
change, style selection, and role selection controls are determined
by a mapping from the directions of the palms and the velocity of
the hands in the same direction. Volume controls are mapped to
one or both hands palm up or down, style change is a left hand
facing right or a right hand facing left, and the role selection is
mapped to one palm facing forward or one hand backward. Each
set of controls has a different velocity threshold in the direction
the palm is facing to trigger the control. Volume controls send a
change in volume for the corresponding instruments, style
selection sends the next style in the set of available styles
available, and role selections sets the selected instrument as a
background, foreground, or solo role, and sends that change to the
server.

Play and rest controls are one hand controls. Rest stops the
instrument from playing, and play makes it continue playing
again. To tell an instrument to rest while it is selected, a fist is
made with the single hand in scene. Fists are detected differently
than the grabbing in instrument selection. The stop command
checks if the positions one of the fingertips to the center of the
hand is below a given threshold to detect a fist. Pointing is
detected when the distance of the fingertip farthest from the center
of the hand is a greater than the third farthest by a large enough
margin.

Finally, the tempo controls allowed the user to set the tempo
making hand motions similar to those of a real conductor. Making
fists with both hands places other controls on pause while the user
sets the tempo. Tempo is marked every time the hand or hands
change from moving downward to moving upward. When the
allotted time for taking the tempo is completed, the final tempo is
set based on a number close to the median value of the recorded

times. The check removes most outliers caused by inaccurate
readings or mistakes by the user. Pointing with both hands cancels
the tempo recording at any time and returns the controls to the
default set of volume, style and role
controls.

Figure 2. Tempo Recording

3.4 Composition System
The music composition system is written in Java on top of the
JFugue library, which provides an interface to the Java midi
library using music theory concepts such as note names, tempo,
and scales. The composer is designed to generate a new sequence
of notes to follow its previous generation like a stream. This way,
the user can change the parameters of the currently playing
composition. The generation of a sequence of notes takes two
steps: 1) generating the chord and 2) selecting notes for each
instrument.

Chords are generated based on probabilistic transitions between
diatonic chord functions (tonic, subdominant, dominant) always
starting with a tonic chord. The transition probabilities follow
basic music theory rules on the likelihood of transitions. Once a
chord function is chosen, a random chord is selected uniformly
from an enumerated set of chords that fit within that function.
Notes are selected independently for each instrument. In order to
ensure that the composition as a whole is harmonious, each
instrument is given a role (melody, harmony, or bass line). This
role influences how likely that instrument is to play a given note
in the scale. For each note, a duration is selected by sampling
from a discrete distribution of possible note lengths.

The pitch is selected by sampling from a probability distribution
for the pitch which is created based on the previous pitch
distribution, the previous played note, the instrument range, the
current chord, and the instrument’s role. The previous distribution
and the last played note make the sampling more likely to result in
a note close to recent notes, which leads to natural musical lines.
The instrument range acts both as a limit on the range of notes
playable and as a bias toward the center to lessen the likelihood of
an instrument staying in an extremely high or low register for
many notes. Note selection is repeated until the sequence of notes
satisfies the length of the sequence for filling the buffer.

The composition system maintains an internal model of the state
of the composition so that continuous compositions are coherent
and so that the model parameters can be changed to reflect
conducting control messages in between portions of streamed
compositions.

3.5 Conclusion

Our evaluation metric was whether or not we have a working
project. Does the algorithmic composition engine produce
something that sounds even a little bit good? Does the front end
correctly render the MIDI output of the back end into sound? And
can the user’s hand motions change the sound output of the
program in the way we want? If the answers to any of these
questions are “no”, then we have more work to do.

Based on this metric we were successful in our project. However,
we made many tradeoffs in the design of our system. Below are
detailed descriptions of the major tradeoffs we made in this
project.

1) Our controls were not as responsive as we had hoped. This was
because the Leap Motion requires many hours of careful
calibrating or large datasets of example gestures to create a highly
precise gesture. Even with the most well designed gestures, the
Leap Motion data is not precise enough to be a basis for a reliable
interface.

2) Increased response latency due to lack of midi support in Unity.
Algorithmic composition systems require a way to represent notes
and instruments rather than raw sound. Midi is currently the best
available audio representation system for this task. However,
Unity doesn’t officially support midi sounds. We worked around
this issue by converting the midi composition to a raw sound
stream. This creates a long delay between the user actions and
corresponding changes in the generated music.

3) We compromised with an almost 3D soundscape due to
synchronization challenges in playing each instrument as a
separate audio stream.

There are improvements that could be made in every aspect of our
system: the virtual immersion, responsiveness of controls,
coherence, complexity, and versatility of the composition system,
and system latency. Still, our system remains a novel and
enjoyable system that effectively synthesizes computational
composition with a natural modeling of conducting in a virtual
setting.

4. REFERENCES
[1] WhiteVOID. 2014. Mendelssohn Effektorium –Conducting a

virtual orchestra.
http://www.whitevoid.com/#/main/interactive_structures/me
ndelssohn-effektorium.

[2] A. Nijholt, D. Reidsma, R. Ebbers, M. ter Maat, "The Virtual
Conductor: Learning and Teaching about Music, Performing,
and Conducting," Eighth IEEE International Conference on
Advanced Learning Technologies, 2008.

[3] Fernández, J.D., Vico, F.: AI methods in algorithmic
composition: a comprehensive survey. arXiv preprint
arXiv:1402.0585 (2014)

[4] P.S. Langston, Six Techniques for Algorithmic Composition,
Bellcore Technical Memorandum #ARH-01 3020, 1988.

