Interfacing with sound
Design of music controllers

Design: music controllers

Acoustic vs. electronic instruments

- * Acoustic instruments
- Sound source and interface are the same artefact
- Nature of expected sound & laws of physics dictate the instrument's form and how it is designed
- Fixed and relatively transparent mapping
- Acoustic + haptic feedback

Acoustic vs. electronic instruments

- * Electronic instruments
- Sound soure and interface separated → mapping, interaction and physical attributes are free
- Need for methods and constraints in order to fulfill criteria of expressiveness, transparancy, audio quality
- Need for feedback

Design: music controllers

Issues

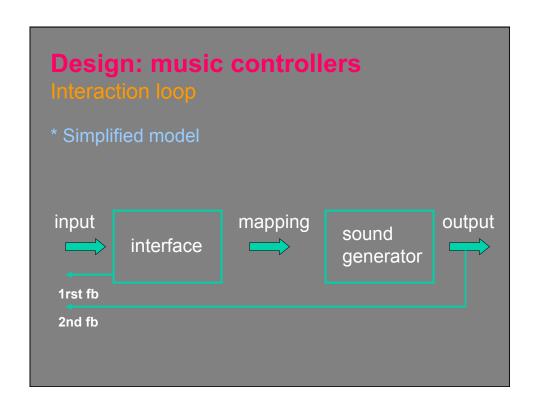
* Purpose of design

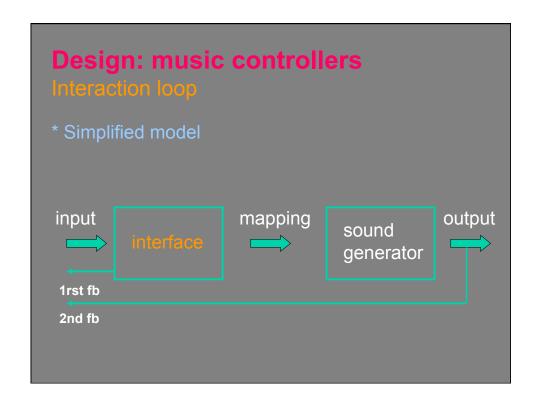
Users

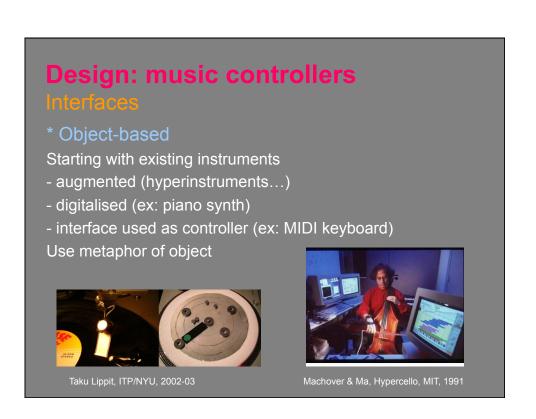
Experts vs. amateurs?

Uses

Composition? Performance? Education? Cognitive stimulation?


Designing an...


Interface? Instrument? Composition tool?


Issues

- * Criterias
- Relationship between performer and audience
- Physical effort
- Complexity / transparency
- Ergonomics
- Cultural context

It is not just about producing sound, it is about the whole **experience** of producing sound

* Object-based

Repurposed everyday objects and materials: water, fabric, chemicals, vegetables ...

Daniel Skoglund, 8Tunnel2

Particles, Horio Kanta, 2003

MIDI Scrapyard Challenge, Brucker-Cohen & Moriwaki, 03-04

Design: music controllers

Interfaces

* Object-based

Take advantage of the material properties of objects f.e.x bendable, conducts electricity, etc

Take into consideration human activities surrounding the objects: build upon it and / or break from it

Interfaces

Human body as start for design

The Hands, Waisvicz, STEIM, 1984

* Body-based

Human body as start for design:

- Ergonomics
- Existing gestures
- Expressive qualities of human movements
- Scale and continuity of movements

Design: music controllers

* Environment-based

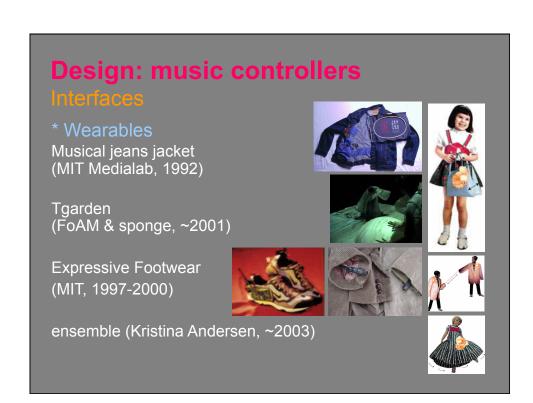
Interactive environments

- Reactive floors
- Digital realm: networked audio

Everyday environments, etc

Magic Carpet, MIT Medialab, 1996

Global String, Tanaka & Toeplitz, 1998



Sonic City, Gaye et al., 02-04

* Environment-based

Take advantage of the features of space

- Interactive environments: many people together, control of interaction parameters...
- Everyday environments: rich environment, unpredictable, dynamic, heterogeneous

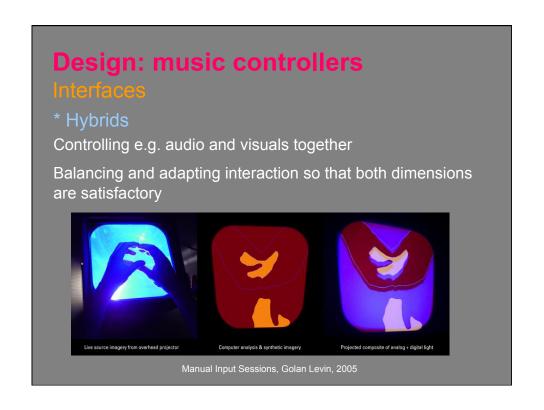
Intimate interfaces Body movement and posture Theatrical vs. daily life dimensions

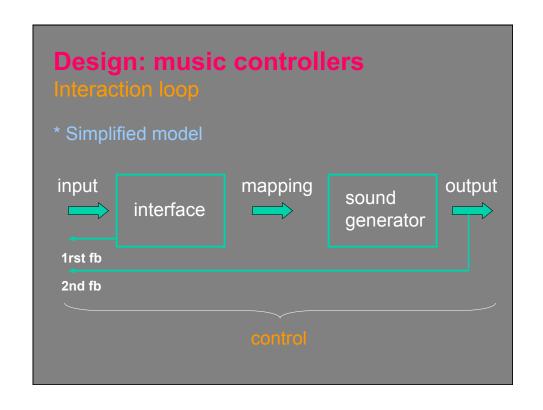
Design: music controllers


- Tangible algorithms

Audiopad, Patten, Medialab, 2001 Block Jam, Newton-Dunn et al., Sony CSL, 2002

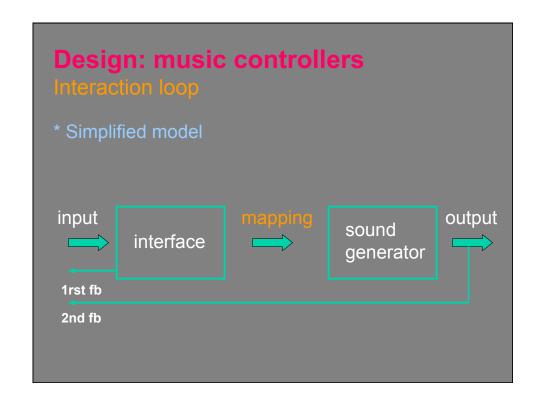
- Virtual instruments


- Screen-based (laptop musicians using MAX/MSP, Pd, etc)


Interfaces

* Representations

Taking familiar sound manipulation metaphor and making it tangible, into space.


Control

Levels of indeterminancy

- Control vs. randomness (→ interactive improvisation)
- Total predeterminancy: push a button → deterministic output
- Total undeterminancy: random machines
- Unexpected vs. expected input / output

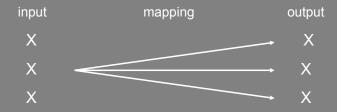
Control characteristics

- Continuous vs. discrete control
- Implicit vs. explicit
- Micro- to macro-level control: sound spectrum to details of articulation to overall structure

Mapping

- * Issues
- Complexity to stimulate creativity
- Transparency to keep link between input and resulting sound (otherwise, danger of loosing the audience)

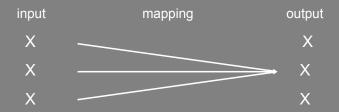
Design: music controllersMapping


* One-to-one

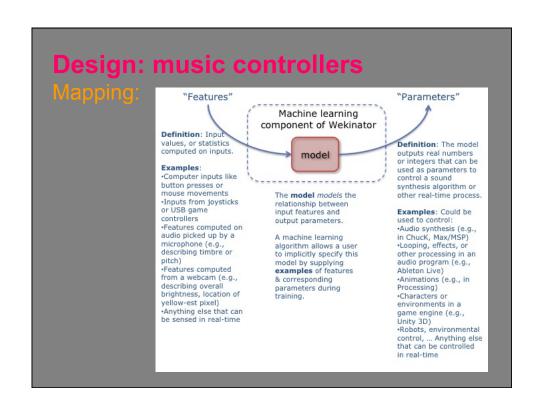
input	mapping	output	
х —			Х
х —			Χ
х —			X

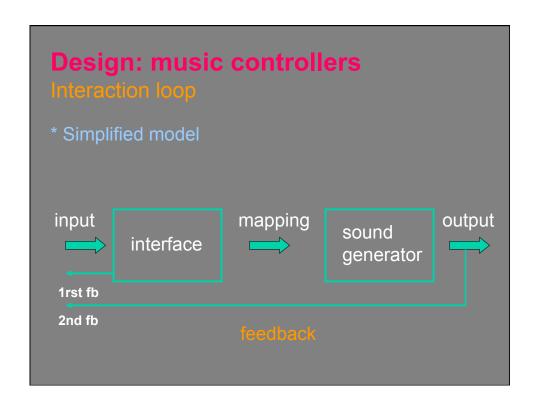
- Each independent input assigned to one musical parameter
- Simplest mapping scheme, but usually the least expressive

Mapping


* One-to-many

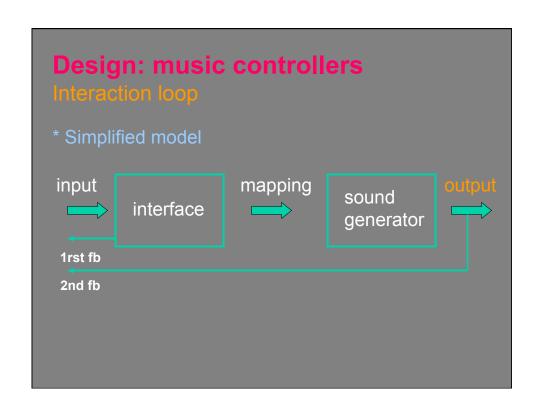
- One input controls more than one simultaneous musical parameter
- Conductor model: provides a macro-level expressivity control, but does not allow access to internal (micro) features


Design: music controllers


* Many-to-one

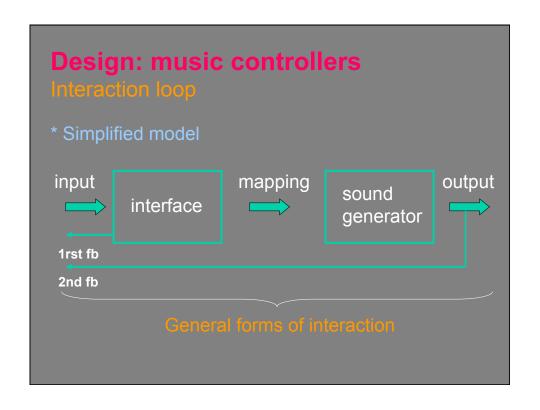
- Many inputs coupled to produce one musical parameter
- Requires previous experience with the system in order to achieve effective control
- But far more expressive than the simpler unity mapping

Design: music controllers Mapping * Many-to-many input mapping output X X X X Y • Many inputs coupled to many musical parameters • Control on different levels


Feedback

Feedback

- · Helps articulating control
- Passive vs. active
- From mono- to multi-modal (modalities: audio, haptic, visual)
- 1rst FB: from interface
- 2nd FB: audio


Feedforward

• Guides user by providing information about the internal state of the system (as opposed to information from output)

- * User movement
- Choreographed body movement
- Traditional instrumental gesture
- Novel gestures

Dark around the Edges, Winkler, 1997

Machover & Yoyo Ma, Hypercello, 1991

Design: music controllers

- * User movement
- Full-handed gesture

- Empty-handed gesture

Unfoldings, Interactive Inst., 2003

Stranglophone, Sharon, ITP/NYU, 03

Lady glove, Bongers & Sonami, 1991

+ Unvoluntary movements, embodied actions...

Interaction

* Real-time music
Improvising new music

vs. interpreting existing one (conductor model)

Radio Baton, Max Mathews, 1987

vs. navigating through non-linear musical narratives

Design: music controllers Interaction

* During performance

Interaction with environment, audience, etc

- Performer-performer
- System-audience
- Performer-system-audience

- * During performance
- Audience as collaborative performer

Sine Wave Orchestra, Tokyo, 2003-04

- Private performances in public spaces
- ...or over the internet

Le Placard headphones concerts

Interfacing with sound:
Performance/installations
vs everyday use

Properties of sound in everyday life

- Ubiquitous (sometimes obtrusive)
- Dynamic and transient
- Broad yet subtle information carrier (emotions, data)
- · Socio-cultural meaning
- Strong link to space and time
- Physicality (body and space)
- Additive: layers
- Foreground vs. background awareness -> implicit vs. explicit interaction

Sound in everyday interactions

Audio as input

Examples from art & research

Blendie (Kelly Dobson, MIT Medialab, 2003-04)

Context Photography (FAL, Viktoria Institute, 2003-04)

-> physicality, cultural meaning...

Sound in everyday interactions

- * A | | | | | |
- Street crossing auditory displays etc
- Sonification of network activity: AmbientROOM (Hiroshi Ishii et al., MIT, 1996-97)

Mobile music and locative audio

Locative audio in public space

* Motivations

Sound as public display
Peripheral awareness
Community re-appropriation of public space

Mobile music and locative audio

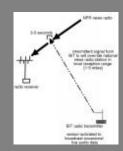
Locative audio in public space

* Space annotation

Hear&There (Rozier, MIT Medialab, 1999)

Tactical Sound Garden (Mark Shepard, 2004)

Tejp / Audio tags (PLAY & FAL, 2003-04)


Locative audio in public space

* Radio pirates

Bit Radio

(Bureau of Inverse Technology)

Key Chain Radio Station (Rikako Sakai, Ivrea, 2004)

Mobile music and locative audio

Mobile Music Technology

Music technology meets mobile computing. Devices used anywhere, with awareness of place, in distributed / ad hoc networks...

Device follows user's displacement and connects to the world (physical, social, located virtual)

- Mobile music making, listening, sharing
- Wearable audio
- Sound walks, etc

* Mobile music sharing

Social aspect of mobile computing: ad hoc networks, distributed social networks, etc

-> spontaneous and situated music sharing with people in public space

Mobile music

* Mobile music sharing Bass Station (Mark Argo & Ahmi Wolf, ITP/NYU, 2003)

Mobile music and locative audio

* Mobile music making

Music making away from computer screen or performance setting: in the everyday

Sensor technology + GPS -> situated music making

Ad hoc & distributed networks throughout the city -> collaborative music making

etc

* Mobile music making

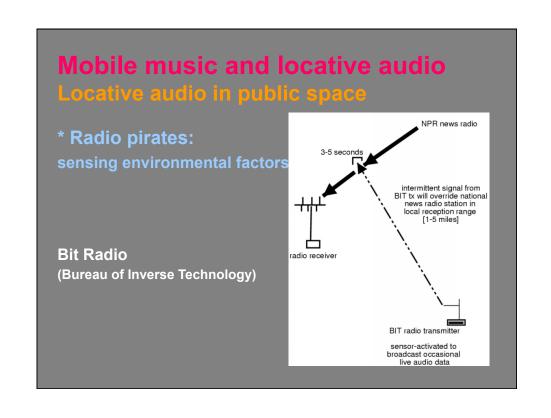
Sonic City (Gaye et al., FAL & PLAY, 2002-04)

Malleable Mobile Music (Atau Tanaka, Sony CSL, 2004)

Mobile music and locative audio

Mobile music

* Mobile music making


Sound Mapping (Mott et al., Reverberant, 1998)

Sonic Interface (Akitsugu Maebayashi, 1999)

Mobile and locative sound "Malking through sound" (D. Toon

* Sound-art installations Electric walks (Christina Kubisch) Drift (Rueb)

* Walking through digital space Seven Mile Boots (Beloff et al., 2003-04)

* Non-linear audio narratives

Mobile and locative sound Wearable audio "Personal instruments"

(Krzysztof Wodiczko, 1969)

(Chelle Hugues, RCA/CRD, 2000)

Mobile and locative sound

Wearable audio

Nomadic Radio (Nitin Shawney, MIT Medialab, 1998)

Sonic Fabric (Alice Santaro, 2002)

