
Physio-Acoustic Simulator
Scott Alspach
Project Member

1+360-620-7129

salspach@hotmail.com

Trevor Head
Project Member

4744 12
th
 Ave NE #209

Seattle, WA 98105
1+509-220-3300

titohead@gmail.com

Rob McClure
Project Member

5000 25
th
 Ave NE

Seattle, WA 98105
1+703-740-7251

rmcclur@uw.edu

ABSTRACT

Our project, the physio-acoustic simulator, is a piece of software

designed to replicate what people with hearing disabilities hear to

those with normal hearing. Many people don't truly understand

what it means to not be able to hear certain things, and our

software enables that. People who want to understand what their

loved ones hear, or hearing impaired wishing to show others what

the world sounds like to them, would both find it useful.

1. INTRODUCTION
The purpose of our project is to increase the awareness of how

people with hearing disabilities experience the world. There are

three target groups for our project. Firstly, for hearing impaired

who wish to show others how they hear. Secondly, for parents

who need to decide whether to get their children cochlear

implants, our cochlear implant simulator can make sure they know

as much as possible about how their child will hear with the

devices. Thirdly, for general use by people who just want to know

what life would sound like if they were hard of hearing.

2. RELATED WORK
Qian-Jie Fu, Ph.D, has developed a program similar to ours,

called TigerCIS, which can be downloaded for free online. [2]

Fu's simulator features a more robust CI simulator than ours, but

his hearing loss simulator is comparable to ours. Aside from

TigerCIS, however, we have been unable to find any other

comparable hearing loss/ CI simulators. There are websites that

give example soundclips of CI/hearing loss representations, like

those found at Hear-it.org, [3] but the user is unable to customize

the experience, having to use pre-chosen example sounds, and

limited, general examples of hearing loss.

3. DESCRIPTION OF THE SOLUTION
Our project is made up of a variety of components. These include

a simple audiogram, filter controls, a cochlear implant simulator,

and a filter which can be used with any of these filter control

components. All of these components are combined into one

graphical user interface (GUI). One view of this GUI is given in

Figure 1.

 Figure 1. The application GUI

3.1 Audiogram
The audiogram is probably the first feature that many users will

experiment with. It is displayed in a prominent place on the GUI

and is easy to understand and use. When a user clicks on the

audiogram button a message is displayed giving them instructions

for taking the audiogram. The audiogram is written so that it will

play a certain frequency of sound at an increasing volume until

the user acknowledges that they can hear it. The audiogram then

sets the filter control for that frequency to the amplitude at which

the user first said they could hear the sound. After taking the

audiogram the user is able to immediately load a sound file and

run the filter.

3.2 Filter Controls
At the top of our GUI are a number of sliders which are used to

control the filter which the user can use to edit audio files. When

the sliders are moved to the top, then nothing is filtered out of the

sound, when they are moved to the bottom the entire sound is

filtered out. There are also sample audiograms which the user can

select to automatically set the sliders to values which are

characteristic of various types of hearing loss.

3.3 Cochlear Implant Simulator
The other main feature of our project is the Cochlear Implant

Simulator. If a user selects the tab for the cochlear implant

simulator they will be presented with inputs for the number of

channels they want and the number of maxima they want, along

with how they want to partition the channels. The number of

channels indicates how many different frequency groups the audio

signal should be broken up into. The type of partition the user

selects will determine if the audio file is broken up into channels

linearly or exponentially. The number of maxima the user selects

determines how many of the channels will be selected, based on

the maximum power of their signal, to recompose the filtered

audio file.

3.4 Audio Filter
The main function of our project allows users to load an audio file

and filter it using a filter created by one of the previously listed

mechanisms. Users can explore their file system for a .wav file to

load into the system. They can then click the “filter” button, and

the audio will be put through the filter we have developed based

on their inputs. The Spectrogram (showing the frequency

amplitude by time) of the original audio and the modified audio

will be shown to the user. They will also be able to play both the

original and filtered sound files in order to hear the difference

between the two.

Figures 2 and 3 show an application of this audio filter. Figure 1

shows a spectrogram of the audio file before any filtering is

performed.

Figure 2. Spectrogram of the unfiltered audio

Figure 3 shows a spectrogram of the audio after it has been run

through the filter. In this example, the filter has removed all

frequencies that are higher than 3750 Hz.

Figure 3. Spectrogram of the filtered audio

Note that in Figure 3, the frequencies shown on the y-axis have

been normalized to the maximum frequency, which is 8000 Hz.

Thus, the figures show that frequencies above 3750 Hz (~0.47)

have been removed from the waveform.

3.5 Filter Method

3.5.1 Filter Description
Both types of audio filters are implemented in generally the same

way. The audio file being used is loaded and run through a phase

vocoder, which has been implemented in Matlab can be found at

[1]. The implementation performs a series of short-time Fourier

transforms (stft) on the audio, resulting in the power of a number

of frequency bands over the time course of the audio file. These

powers are then manipulated based upon the given filter.

3.5.2 Audiogram Filter
For the filter resulting from the audiogram, the frequency bands

from the stft are scaled depending on the results of the audiogram.

For example, if the sounds played at 4000 Hz was never heard

during the audiogram, then the powers of the frequencies around

4000 Hz would be set to zero for all time steps. Scaling factors

between zero and one are also possible.

3.5.3 Cochlear Implant Filter
For the filter resulting from the cochlear implant simulator, each

time step is treated independently. Based on the partitioning

scheme given for the simulation (as described in 3.3), the

frequency bands from the stft are grouped into channels. The peak

power of each channel is calculated, which is then used to sort the

channels by maximum power. Based on the settings, a certain

number of these maxima are selected, and the frequency

corresponding to the center of the frequency channel is assigned

that peak power. For example, if four maxima were selected, then

the final frequency distribution for that time step would have four

non-zero entries.

3.5.4 Filter Result
Finally, the results of the filtered stft information is run through

an inverse short-time Fourier transform (istft), which recreates the

audio data. This data can then be played to explore how it differs

from the original audio.

4. CONCLUSIONS
Success of the application was evaluated subjectively by the users.

One of the authors has profound hearing loss and was able to

identify when he could or could not hear something or tell the

difference between two sounds. Also, all users with normal

hearing were able to recognize a difference when the filters were

run. The cochlear implant simulation compared favorably to

similar demonstrations found on the Internet in terms of the

general tones and accuracy of the resulting audio.

Unfortunately, many aspects of the application were difficult to

rigorously test for success. Ideally, the filters would accurately

produce sound so that the filtered audio would sound the same to

people with normal hearing as the original audio sounded to the

person with hearing loss. It was beyond the scope of our project to

quantify what the two groups of people heard and then compare

them for similarity.

5. FUTURE WORK
There are a few aspects of the application that could be improved

upon in future work. Currently, the way that the cochlear implant

simulation is implemented results in a noticeable amount of buzz

in the recreated audio, especially in the lower frequency ranges.

Also, modern cochlear implants now have methods of filtering out

background noise, which could be added to the application.

The application is an open-source project released under an MIT

license. The code and more information about the project can be

found at http://code.google.com/p/physio-acoustic-simulator/.

6. REFERENCES
[1] D. P. W. Ellis. 2002. A Phase Vocoder in Matlab.

http://www.ee.columbia.edu/~dpwe/resources/matlab/pvoc/.

[2] Qian-Jie Fu, Ph.D. 2006. Cochlear Implant Simulation and

Hearing Loss Simulator.

http://www.tigerspeech.com/tst_tigercis.html.

[3] "Soundfiles - Impressions of Hearing Loss and Tinnitus:

Hear-it."http://www.hear-it.org/page.dsp?area=244.

