
A KinectTM and WiimoteTM Based Digital Drum Kit

Sound Capstone, Winter 2011

Jeffrey Booth
University of Washington

boothjm@uw.edu

Benjamin Ullom
University of Washington

ullom@uw.edu

Michael Sloan
University of Washington
mgsloan@gmail.com

Dan Gerdesmeier
University of Washington

danger@cs.washington.edu

ABSTRACT
Have you ever wanted to play the drums, but couldn’t due
to noise, space, or cost constraints? Our digital drum kit ad-
dresses all of these concerns, opening the door for people to
play the drums in their home without disturbing neighbors
or taking up space in a small apartment. By using rich input
and feedback devices that are affordable and commercially
available, we have created a system which is both musically
useful and enjoyable as a real-time input device. Our so-
lution provides a unique avenue for artists to create music,
drummers to practice, and the general public to entertain
themselves.

Keywords
Kinect, Wiimotes, Chronos, Drumkit, Virtual, 3D, Xylo-
phone, Instrument, OSC, MIDI, Color Tracking, Accelerom-
eter

1. INTRODUCTION
Drum kits, like many instruments, are too loud to play in
most living environments. Drum sets are often large and
cannot easily be transported. Currently there are two exist-
ing solutions to these problems: electronic drums and virtual
drums.

Electronic drums, such as those shown in Figure 1, sub-
stitute drum pads for standard drums and produce sound
electronically. Since electronic drums can be used with head-
phones, they do solve the noise issues, but they take up just
as much space as a real drum kit and are generally quite
expensive.

The term virtual drum kit typically refers to a completely
software based implementation used to produce sounds elec-
tronically. Virtual drum kits do address the cost, space, and
noise issues, but at the expense of the entire drumming ex-
perience. This software interface requires the drummer to

Figure 1: A Roland electric drum kit.

either click a drum with a mouse or touch a drum on a
touch-screen or trackpad in order to produce a sound. This
experience is nothing close to playing a drum in real life,
and is often times very limiting. An example virtual drum
kit can be seen in Figure 2.

Our goal was to produce a product that fits between these
two solutions. Our virtual drum kit would mimic a real-life
druming experience as closely as possible, while minimizing
the cost and space constraints. To do this, we sought to use
consumer human interface devices that can capture a user’s
drumming motions and provide haptic feedback.

Figure 2: A screen capture from a standard virtual
drumming application.

2. HARDWARE
For those unfamiliar with the hardware devices used in this
project this section will provide a brief overview of each
of the device’s capabilities and how they were used in this
project.



2.1 KinectTM

The KinectTM utilizes a standard video camera, an infrared
camera, and an infrared pattern to produce a color mapped
image as well as a depth mapped image. We utilized Nicholas
Burrus’s “nestk” library, which his “RGBDemo” relies on in
order to reliably process the data derived from the sensor
into a 3D mesh of the scene. In addition to being able to
map objects in three-space, the depth data that they Kinect
provides aids in the computer vision techniques we apply
allowing us to accurately track colors on the screen. The
downside to the Kinect, however; is that the large amount
of data received can take sigificant time to proccess. The so-
lutions section of the paper will describe how we overcame
this issue.

The Kinect also provides for the more “flashy” parts of the
project. The background of the scene is captured to provide
a visual reference frame to the user (rather than floating in
space). Light “pulses” are emitted upon hitting the drums,
and propogate across the surface of the kinect’s impression
of the user’s form. This corresponds to the 3D nature of
sound waves.

2.2 WiimoteTM

The WiimoteTM is a Bluetooth based gaming controller that
we found to be a perfect match for our application. Not only
does the stick-like shape of the remote make it feel like you
are playing the drums, but the Wiimotes also have four other
features that make them ideal for this type of application:
built-in accelerometers, Bluetooth data connection, 10 but-
tons, and force feedback. The accelerometers in the Wiimote
were the biggest must-have feature as they gave us more fine
grain detail as to how the person’s hands are moving in real
time. The easy to setup Bluetooth connection, extra but-
tons, and haptic feedback were supplementary factors that
made the Wiimotes easier to setup, provided a more realis-
tic drumming experience, and allowed us to change options
within the program.

When the Wiimotes are relatively stationary, normalizing
and negating the accelerometer data yields a very close ap-
proximation to the orientation vector. Much more fancy in-
tegrations of the Kinect’s absolute position information and
the accelerometer data could be performed to stabilize the
orientation representation, but this does not seem to have
greatly impeded playability.

2.3 ChronosTM

The ChronosTM EZ430 is a development kit for a Texas
Instruments microcontroller that is packaged in a sports
watch. It has built-in accelerometers, a wireless data connec-
tion, and is relatively inexpensive, which made it a perfect
choice for our third input. When the watch band is threaded
through shoelaces, it is possible to detect the movement that
correlates with pressing a bass drum pedal.

3. SOLUTION
Our solution to this problem can be broken into three dis-
tinct parts. They are location tracking, hit detection, and
audio playback. First, We wanted to be able to track a
person’s location as it allows us to display a rich visual as
well as allows for complex drum sets to be placed in three-
space. Secondly, the hit detection feature was important as

Figure 3: The hardware devices used.

we needed to know when the person actually was trying to
strike a drum and how hard they hit it. As drumming is
a fast placed instrument we needed to make this detection
fast. Lastly, we wanted our audio playback to layer ontop of
existing sounds and blend in real-time so that the playback
sounded natural.

3.1 Application Design
Our application is named DigiDrums, and is based on a
Model-View-Controller architecture. We have a DrumSet
class which serves as the model: it stores the position of the
sticks and the drums, and stores the mapping from sticks
to drums and drums to sounds. We have a DrumViewer
class that renders the application graphics via OpenGL. We
have a Controller class for each input device, and a class
named KinectWiiController which merges the input from
those classes. We have an OpenALSoundPlayer class that
plays sounds via OpenAL and sends signals via OSC when
drums are hit. Finally, we have a DrumController that co-
ordinates all of the above. DigiDrums has been designed to
be very modular, allowing for future expansion or modifi-
cation in the event that not all of the hardware devices are
present, or a different soundplayer is desired. We view this
as a great strength of the project because it makes it possi-
ble for knowledgeable users or the open-source community
to modify the project to take advantage of hardware devices
that users already own, thereby reducing the cost of using
the kit. For example, while we currently use the Kinect to
perform 3D tracking of the Wiimotes, it would be possible
to use a webcam and color tracking to provide position in-
formation for a simpler drum kit. In the future, an options
screen could be added to choose and configure the available
input devices and sound output options.

Figure 4: A diagram of the project data flow.

3.2 Location Tracking
The location tracking section of our project is responsible for
taking the data generated from the Kinect and finding the
(X,Y, Z) coordinates of our colorcoded Wiimotes. It works
by marking regions which are simultaneously near and fall
within a particular region of HSV space. This depth data
helps a lot for disregarding regions of no interest, isolating
the user from irrelevant background information. In order to
achieve the speed that is required for responsiveness, and to



free up computational resources for other tasks, it is assumed
the blob does not move too significantly. A small, 64 by 64
pixel, region is extracted and processed. If there is a likely
object in this portion (which there almost always is), then
the full scan can be avoided.

3.3 Hit Detection
Hit detection was done using the WiimotesTM to improve
performance. The delay of the Kinect image was significant
enough, 100ms-2s, that we wanted some other way to tell our
program that a hit has occured. Due to their fast data collec-
tion and transmission rates, the Wiimotes were responsible
for detecting a hit occuring while the slower Kinect was re-
sponsible for picking which drum the Wiimotes has come in
contact with. To do this we looked entirely at the accelerom-
eter data. We initially tried to apply machine learning to
the accelerometers, but found that it was overkill for such
a relatively simple task. We instead recorded accelerome-
ter data while performing hits of varying amplitudees. By
analyzing the data by hand we were able to come up with
a heuristic using only the z-axis accelerometer that reliably
detected intended hits without activating on other motions.

We remember six samples from each Wiimote and constantly
shift the oldest sample out of our data array. If the four
oldest samples are negative and then two newest samples
are positive we know we have a hit. The negative samples
represent the downswing of the Wiimotes and the positive
ones represent the recoil after the hit. We found this to
work pretty well for multiple people and easy for the body to
figure out the necessary motion. We used a similar method
for the Chronos accelerometer data, but because the poll
rate was much lower we used a smaller data buffer size.

After we detected a hit we needed to also specify an ampli-
tude of the hit. A crash symbol that you hit soft sounds
much different than one you hit hard. We tried multiple
techniques, but in the end we ended up using a bucketing
technique. We grouped hits into soft, medium, and hard
based on the average acceleration of the downswing. In or-
der to appropriately catagorize the hits, we scaled each hit
by the maximum hit seen thus far. This allowed the Wi-
imotes and Chronos to automatically calibrate themselves
for a variety of drummers. After grouping the sounds we
played a different pre-recorded audio clip corresponding to
the intensity.

3.4 Audio Playback
The audio playback portion of our project is handled in
DigiDrums by OpenAL, but could be easily substituted by
any program that supports Open Sound Control (OSC); a
light-weight network communications protocol designed for
use in audio. OSC allows the audio playback to occur on
any computer on the network and also gives the user flex-
ibility in choosing sounds or even re-routing the output to
another program. For example, it is possible to convert the
OSC messages to MIDI (using existing software) and use
our digital drum kit as an input to recording software. Our
recommendation for an OSC receiver is ChucK, a strongly-
timed, on-the-fly audio programming languge.

Audio playback was harder then we originally expected as
sounds from the drum set could happen at any time and we

wanted them all to layer over each other. Aside from the
issue of blending audio on-the-fly we also wanted to make
sure that the sum of the sounds did not cause clipping. Our
first implementation in ChucK had clipping issues when two
or three drums were played at once with high intensity. As
each of the sounds did not know much about each other or
when another one was going to come it made scaling a night-
mare. We thus turned to OpenAL which is commonly used
in many gaming platforms to provide audio. The platform
allows you to have multiple sources. You specify a sound
buffer to play, pick a source from a pool of them, and then
have the buffer play. This model worked well as the Ope-
nAL library knew how many sources it had available and
how many are playing so scaling the audio worked much
better than our initial implementation.

Figure 5: A screenshot of the application while play-
ing.

4. CONCLUSIONS
Using off-the-shelf hardware and cross-platform audio play-
back software, we were able to develop a digital drum kit
that is responsive, intuitive, versatile, compact, and quiet.
While there is plenty of work that can be done to improve
upon our design, we accomplished creating a playable in-
strument that can be useful for multiple user types ranging
from the general public to aspiring musicians. While one
of our initial goals was to be able to use this as a practice
device for real drummers, we believe that people wanting to
use our drum kit as a MIDI controller might find our project
even more appealing. Our solution makes it an ideal alter-
native to a real drum kit in situations where space and noise
are concerns.


