[an Ma
CSE481e UrbanSim Capstone
Final Paper

Data Synthesis

Introduction

The UrbanSim project is a simulation, open-source software that analyzes urban
development in respect to land use, transportation, environment and public policy. The
software weighs in on planning of urban development by forecasting different
environmental, sociological, transportation and economic models. This is of particular
interest to government officials who desire to test out these strategies before committing
to long-term investments.

The capstone class at UW gives an opportunity for undergraduate students to
contribute to its software development. I registered for this course both because of its
helpful nature to society as well as its interesting problem of simulation. I was interested
in making a significant impact to important decisions in a very real way. My quarter-
long project that I chose had to do with generating synthetic data for simulation. The
UrbanSim software can only simulate given a set of data. Without meaningful and
accurate data, the simulation would be worthless.

What is available to researchers nowadays is a slough of information from census
and other related government surveys about population. But the government has chosen
to leave out important data to protect privacy and encourage anonymity. Researchers are
left with census data of the whole population at an aggregate level in addition to a small
percent of detail. One example of this small percent detail is from the Public Use
Microdata Sample which provides around 100,000 records or 5% of the population in
detail. The level of detail is down to how much time a certain person takes to commute
to work as well as if their house has a complete kitchen.

The challenge that researchers face is how to estimate the other 95% of the
population they know relatively little about. My project deals with this challenge
attempting to use statistical and mathematical models assisted by computational
algorithms for this estimation. The two models I focused on were maximum entropy and
iterative proportional fitting.

Ability to design and conduct experiments

At first, the biggest lead that I had was to start implementing maximum entropy.
There happened to be a python package in SciPy that had an implementation already. In
the ideal situation, I would only have to figure out what input parameters the SciPy
implementation needed and decipher the output. This turned out to be a non-trivial task.

The maximum entropy package is fairly new. It comes with four examples and it
is surprisingly well-commented. All four examples show a machine translation
application from English to French, based off of examples from Berger et al., 1996.

Given a dictionary of text, the code finds the probability distribution of possible
translations with maximal entropy subject to certain linear constraints.

The first example sets up the sample space given by (1) below as well as two
linear constraints, given by (2) and (3). With these inputs as parameters, the example

(1) p(dans) + p(en) + p(a) + p(au cours de) + p(pendant) = 1
(2) p(dans) +p(en)=3/10
(3) p(dans) +p(a) =1/2

creates a maximum entropy model and estimates the unknown probabilities.

Example two illustrates additional features with the same constraints as input. It
first initializes the model with a certain distribution using Monte Carlo sampling. It then
runs the fitting using various algorithms such as CG, BFGS, LBFGSB, Powell and
Nelder-Mead -- each with its own strengths and weaknesses. The problem with this
example is that the Monte Carlo sampling relies on a package labeled Sandbox in python.
The Sandbox package is labeled as "incomplete, poorly-tested, or experimental code."
Unfortunately, the example breaks trying to use it.

Example three and four demonstrate conditional probability, one using a list of
tuples as input parameters and the other using a feature matrix. What I started to realize
was that these examples and the implementation as a whole was focused more as a
natural language processing problem. It assumes that a single unit maps onto another
single unit. In the data synthesis problem for UrbanSim, there are no clear mappings
from one unit to another. Even if there are, the problem starts to break down when doing
multiple dimensional joint distributions.

Nevertheless, I gave the examples a try. I designed two simple scenarios of a fair
and twisted coin toss. With the fair coin toss, the sample space was heads and tails. The
constraints are set up as shown below. When fitted in the maximum entropy model,

f0 = p(heads) + p(tails) =1
fl1 = p(heads) = 0.5
f2 = p(tails) = 0.5

the output is as expected with the probability of head taking 0.5 and the probability of
tails taking 0.5. This shows that the model was able to fit to all the linear constraints
without doing anything awkward to the probabilities. This was a validating test kind of
like the identity property. The twisted coin toss played with the scenario that the coin can
land on head, tails or neither (say on its side). The linear constraints are set up as below.

f0 = p(heads) + p(tails) + p(other) = 1
fl1 = p(heads) = 0.5
f2 = p(tails) = 0.5

Notice how there was no constraint on the probability of "other". That is, we want the
model to fit this series of constraints to the best of its abilities with maximum likelithood
estimates. Notice also that the linear constraints don't mathematically line up -- that is we
expect heads to be 0.5, tails to be 0.5, and conclude that "other" should be 0. One neat

property of maximum entropy is that it evenly distributes the probabilities so that even
when 0 probability is expected, it will still give it a very small estimate. The fitted output
when run through the model gives heads and tails each to be 0.49903396414 and "other"
to be 0.00193320717102.

The next step I took was to design a scenario that is more related to the data
synthesis project. Given household income and the number of children, estimate the
probabilities of the joint distribution. This can be pictured as a 2x2 matrix shown below.

Household Income
< >=
50k 50k
0 0.4
of 1or
Children more 0.6
0.8 0.2 | sum=1

This example shows that 40% of the population have 0 children and 60% have 1 or more
children. Likewise, 80% have income below $50k and 20% have income greater than or
equal to $50k. The challenge in this problem is figuring out what probability goes inside
the cells in the table. For example, what is the probability that a household income is less
than $50k and it has 0 children? The naive way to choose the probability is to assume
independencies between income and the number of children, and multiplying the
marginals together. But in practice, we know that there probably are some dependencies
between the two datasets and we are not able to make that assumption. Even if there are
no dependencies, we can not assume that about every set of variables we will test in the
future. To the best of my knowledge, we are not able to solve this using basic matrix
algebra either since there is more than one solution. We can deduce five linear equations
with four unknown variables but some of those equations overlap making it impossible to
solve definitely. Below are two possible solutions where the table values fit to the
marginal constraints.

Household Income
< >=
50k 50k
0| .2 2 0.4
of 1or
Children more .6 0 0.6
0.8 0.2 | sum=1
Household Income
< >=
50k 50k
0| .3 | 0.4
of 1or
Children more 5 A 0.6
0.8 0.2 | sum=1

The conclusion with knowing this is that we need a statistical model to give us the
maximum likelihood estimate. An appropriate model to use would be maximum entropy.

Modeling after the examples, the linear constraints I found are given below, using
a, b, ¢ and d to label the table values that need to be estimated and r1, 12, ¢l and c2 to
denote the marginals.

Household Income
< >=
50k 50k
0| a b r1
of 1or
Children more c d r2
c1 c2 | sum=1

atb+c+d=1

atb=rl
ctd=r2
atc=cl
b+d=c2

It would seem that the implementation could figure this one out as well but it throws an
exception about diverging to infinity. Until now, I still do not understand why it happens.
I have used the five different fitting algorithms each failing for the same reason. I also
tried converting this matrix into a conditional probabilities problem where I create a list
of tuples using the marginals in the proportion that I want to test. For example, I make 2
(r1, cl) tuples out of 10 to represent that my expected outcome should be .2.

The challenge of this project turned into one of understanding maximum entropy
rather than figuring out the implementation. I spent several weeks reading maximum
entropy research papers. There are three general steps in the maximum entropy model.
First is to figure out the linear constraints. Then estimate the parameters using Langrange
dual of the entropy and its gradient. Finally, it computes a result with matrix-vector
expressions. These papers were littered with terms that were unfamiliar to me. To figure
all this out would be a PH.D pursuit and something that could not be done in the ten
weeks that I had in the class. 1 decided to fall back on to a simpler model that could
accomplish similar things called iterative proportional fitting (IPF).

Iterative proportional fitting is a mathematical procedure that has been around
since 1940. It is now a fairly established technique to join the information from two or
more datasets. IPF has been used in many areas of study. It works particularly well in
geography and census-related scenarios because it provides useful estimates for
individual-level attributes given data from an aggregate-level. This method actually
became popular around 1991 when it allowed government officials to make better
decisions regarding resource allocation.

Population data is usually updated every couple years. In the case of census data,
it is updated every ten years. A lot can change between these years. Schools could be
failing, highways are getting damaged and poverty may be increasing in certain areas.

Without current data, it is hard for government officials to know how to redistribute its
spending. In most cases, they might even be unwilling to fund a needed program when
they do not see concrete evidence to support the need. Using IPF is critical in solving
these scenarios. It takes prior knowledge and scales it to current knowledge.

Mathematically speaking, IPF starts with two or more data sets that represent
marginals in a matrix. The cells in the table represent the corresponding joint
distribution.

Before IPF:
Household Income
< >=
50k 50k
0| a b r1
of 1or
Children more c d r2
c1 c2 | sum=1
After IPF:
Household Income
< >=
50k 50k
0| A B R1
of 1or
Children more C D R2
C1 C2 | sum=1

The tables above show before and after IPF. In the "before" table, rl, r2, c1, and c2 are
the marginals while a, b, ¢, and d represent the joint distribution of the marginals. During
IPF, the cell values a, b, c, and d, will gradually be adjusted into A, B, Cand D. A, B, C
and D satisfy the new constraints R1, R2, C1 and C2.

The gradual adjustments are in the form of iterations on each dimension of the
matrix. Each cell is first multiplied by the row sum and then divided by the new row
marginal. The "row" is dependant on which iteration it is and which dimension it
corresponds to. For example, the first iteration in the table above would be (a * (a+c) /
R1),(b*(atb)/R1),(c* (ctd)/R2) and so on. The second iteration would be
operations on the columns -- (a * (a+c) / C1), (b * (b+d)/ C2) and so on. In this
example, the third iteration will go back to doing operations on the row.

There are two conditions that IPF can meet before terminating the iteration
process to produce the final result. The first, and more useful, condition is that the
difference in all cells of the nth iteration and n-1 iteration is less than a predetermined
amount. For example, if I picked 0.1 to be the convergence allowance value, then the
difference of the nth iteration and n-1 iteration of each cell must be less than 0.1. Just as
a ballpark measurement, the iterations it takes before it converges in a 2x2 matrix as
shown above is less than ten.

After I had done the initial research for IPF, it was time to implement it in Python.
Luckily, the Numpy package provides many matrix manipulation methods that helped
quicken but also complicate this process. Many times, the methods were there, it was just
a matter of using the right ones at the right time. Here, I outline my implementation.

I start out with known marginals and known initial cell values. Having in mind
that other people will be using my class, I decided to make it easier for them to input the
right parameters. What I needed was marginals in each dimension but I allowed the user
to just input Numpy arrays in one dimension. As a result, part of the setting up process in
my implementation takes those marginal Numpy arrays and gives each one a different
dimension. This is done by calling a reshape method on the first dimension with (<length
of first array>, 1, 1), and reshape on the second dimension with the parameters (1,
<length of second array>, 1) and so on.

x_marginals = array([1, 2, 3])
y_marginals = array([20, 21, 22, 23])
z_marginals = array([50, 51])

#Each marginal is given a different dimension using reshape, resulting in:

Here is the place where I struggled the most. What [want to do with the initial
values is to divide by the marginals. In order for me to do matrix operations on it, each
marginal has to be expanded appropriately to fill up the shape of the table. For example,
if I were to multiply each row of the table with the first dimension marginal, I would have
the matrix operation below.

(Initial Table) x

#y axis

[[[1 1 1]] #zaxis=1
#x axis [[2 2 2]]
[[3 3 3111

[[[1
[[2
[[3

1 1]] #zaxis =2
2 2]]
3 3]1]

1 1]] #zaxis=3
2 2]]
3 3]]]

Expanding the marginal like this was not the biggest challenge. Many methods
could do this, such as repeat() and resize(). The biggest challenge lies in how to
generalize the expansion of the marginals for each dimension. As I realized using
repeat() and resize(), each implementation is dependant on which dimension it is in. This
quickly breaks down for even the third dimension. The way I solved it I coined "unit and
layering."

This idea takes advantage of the Numpy append() method. For each marginal,
take a dimension that it currently is not. Take the current marginal as the "unit" and
append over the chosen dimension n times, where n is the length of the table in that
dimension. Call the new marginal the "unit" and repeat this process on other dimensions.
This method guarantees that it will work for any dimension. The reason why we need the
"unit" step is because append will only work if the two matrices share at least n-1
dimensions. The steps are outlined visually below.

#original in y dimension
[[[1]]

[[2]]

[[311]

#layering 3 times on the x dimension

[[[1 1 1]]
[2 2 2]]

[
[[3 3 311

#layering 3 times on the z dimension

[[[1 1 1]]
[[2 2 2]]
[[3 3 3]1]
[[[1 1 1]]
[[2 2 2]]
[[3 3 3]1]
[[[1 1 1]]
[[2 2 2]]
[[3 3 3]1]

Remember that the IPF operation involves multiplying each cell by its row sum as
well. The row sums of each dimension are produced using sum_over axis() method.
Then it is "unit and layered" the same way as the marginals. One extra thing that needs
to happen is that sum_over axis() gives a result that is n-1 dimensions. The missing
dimension needs to be added using expand dim() method and then layered on that
dimension. For some implementation oddities, the dimensions used in sum_over_ axis()
are reverse of the dimensions used for reshape() and append(). Therefore, on the ith
dimension in respect to reshape() and append(), sum_over axis() should be on the n-i
dimension.

This IPF implementation was tested on examples from Paul Norman's, "Putting
iterative proportional fitting on researcher's desk." The resulting two-dimensional
matrices matched perfectly. I could not find an example of a three-dimensional case to
test against. When I ran it the first time on a three-dimensional case, it gave me very
awkward results with cells that don't match the marginals. I later realized that the
marginals were incorrectly set. The problem was that all the marginals needed to sum up
to the same number. When done correctly, the resulting estimates made sense. In the
next section, [will describe how I applied my IPF implementation to the UrbanSim data.

Ability to Design a Computing System

What makes UrbanSim so exciting is that it deals with real data. In a sense, this
project is dealing with very realistic constraints. This became very apparently to me as |
finished the IPF implementation and was looking for real data to test on. I spent a
significant amount of time on www.census.gov where census data is made available to
the public. I focused mostly on census 2000 data.

The census 2000 data in itself was difficult to sift through. It included four
summary files that each had around 300 detailed tables relating to age, sex, households,
families and housing units. There, American FactFinder provides an interface to select
the tables of interest. Without a database of census data to work with, I had to manually
pick out rows of interest to test with my program.

Within the census 2000 data was also something called 5-Percent Public Use
Microdata Sample Files (PUMS). These files contained state-level data containing
records from at least 100,000 individuals. The PUMS data is downloadable in text
format and the information must be parsed out using predefined delimiters. There is an
accompanying technical documentation that is about 800 pages long describing
everything a researcher would want to know about the PUMS data including how the
individuals were surveyed to how the text file is formatted. The information that I
needed about how to parse the information out and what it meant was found on the 100th
page of that document.

What I needed to do was to take the PUMS data and fit it into the census data
through IPF. I picked two relatively easy datasets to test first. The first dataset was the
number of households with phone availability. The technical documentation describes
availability as households that have the actual phone as well as service for it. The other
dataset was the number of households with complete kitchens -- meaning that they

include a refrigerator, sink and oven. These were appropriate initial test datasets since
they were boolean values. Households either had these in it or it didn't (0 or 1). The
results of the fit are fairly interesting. Columns represent phone availability and the rows
represent complete kitchen.

Original:

Yes No
Yes 22264 1657
[No 0 1365

Fitted: (marginals provided by census)

'Yes No

Yes 2419965 14937 2434902

[No 0 16173 16173

2419965 (31110

There are two points to notice from this. One is that there is a cell that is originally 0 and
is left O after the fit. One problem with IPF is that once a cell reaches 0, it gets stuck in
that pit with no chance out. Any kind of multiplication or division will not affect the 0. 1
tried replacing the 0 with a number like 0.000000001 and it makes quite a difference.
When fit, the value is somewhere in the hundreds. I would be interesting to be able to
determine what kind of significance that has on the data. Another point to notice about
this data is that we are unable to test its accuracy using the true values. There is no data
on the true values and it would be impossible to obtain records on the whole population.

Ability to function in multi-disciplinary teams

Though I did not work on this project with any classmates, I still worked with the
most multi-disciplinary team in my career. The UrbanSim project captures many areas of
knowledge including geography, statistics, urban planning and computer science. It was
inspiring and motivating working with the diverse expertise of the research faculty. They
were critical in helping me figure out different parts of my project including parsing
census data, iterative proportional fitting and maximum entropy.

Ability to identify, formulate and solve problems

This class was a rare and fortunate experience for me allowing me to identify,
formulate and solve a significant problem relatively on my own. The assignment was to
synthesize household data but there were many parts to it, from researching models, to
implementing them, to figuring out what data to use it on. Many times I had to break
down a problem into more manageable pieces. When approaching a task, I split it up into
sub-goals so that I can progress by iterations building up confidence and a good coding
foundation. Solving implementation problems stretched my thinking when it dealt with
high dimensions, unfamiliar models and mystifying data.

An understanding of professional and ethical
responsibility

As shown in the history of IPF, computer science in an integral part in everyday
life. Even government officials rely on software to make decisions that impact many
people. Decisions regarding transportation can affect poverty which can affect schooling
for better or worse. Accurate data and appropriate forecasts can affect this avalanche of
effects to a large degree. As a computer scientist, it is my responsibility to provide the
tools necessary to help those around me.

Ability to communicate effectively

This class has been a great experience in the sense of communicating on a very
technical level. I was learning a lot of new statistical and geographic terms that I needed
to use in the correct manner while I communicated with the experts on the team. The
midpoint and final presentation also gave me a chance to explain a challenging technical
problem completely fresh to classmates. I tried using many analogies and pictures to
enhance that experience.

Broad education necessary to understand the impact of
computer engineering solutions in global, economic,
environmental and societal contexts

What I regretted most when taking this class was not knowing enough about
statistics and geography. It made me realize that [needed a broader education to support
my computer science background. Especially in this field, computer science can be
applied to so many areas of knowledge. It is essential to know at least a little of
everything so that I can work in real, practical scenarios. Besides just thinking in
algorithms, I need to think about the problems that they are used in. There are many
other areas that computer science can find a place in but knowing those areas take a broad
education that expands outside its own field.

10

Recognition of the need for, and an ability to engage in
life-long learning

Much of this project was centered on going out to research about the two different
models. I mostly searched Google scholar for research papers. Going through this
process, I noticed that I'm benefiting from those that have recognized a need for life-long
learning. To keep progressing, we must keep building off each other and continue to
learn and innovate. Computer science in an area of continual change and learning and
that is what makes it so exciting.

Knowledge of contemporary issues

I think of UrbanSim and my project as sort of a data mining problem. There is an
enormous amount of unorganized and undecipherable information and the challenge is to
organize it in a way that is both useful and clear to everyday people. A useful data
mining solution gives users the ability to choose better decisions and also empowers them
to envision different forecasted scenarios. Similar solutions in the industry today are
Zillow and Farecast. There is always more information to be organized and made
available.

11

