
UrbanSim Parallel Programming
Capstone Paper

Aneesa Awaludin and David Chen
CSE 481E

June 4, 2007

Table of Contents
Introduction.. 3

Motivation... 3
Goals..3
Different Types of Parallelism.. 4

Ethical Considerations and Broader Impact...4
Concerning UrbanSim in General... 4
Relating Specifically to Parallel Programming... 5

Methods..5
IPython...5

Advantages... 6
Disadvantages... 6
Verdict.. 7

Native Python Threads.. 7
Advantages... 7
Disadvantages... 7
Verdict.. 7

Virtual Shared Memory... 8
Verdict.. 8

Process Forking and Disk Communication... 8
Advantages... 8
Disadvantages... 9
Verdict.. 9

Description of the Eugene System Models..9
Single Process...9
Two Processes.. 10
Five Processes...11

Some Technical Details...11
Timing Methodology...11

Results..12
Conclusion... 16

Caveats.. 17
Recommendations for Future Work.. 17

Bibliography...17
Appendix A – Data...18
Appendix B – Code..22

Introduction
UrbanSim is a software-based simulation model for planning and analyzing urban planning choices. It

is intended to be used by city planners and policy makers to simulate what sort of impact their decisions

may have on land use, transportation, employment, and population. It is an open-source project under

the GNU General Public License and is freely available online. For more information about UrbanSim

in general, visit http://www.urbansim.org/

The parallel programming project's purpose was to investigate how UrbanSim may take advantage of

parallelism to reduce the time required to perform a full simulation.

Motivation
UrbanSim is very computationally intensive and performs many operations on huge sets of data. Since

urban policy planners look several decades ahead when making their decisions, it is necessary to

simulate 20-30 years. Depending on the size of the system being modeled, this can take several days.

Currently, UrbanSim runs everything in sequence using only thread at a time1, taking no advantage of

parallelism. Multi-core machines are now fairly mainstream and many of the machines in the

undergraduate labs have dual core processors. As networking speeds increase, the possibility for

cluster-based computing also increase. UrbanSim, being single-threaded, can only take advantage of

just a single core on a single machine.

By modifying UrbanSim to utilize parallelism, we hope to reduce the time needed for a full simulation

drastically.

Goals
We had three main goals for the project:

1. Evaluate various parallel Python packages on their feasibility to be used with UrbanSim.

Considerations include code maturity, ease of use in integrating with UrbanSim, what kinds of

parallelism were supported, and their speed-up gains.

1 UrbanSim does fork a process for each year of simulation, but then the parent process blocks until the child is
finished. According to Professor Alan Borning, it does this to circumvent some behavior in Python's memory
management.

2. Modify UrbanSim so that different models can be run in parallel. Each simulation can be

broken up into different sections called models, which simulate one aspect of the system. Many

of these models share datasets and/or depend upon another model being run first, but there are

some that can be run in parallel. Since it requires significantly more knowledge of UrbanSim to

make code run in parallel within the models, we are targeting running different models in

parallel first.

3. Evaluate whether parallelism is promising enough to warrant incorporating it into the main

trunk of UrbanSim in the future. This mostly involves running timing tests and weighing the

speed-up gains against the trade-offs. This is the main purpose of the project.

Different Types of Parallelism
There are various different computing strategies all related to parallel programming. They are not

mutually exclusive and can be used in conjunction with each other. Since the terms will be used later,

they will be described here.

 Distributed computing – this is when the parallelism extends across multiple machines, usually

communicating with each other on a network.

 Scatter/gather – a technique involving a central controller breaking up large datasets into

smaller parts, “scattering” the parts out to different “workers” (which could just be different

processes or could even be different computers), having each worker complete its portion of the

calculation, and then the controller “gathers” the results and reforms the large datasets.

 Task farming – a central controller has a list of tasks that can be done independently of each

other. Whenever a “worker” declares itself free, the controller will assign it a task.

 Shared memory – this is when multiple workers or threads do not need to copy data to pass each

other information; instead, they rely on commonly shared memory. This has the advantage of

not needing copying, but does require careful use of locks.

Ethical Considerations and Broader Impact
With any engineering project, it is necessary to evaluate how the project fits into society and will work

in context. Since UrbanSim is used by policy makers and urban planners to make politically sensitive

decisions, care must be taken that the project follows ethical guidelines.

Concerning UrbanSim in General
Policy makers and urban planners will be using the project to analyze the effects of different proposed

choices. This includes analysis into traffic patterns, land property values, and measures of welfare and

equity. It is vitally important that the engineers and scientists behind the construction of UrbanSim be

up front about the limitation and accuracy of the simulation lest people put too much weight on its

output.

UrbanSim does not model everything, though there are certainly many other things that would be useful

and arguably have a large influence on urban planning decisions, such as education. However, many of

these factors have do not have a consensus on what exactly the effects would be on a simulation of a

city and are subject to much controversy. To use a controversial model and claim that it is indeed how

the factor affects reality would be ethically dubious.

Similarly, it is important not to bias the system to favor policies the engineer or scientist may

themselves favor.

UrbanSim's impact on society in general is mostly just that policy decisions can benefit from a little bit

more scientific evidence about what would happen if one choice were made over another.

Relating Specifically to Parallel Programming
There is not too much to say about the ethical considerations of incorporating parallel programming

into UrbanSim. It doesn't qualitatively change any of the outputs of the system; all it does it make it

run faster, which allows it to be used more often. In that sense, it may heighten the other ethical

considerations since it is more likely to be used if it can be used conveniently, but no other ethical

considerations come to mind.

Methods
In this section, we'll discuss the major options that were looked at for enabling parallelism for

UrbanSim. A lot of the useful results from evaluating the choices mostly comes in the form that the

option would be inadequate, but we did get some positive results with process forking. Here are the

different options we evaluated at length:

1. IPython (promising, but not quite there yet)

2. Native Python threads (not suitable)

3. Virtual Shared Memory (not suitable)

4. Process forking and disk communication (current choice)

There are many other parallel computing packages for Python in existence, but most of them only

supported the “scatter/gather” style of parallelism in which a single dataset is broken up into small

pieces, sent out to various workers, and then collected. Since we wanted to make distinct models run in

parallel and each model performs different operations, this was not the type of parallelism suited for our

purposes.

IPython
IPython stands for Interactive Python. While the default Python shell is already fairly interactive, it

blocks on GUI applications. In addition, IPython is working on officially supporting parallel

computing for version 1.0 (current version is 0.8.4) and has a relatively stable branch that already

includes most of these capabilities.

Advantages

 It is part of the SciPy umbrella of packages and is thus designed to work well with other SciPy

packages, including NumPy and Numeric. It has special support for the special array types that

NumPy and Numeric use and which UrbanSim uses extensively.

 Actively maintained and currently being developed.

 Supports, or will eventually support, many types of parallelism: task farming, scatter/gather,

distributed computing, shared memory.

 Supports MPI (a cross-language message passing protocol) which may be useful if we ever

extend UrbanSim with non-Python libraries.

 Interactive shell would be useful for debugging and keeping track of the various parallel

processes.

 Supports “workers” (different processes from the same computer or from a different one)

dynamically leaving or entering the worker pool, though I'm unsure how it deals with a worker

leaving if it has already been assigned a task. We believe you have to explicitly program

recovery choices.

Disadvantages

 Parallel computing capabilities are not yet mature. Specifically, the shared memory model that

we wished to use was not yet implemented, though they believe it should be “trivial” to do.

 In Windows, it requires the same compiler (MS Toolkit 6.0) that the Python binaries were built

from to build some of the modules. This compiler, once freely available from Microsoft's

website, seems to have disappeared when Microsoft introduced its new free Visual Studio

compilers. Attempting to install it through Cygwin lead to a Cygwin Python bug where the

Python process and various libraries do not map to the same base address. The documented fix

is to use “rebase all” from the commandline to change the base addresses, but it and many

variations did not work for us.

 Installing UrbanSim and IPython on Linux requires hunting down quite a bit of dependencies

and a Fortran compiler, as well as the ability to interpret somewhat obscure errors when

compiling from the source fails. This consumed a lot of our time. On machines without Fortran

compilers and where the user does not have root access, it is non-trivial to install and is

probably not practical to ask students to do so if IPython on Linux became a required

dependency.

Verdict

We had a lot of trouble getting a system to install both IPython and UrbanSim. We eventually gave up

on doing so for Windows because of the missing compiler necessary for IPython and because of the

rebase fix not working for us in Cygwin. Thus, any UrbanSim installation utilizing IPython would not

work on Windows unless solutions are found.

After successfully installing IPython and attempting to get it to do shared memory, we eventually

discovered on the IPython wiki that the shared memory model has not yet been implemented: “[…]

With that said, it would be nearly trivial to add VSM (Virtual Shared Memory) capabilities to our

kernels.” From the developer's mailing list archive, it seems the difficulty is getting a solution that

works on both Windows and Linux, but we do not know how far along they are on that.

Still, IPython is very promising since it is pretty stable and has good support for some other forms of

parallelism and NumPy arrays. We believe that it should be pursued further; even without shared

memory, modifying UrbanSim to pass messages between processes is definitely a possibility.

Native Python Threads
This is the included threads package in Python. Python supports native threads, and this was the next

option we explored after discovering that IPython did not support shared memory parallel computing.

Advantages

 No additional dependencies to install; no new third party packages to learn.

 Any person who has taken an operating systems class will understand how the thread model

works.

 Supports shared memory, which will eliminate the need for unnecessary copies of datasets to be

made.

Disadvantages

 Python uses a Global Interpreter Lock (GIL), which prevents more than one thread from actually

executing at a time, per process.

 Would not support distributed computing or task farming styles of parallelism, and would

require much more work to support a scatter/gather style of parallelism than IPython.

Verdict

Unfortunately, we did not know about the GIL when we first pursued this option. This effectively

negates any gains made from introducing parallelism to computationally bound programs, which

includes UrbanSim. It would be useful for I/O bound systems, but that's just not currently the problem

for UrbanSim. It does not seem like they plan on addressing the GIL in CPython (the official Python)

until version Python30002.

IronPython and Jython may be able to get around this earlier, since they are based upon systems that do

not use a GIL, but they would introduce another dependency and it is unknown how quickly they would

run UrbanSim.

Virtual Shared Memory
There are various third party packages that claim to support sharing Python objects between processes

without the need for copying. Since we want to avoid copying data unnecessarily, we looked at these

next. The two most promising were POSH (Python Object Sharing) and PyLinda. We'll skip straight

to the verdict.

Verdict

Unfortunately, POSH was built on top of an earlier version of Python (2.3) and did not work for the

current release (2.4.3). Running their sample tutorial code produced double-free errors or deadlocks.
2 Python3000 is named such because it's a somewhat hypothetical release that Guido Van Rossum (creator of

Python) would do if he felt the need to rebuild Python from scratch and not require backwards compatibility. The 3000
is the hypothetical version number or possibly the year in which it would be released.

Since double-free errors deal with memory management and garbage collection, we did not feel

qualified to attempt to update POSH to work with the current version of Python. In addition, it would

only work at all on *nix machines and not Windows, thus breaking UrbanSim's current multi-platform

nature.

POSH is not currently being maintained and has not been for years, so it is not likely that an update will

occur.

PyLinda is multi-platform and has been more recently maintained than POSH, but only supports built-

in Python types, such as ints, lists, etc. It does not work with user-defined classes, such as the the

datasets of UrbanSim, so it was not useful for our purposes.

Process Forking and Disk Communication
This was our last fall back and fortunately it worked reasonably well. Process forking involves copying

everything associated with the process in memory to a new process, which will run independently from

the first exactly where the first left off. We had the processes communicate via the flushing and

loading functions built-in to UrbanSim, which writes and reads datasets to the disk.

Advantages

 No new dependencies; nothing new to learn.

 Seems to work decently well.

 The same model without too much work could be adapted to work with IPython and

interprocess communication, enabling distributed computing.

Disadvantages

 Large amount of copying! Effectively doubles memory requirements.

 Writing and reading to disk is even slower than copying memory.

 Does not support distributed computing or task farming.

Verdict

This is the option we went with, mostly because the other options were not viable and by the time we

got to this point, modifying UrbanSim to do interprocess communication using IPython would require

too much time and had a chance of not working. Since we wanted some sort of positive result other

than “this doesn't work and shouldn't be pursued”, we did our timing tests using this method.

Description of the Eugene System Models
The Eugene System is the set of data describing Eugene, Oregon. We chose this dataset because it was

included in the default UrbanSim simulation and is fairly small, which makes it much more manageable

for running repeated timing tests, particularly if we want to run it for many years. Considering the time

constraints, we chose this over the Puget Sound Regional Council data. It is useful to describe what the

models are and in what order they run in the single-process and multi-process versions, so we'll do that

here.

Single Process

It begins with “Pre-scheduled events”, starting on the top-left of this diagram. The arrows indicate

what is run next. The final model is “Distribute Unplaced Jobs”.

Two Processes

Illustration 1: Execution flow for the Eugene system using 1 process

The change here is that after the second “Residential Land Share” model is run, an additional process is

forked. The parent process continues on the red path, whereas the child process continues on the blue

in parallel. They sync up before “Distribute Unplaced Jobs” is executed. The models up to

“Residential Land Share” need to be run in sequence, and are thus cannot be run in parallel.

Five Processes

For five processes, the governmental, commercial, industrial, and home-based employment location

choice models may be run in parallel.

Illustration 2: Execution flow for the Eugene system using 2 processes

Illustration 3: Execution flow for the Eugene model using 5 processes

Some Technical Details
We modified the class opus.urbansim.model_coordinators.model_system, which is in charge of reading

the configuration file and running each of the models in order. We changed it so that it would fork a

process upon reaching the “Household Transition” model. The parent process would skip the

employment models and upon reaching the “Distribute Unplaced Jobs” model, wait for the child to die.

Meanwhile, the child would skip the household models and run until it reached “Distribute Unplaced

Jobs” model, in which case it would use self.flush_dataset() to flush the job, gridcell,

employment_sector, and employment_sector_group datasets to the cache (on the disk), then die.

Upon detecting the death of the child, the parent process will use dataset.unload_all_attributes() and

dataset.load_dataset() to read the information from the cache before continuing on to “Distribute

Unplaced Jobs”.

The five-process version is a minor variation involving forking more processes upon reaching the

“governmental employment location choice” model and again syncing at “distribute unplaced jobs”.

Timing Methodology
We ran simulations on two types of machines: Intel dual-core 3.40 gHz Pentium D and two Intel Xeon

dual-core 3.0 gHz processors. To make our timing easier, we wrote a timing script in Ruby. We

included this short script in Appendix B. Basically, each simulation is run a few times and the total

time of each of the simulation is outputted in a comma-separated value (csv) file. This file is then can

be easily imported into Microsoft Excel for further analysis (calculating standard deviations and

producing graphs).

On Intel dual-core 3.40 gHz Pentium D, we ran two types of simulations: the single process simulations

and the two processes simulations. On the two Intel Xeon dual-core 3.0 gHz processors, we ran three

types of simulations: the single process simulations, the two processes simulations and the five

processes simulations. For all the simulations, we ran only the simulations of the parallelized models

for two, five and ten years.

Results
Below are our findings. All of our findings are graphed in normal distribution graphs, where the x-axis

represents the time (second) per run and the y-axis represents the probability.

2 full years on Dual-core 3.40 gHz Pentium D

66.76799857

50.42530133

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70 80
time (seconds) per run

Graph 1: Normal Distribution of 2 full years simulation

pr
ob

ab
ili

ty

1 Process

2 Proccesses

One process: Two processes:

μ = 66.7680 s μ = 50.4253 s

σ = 0.7791 s σ = 0.4297 s

The graph above graphed the normal distribution of 2 full years of simulations. From the result above,

we can see that the mean of the simulations using two processors was cut short more than 15 seconds,

which means the simulations ran about 24.47% faster than their counterparts which uses only one

processor.

10 years on Intel dual-core 3.40 gHz Pentium D

355.0328124

191.7353424

0

0.02

0.04

0.06

0.08

0.1

0.12

0 50 100 150 200 250 300 350 400 450
time (s) per run

Graph 2: Normal Distribution of 10 years simulation of the parallelized models

pr
ob

ab
ili

ty

1 Process
2 Processes

One process: Two processes:

μ = 355.0328 s μ = 191.7353 s

σ = 14.1256 s σ = 3.8144 s

The graph above graphed the normal distribution of 10 years simulation of parallelized models on a

dual-core machine. We can see that the two processes simulations ran about 46% faster than the single

process simulations. Since we only ran the parallelized models, it is expected that we would gain

almost 50% of the simulation time.

10 years on two Intel Xeon dual-core 3.0 gHz processors

232.4917682

132.3224334

117.3491911

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 50 100 150 200 250

time (s) per run
Graph 3 : Normal Distribution of 10 years simulation of parallelized models

pr
ob

ab
ili

ty

1 Process
2 Processes
5 Processes

One process: Two processes: Five processes:

μ = 232.4918 s μ = 132.3224 s μ = 117.3491 s

σ = 0.7742 s σ = 0.2203 s σ = 0.4853 s

Above is the normal distribution graph of 10 years parallelized models simulations on a quad-core

machine. While the two processes simulations gain about 43.1% from the single process simulations,

the five processes simulations did not gain very much from the two processes simulations. The five

processes simulations ran only about 15 seconds faster than the two processes simulations. This result

is not unexpected because in the five processes simulations, the parallelized models (employment

location choice models) take only a while to be simulated. In addition, the overhead cost of flushing

and reloading from disk is greater than the time gained from these simulations.

In general, the simulations ran faster on the quad-core machine compare to the simulations ran on the

dual-core machine. The single process simulations ran about 34.5 % faster in the quad-core machine,

while the two processes simulations ran about 31% faster.

In most cases, note that the standard deviation of single process simulations is larger than the standard

deviation of two processes simulations. We are not entirely sure of why it is so.

More of our findings are included in Appendix A.

Now that we managed to get the simulations to run faster, we have to validate our results. On the

advice of Liming Wang, we decided to produce maps of the population and number of jobs indicator.

Map 1: Population in 1990 for single process simulation

Map 2: Population in 1990 for two process simulation

The above maps are the population at Eugene, Oregon in 1990 based on the simulations. The top map is

from a single process simulation while the bottom one is from a two processes simulation. We can see

that the map produced by the two processes simulation is similar to the other one. The reason why these

maps cannot be exactly the same is because UrbanSim simulations are non-deterministic. Even with the

same configurations, we will not get the exact same map for each run.

Map 3: Number of jobs in 1990 for single process simulation

Map 4: Number of jobs in 1990 for two processes simulation

Similarly, the maps above indicate the number of jobs in 1990 in Eugene. The top map is produced by a

single process simulation while the bottom one is produced by a processes simulation.

Based on these maps, we believed that we have reasonable results out of the two processes simulations.

Conclusion
We feel that the results are very promising and that further effort should be made in utilizing parallel

computing in UrbanSim. The speed-up gains are very impressive even considering the inefficiencies of

memory copying and reading and writing to disk. While not all the models can be made to run in

parallel, in the case of the Eugene system, those that could were the ones that took the most time to run

and so the system overall benefited noticeably.

Caveats
There are some rather large caveats.

 We did not have the time to test PSRC or any other system. Eugene is fairly small, and it is on

large datasets that we really care about speeding the process up. It's not yet known whether

larger system would experience the same speed-up, though we are pretty confident that they

would, especially if the system was modified to not require forking the existing process and to

utilize inter-process message-passing with IPython.

 On larger systems, forking the process is not really feasible since it doubles the memory

requirements. Some of the systems already require special measures to ensure a lower memory

footprint, and this would definitely not help. One such measure we had to disable to get the

parallelism working: the parallel version no longer flushes the gridcell, job, and household

datasets to cache after each model runs, because doing so would overwrite the results of either

the child or the parent process.

 Our current code is very brittle and essentially depends on certain models being specified in the

configuration file in a certain order. It could take a lot of work to make this flexible and

configurable inside the file.

Recommendations for Future Work
1. Performing timing tests on larger datasets, like PSRC would be one of the first things to do, to

see whether or not the large gains seen in for the Eugene system scale up.

2. Modifying the UrbanSim to use inter-process message passing instead of flushing to disk and

reading from disk would theoretically be faster, changing it to be a memory copying operation.

3. Modifying UrbanSim to not depend upon a fork; instead create a new process with just the

model code in memory and use inter-process message passing to give it the datasets necessary to

run the model. This would reduce the memory consumption requirements considerably and also

allow the system to be integrated with IPython, opening up possibilities to use distributed

computing and its other supported parallel options.

Bibliography
IPython Wiki. 23 May 2007. <http://ipython.scipy.org/moin/>

POSH: Python Object Sharing. Stefen Valvag, Age Kvalnes, Kjetil Jacobsen. Mar 25 2003.

< http://poshmodule.sourceforge.net/>

PyLinda – Distributed Computing Made Easy. Andrew Wilkinson. December 7 2005

< http://www-users.cs.york.ac.uk/~aw/pylinda/>

Understanding Threading in Python. Krishna G Pai. October 2004.

< http://mirrors.techiesabode.com/linuxgazette/107/pai.html>

Thread State and the Global Interpreter Lock. September 19 2006.

<http://docs.python.org/api/threads.html>

Appendix A – Data

2 years on Dual-Core 3.40 gHz Pentium D

69.21620248

37.61902366

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0 10 20 30 40 50 60 70 80 90
time (s) per run

Appendix A.1: 2 years simulations of parallelized models

pr
ob

ab
ili

ty

1 Process
2 Processes

5 years on Dual-core 3.40 gHz Pentium D

175.9326706

90.75835636

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 50 100 150 200 250
time (s) per run

Appendix A.2: 5 years simulaion of parallelized models

pr
ob

ab
ili

ty

1 Process

2 Processes

2 years on two Intel Xeon dual-core 3.0 gHz processors

46.82022029

27.08775627

24.87657491

0

1

2

3

4

5

6

0 5 10 15 20 25 30 35 40 45 50
time (s) per run

Appendix A.3: 2 years simulations of parallelized models

pr
ob

ab
ili

ty

1 Process

2 Processes

5 Processes

5 years on two Intel Xeon dual-core 3.0 gHz processors

115.2695271

65.29626253

58.36409825

0

0.5

1

1.5

2

2.5

0 20 40 60 80 100 120 140
time (s) per run

Appendix A.4: 5 years simulations of parallelized models

pr
ob

ab
ili

ty

1 Process
2 Processes
5 Processes

Run #

Single
Process
(2 years)

Two Processes
(2 years)

Single Process (5
years)

Two Processes
(5 years)

Single Pro-
cess (10
years)

Two Processes
(10 years)

1 78.191391 37.19854808 173.633189 92.91269088 399.2960551 193.1278272
2 69.282624 39.37048197 172.8684571 92.89072204 350.008697 188.3642569
3 69.022647 37.10362697 174.812139 91.16971111 344.6624498 187.179522
4 68.578117 37.17818093 174.1421671 90.9341321 351.2968299 187.536411
5 68.874138 37.38737702 172.2034109 91.55451894 362.449862 187.10027
6 69.151218 36.65210199 175.252985 92.17336917 345.3440142 190.6882591
7 68.407275 37.37913704 174.3920729 90.99650002 343.967078 189.4561732
8 68.509737 37.10212684 174.1990929 89.9049542 351.8592939 189.3782601
9 68.858366 38.20426297 172.463114 90.21305609 351.387768 189.0103369

10 67.634602 36.88245893 172.483618 89.30836082 345.5125711 192.8922241
11 68.090453 37.52284503 173.6767149 89.6839292 345.7961762 196.4079669
12 69.301983 37.66346002 179.9754999 90.07067013 363.3915448 195.7441001
13 67.759035 37.15847492 177.401227 89.97713685 358.1170912 194.1842561
14 68.211846 37.20336413 184.4049208 89.21881485 347.9942749 197.533483
15 68.369605 40.27890801 187.0814509 90.36677909 364.4084799 197.42679

Mean 69.216202 37.61902366 175.9326706 90.75835636 355.0328124 191.7353424
Std
Dev 2.5358952 0.977380899 4.491938602 1.19434275 14.12557871 3.814411208

Appendix A.5: Timing results from simulations run on the dual-core machine

Run #

Single
Process
(2 years)

Two Pro-
cesses (2

years)

Five Pro-
cesses (2

years)

Single
Process
(5 years)

Two Pro-
cesses (5

years)

Five Pro-
cesses (5

years)

Single
Process

(10
years)

Two Pro-
cesses

(10 years)

Five Pro-
cesses

(10 years)
1 46.89812 26.9871 24.8347 119.5722 65.53707 58.09289 231.8228 132.2904 116.3684
2 46.60313 26.87442 24.93088 114.084 65.0579 58.43142 232.6805 132.5548 117.8504
3 46.88233 26.89151 25.0414 114.8915 65.116 58.13801 232.7632 132.3794 117.1929
4 46.85828 27.17055 25.00353 114.7302 65.3337 58.29467 233.3325 132.4956 117.9431
5 46.75219 26.94351 24.81877 114.5469 65.38667 58.38885 231.752 132.7306 117.4449
6 46.67308 26.9167 24.72525 114.9689 65.25727 58.28594 231.3479 132.1948 117.5858
7 46.64219 27.0038 24.88176 114.1845 65.34334 58.25691 232.4597 132.5633 116.8574
8 46.57344 26.94296 24.90317 114.8072 65.30817 58.20706 231.6505 132.136 117.589
9 46.80994 27.77664 24.9039 114.1409 64.91564 58.37537 231.4491 132.212 117.7265

10 46.71795 27.02754 24.88593 114.5079 65.40603 58.26597 232.875 132.2131 117.2505
11 46.56183 26.95399 24.91571 115.6418 65.04791 58.5843 234.0002 132.6166 116.4069
12 47.14911 27.05848 24.82827 115.5891 65.08096 58.22757 232.6007 132.0101 116.8535
13 46.82833 26.94873 24.85913 113.9994 65.15057 58.87788 232.5217 132.0682 117.2677
14 46.95473 26.9583 24.78672 114.0197 65.53649 58.4519 231.7553 132.2383 116.8407
15 46.7994 27.04214 24.82951 114.1432 65.9662 58.58272 231.4622 132.1332 117.2402

Mean 46.78027 27.03309 24.87657 114.9218 65.29626 58.3641 232.2982 132.3224 117.2279
Std Dev 0.159804 0.218661 0.080292 1.390802 0.260968 0.202354 0.77418 0.220326 0.48528

Appendix A.6: Timing results from simulations run on the quad-core machine

Run #
Single

Process
Two Pro-

cess
1 67.84297 51.34334
2 67.51328 50.63018
3 66.46696 50.33828
4 66.73616 50.36653
5 68.13353 50.68755
6 67.5955 50.03528
7 66.34144 50.26436
8 67.65055 50.84474
9 66.36268 50.32332

10 66.3708 49.95345
11 65.78634 50.68612
12 66.09404 50.22257
13 66.50952 50.03401
14 65.6282 50.93756
15 66.48801 49.71223

Mean 66.768 50.4253
Std Dev 0.779064 0.429674

Appendix A.7: Timing results from the full simulations run on the dual-core machine

Appendix B – Code
Timing Script
avg = 0
runs = 0
aFile = File.new("output_file.csv", "w")
aFile.write "Run # , Ave time\n"
15.times do

runs = runs + 1
before = Time.now.to_f
system("python start_run.py -c eugene.configs.baseline > trash")
after = Time.now.to_f
aFile.write runs.to_s + " , " + (after - before).to_s + " \n"
avg = avg + after - before
puts "run # : " + runs.to_s

end
aFile.close

