Courtesy reminder: Make use of office hours — we’re here to help! ©
Remember: 50% is meeting expectations. >50% is exceeding expectations.

Data Science at Scale:
MapReduce & Spark

CSE481DS Data Science Capstone

Tim Althoff
PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Thank you for sharing
your feedback with us!

https://bit.ly/cse481ds-feedb

ack

Tim Althoff, UW CSE481DS: Data Science Capstone, http://www.cs.washington.edu/cse481ds

https://bit.ly/cse481ds-feedback
https://bit.ly/cse481ds-feedback

Lecture:

Distributed Computing
for Data Science

Tim Althoff, UW CSE481DS: Data Science Capstone, http://www.cs.washington.edu/cse481ds

Agenda

Commodity Computing

Computing with thousands of failures a day

Map Reduce

Plumbing for billions of data points

Spark

A great tool for a nasty problem

Data Engineering in Practice
What to look forward to

Lab!

Tim Althoff, UW CSE481DS: Data Science Capstone, http://www.cs.washington.edu/cse481ds

Ity Computin

Commod

Large-scale Computing

Large-scale computing for data mining
problems on commodity hardware
Challenges:

How do you distribute computation?

How can we make it easy to write distributed
programs?

Machines fail:

= One server may stay up 3 years (1,000 days)

= If you have 1,000 servers, expect to lose 1/day
= With 1M machines 1,000 machines fail every day!

Tim Althoff, UW CSE481DS: Data Science Capstone, http://www.cs.washington.edu/cse481ds

Storage Infrastructure

Problem:

If nodes fail, how to store data persistently?
Answer:

Distributed File System
= Provides global file namespace

Typical usage pattern:
Huge files (100s of GB to TB)
Data is rarely updated in place
Reads and appends are common

Tim Althoff, UW CSE481DS: Data Science Capstone, http://www.cs.washington.edu/cse481ds

Distributed File System

Chunk servers
File is split into contiguous chunks
Typically each chunk is 16-64MB
Each chunk replicated (usually 2x or 3x)

Try to keep replicas in different racks
Master node

a.k.a. Name Node in Hadoop’s HDFS
Stores metadata about where files are stored

Might be replicated
Client library for file access

Talks to master to find chunk servers
Connects directly to chunk servers to access data

Tim Althoff, UW CSE481DS: Data Science Capstone, http://www.cs.washington.edu/cse481ds

Distributed File System

Reliable distributed file system
Data kept in “chunks” spread across machines
Each chunk replicated on different machines

Seamless recovery from disk or machine failure

[| [| I I I I

I Co C1 I | Do C1 I I Gz C5 I I Co Cs I

I I I I I - | I - :
| | | EEE

:_ (_;5_ | EZ_ I :_ (_:5_ | E3_ l :_ |10_ - _1 ~ _| :_ _0_ | E2_ [

Chunk server 1 Chunk server 2 Chunk server 3 Chunk server N

Bring computation directly to the data!
Chunk servers also serve as compute servers

Tim Althoff, UW CSE481DS: Data Science Capstone, http://www.cs.washington.edu/cse481ds

An Issue and a Solution

Issue:
Copying data over a network takes time
Idea:

Bring computation to data

Store files multiple times for reliability
Map Reduce address these problems

Storage Infrastructure — File system
= Google: GFS. Hadoop: HDFS

Programming model
= MapReduce
= Spark

Tim Althoff, UW CSE481DS: Data Science Capstone, http://www.cs.washington.edu/cse481ds

Programming Model

MapReduce is a style of programming
designed for:
Easy parallel programming

Invisible management of hardware and software
failures

Easy management of very-large-scale data

It has several implementations, including
Hadoop, Spark (used in this class), Flink, and

the original Google implementation just called
“MapReduce”

Tim Althoff, UW CSE481DS: Data Science Capstone, http://www.cs.washington.edu/cse481ds

MapReduce: Overview

3 steps of MapReduce
Map:
Apply a user-written Map function to each input element
= Mapper applies the Map function to a single element
= Many mappers grouped in a Map task (the unit of parallelism)
The output of the Map function is a set of 0, 1, or more
key-value pairs.

Group by key: Sort and shuffle
System sorts all the key-value pairs by key, and
outputs key-(list of values) pairs

Reduce:

User-written Reduce function is applied to each
key-(list of values)

Outline stays the same, Map and Reduce change to fit the problem

Tim Althoff, UW CSE481DS: Data Science Capstone, http://www.cs.washington.edu/cse481ds

Map-Reduce: A diagram

Input
MAP: ¢ L ¢ i ¢ L
Read input and
produces a set of
key-value pairs
Intermediate | kl:v kl:v k2:v k3:vk4:v | kd:vkSv | kdv | kl:vk3:v
Group by key:
Collect all pairs with [[GYOUP by Keyjj
same key

(Hash merge, Shuffle,

Sort, Partition)

Grouped (kl:v,v,v,v |k2:v |k3:v,v [k4:v,v,v |k5:v

Reduce:
Collect all values
belonging to the

key and output

Output

Tim Althoff, UW CSE481DS: Data Science Capstone, http://www.cs.washington.edu/cse481ds

Example: Word Counting

Example MapReduce task:
We have a huge text document
Count the number of times each
distinct word appears in the file

Many applications of this:

Analyze web server logs to find popular URLs
Statistical machine translation:

Need to count number of times every 5-word sequence
occurs in a large corpus of documents

Tim Althoff, UW CSE481DS: Data Science Capstone, http://www.cs.washington.edu/cse481ds

MapReduce: Word Counting

Provided by the Provided by the
programmer programmer

MAP:

Read input and
produces a set of
key-value pairs

Reduce:
Collect all values
belonging to the

key and output

Group by key:
Collect all pairs
with same key

%)
The crew of the space o
shuttle Endeavor recently (The’ 1) (CI’EW, 1) 8
retuned to FEarth as (crew, 1) (CI’EW, 1) =
ambassadors, harbingers of : (CI’EW, 2)
a new era of space (of, 1) (space, 1)
exploration. Scientists at (Spacel 1)

- (the, 1) (the, 1)
NASA are saying that the - . (the 3)
recent assembly of the (Space, 1) (the, 1) .

(shuttle, 1)

Dextre bot is the first step in

(shuttle, 1) (the, 1)
(Endeavor, 1) (shuttle, 1)

- the robotics we're doing -- (recently, 1) (recently, 1)
is what we're going to need

a—long-term—space-based
man/mache partnership.
"The work we're doing now

(recently, 1)

©
i)
c
]
>
o
Q
(Vp]
>
c
@

Big document (key, value) (key, value) (key, value)

Tim Althoff, UW CSE481DS: Data Science Capstone, http://www.cs.washington.edu/cse481ds

Word Count Using MapReduce

map (key, wvalue):

key: document name; value: text of the document
for each word w 1n value:
emit (w, 1)

reduce (key, values):
key: a word; value: an iterator over counts
result = 0
for each count v in values:
result += v
emit (key, result)

Tim Althoff, UW CSE481DS: Data Science Capstone, http://www.cs.washington.edu/cse481ds

Map-Reduce: In Parallel

Map Task |1

Map Task 2

klw klwv k2

¢

KNI

Partitioning Function

k3:v kd:v

kd:v k5:v

5

Partitioning Function

Sort and Group

kd:vvv

$66

Reduce Task 1

S

———————— -
Map Task 3 [

|

|

|

|

|

|

kd v kl:v k3:v |
Partitioning Function I
________ -

Sort and Group
klvwvvy | k3vy

50

Reduce Task 2

All phases are distributed with many tasks doing the work

Tim Althoff, UW CSE481DS: Data Science Capstone, http://www.cs.washington.edu/cse481ds

MapReduce Pattern

key-value
pairs

Input . Output

Mappers Reducers

Tim Althoff, UW CSE481DS: Data Science Capstone, http://www.cs.washington.edu/cse481ds

MapReduce: Environment

MapReduce environment takes care of:
Partitioning the input data
Scheduling the program’s execution across a
set of machines
Performing the group by key step
In practice this is is the bottleneck
Handling machine failures
Managing required inter-machine
communication

Tim Althoff, UW CSE481DS: Data Science Capstone, http://www.cs.washington.edu/cse481ds

Dealing with Failures

Map worker failure

Map tasks completed or in-progress at
worker are reset to idle and rescheduled

Reduce workers are notified when map task is
rescheduled on another worker

Reduce worker failure

Only in-progress tasks are reset to idle and the
reduce task is restarted

Tim Althoff, UW CSE481DS: Data Science Capstone, http://www.cs.washington.edu/cse481ds

Spark

Problems with MapReduce

Two major limitations of MapReduce:
Difficulty of programming directly in MR
Many problems aren’t easily described as map-reduce

Performance bottlenecks, or batch not fitting the
use cases

Persistence to disk typically slower than in-memory work

In short, MR doesn’t compose well for large
applications

Many times one needs to chain multiple
map-reduce steps

Tim Althoff, UW CSE481DS: Data Science Capstone, http://www.cs.washington.edu/cse481ds

Data-Flow Systems

MapReduce uses two “ranks” of tasks:
One for Map the second for Reduce

Data flows from the first rank to the second

Data-Flow Systems generalize this in two ways:
Allow any number of tasks/ranks
Allow functions other than Map and Reduce

As long as data flow is in one direction only, we can
have the blocking property and allow recovery of
tasks rather than whole jobs

Tim Althoff, UW CSE481DS: Data Science Capstone, http://www.cs.washington.edu/cse481ds

Spark: Most Popular Data-Flow System

Expressive computing system, not limited to
the map-reduce model

Additions to MapReduce model:

Fast data sharing
= Avoids saving intermediate results to disk
= Caches data for repetitive queries (e.g. for machine learning)

General execution graphs (DAGs)
Richer functions than just map and reduce

Compatible with Hadoop

Tim Althoff, UW CSE481DS: Data Science Capstone, http://www.cs.washington.edu/cse481ds

Spark: Overview

Open source software (Apache Foundation)
Supports Java, Scala and Python

Key construct/idea: Resilient Distributed Dataset
(RDD)

Higher-level APIs: DataFrames & DataSets
Introduced in more recent versions of Spark

Different APIs for aggregate data, which allowed to
introduce SQL support

Tim Althoff, UW CSE481DS: Data Science Capstone, http://www.cs.washington.edu/cse481ds

Spark: RDD

Key concept Resilient Distributed Dataset (RDD)

Partitioned collection of records

Generalizes (key-value) pairs
Spread across the cluster, Read-only

Caching dataset in memory
Different storage levels available
Fallback to disk possible

RDDs can be created from Hadoop, or by
transforming other RDDs (you can stack RDDs)

RDDs are best suited for applications that apply the
same operation to all elements of a dataset

Tim Althoff, UW CSE481DS: Data Science Capstone, http://www.cs.washington.edu/cse481ds

Spark RDD Operations

Transformations build RDDs through
deterministic operations on other RDDs:

Transformations include map, filter, join, union,
intersection, distinct

Lazy evaluation: Nothing computed until an action
requires it

Actions to return value or export data
Actions include count, collect, reduce, save

Actions can be applied to RDDs; actions force
calculations and return values

Tim Althoff, UW CSE481DS: Data Science Capstone, http://www.cs.washington.edu/cse481ds

Task Scheduler: General DAGs

| =RDD

- = cached partition

Supports general task graphs
Pipelines functions where possible
Cache-aware data reuse & locality
Partitioning-aware to avoid shuffles

Tim Althoff, UW CSE481DS: Data Science Capstone, http://www.cs.washington.edu/cse481ds

DataFrame & Dataset

DataFrame:

Unlike an RDD, data organized into named columns,
e.g. a table in a relational database.

Imposes a structure onto a distributed collection of
data, allowing higher-level abstraction

Dataset:

Extension of DataFrame APl which provides type-safe,
object-oriented programming interface (compile-time
error detection)

Both built on Spark SQL engine. Both can be
converted back to an RDD

Tim Althoff, UW CSE481DS: Data Science Capstone, http://www.cs.washington.edu/cse481ds

Useful Libraries for Spark
Spark SQL

Spark Streaming — stream processing of live
datastreams
MLlib — scalable machine learning
GraphX — graph manipulation
extends Spark RDD with Graph abstraction: a

directed multigraph with properties attached to
each vertex and edge

Tim Althoff, UW CSE481DS: Data Science Capstone, http://www.cs.washington.edu/cse481ds

Spark vs. Hadoop MapReduce

Performance: Spark normally faster but with caveats

Spark can process data in-memory; Hadoop
MapReduce persists back to the disk after a map or
reduce action

Spark generally outperforms MapReduce, but it often
needs lots of memory to perform well; if there are
other resource-demanding services or can’t fit in
memory, Spark degrades

MapReduce easily runs alongside other services with
minor performance differences, & works well with the
1-pass jobs it was designed for

Ease of use: Spark is easier to program (higher-level

APIs)

Data processing: Spark is more general

Tim Althoff, UW CSE481DS: Data Science Capstone, http://www.cs.washington.edu/cse481ds

Data Engineering in Practice

Data Analytics Software Stack

Streaming
Stream processing

Fast me

MLlio SparkSQL

User-friendly machine SOLAPI Hive
learning

Storm

MPI

Hadoop MR

-oplimized execution engine (. Java/Scala APIs)

Tachyon pistributed Memory-Centric Storage System

Hadoop Distributed File System (HDFS)

Mesos Cluster resource manager, multi-tenancy

Tim Althoff, UW CSE481DS: Data Science Capstone, http://www.cs.washington.edu/cse481ds

Some other technologies to keep an

eye on...

amazon
REDSHIFT

i
[/f DAGK alill Sz snowflake

Amazon Athena

Pros: Map Reduce with Pandas AP Pros: Map Reduce via SQL, integrations
Cons: Unstable, Not much support Cons: Not as flexible

@Vaex oo» RAY

Pros: Loads of integrations, promises a lot
Cons: New-ish player, lots of development ahead

Tim Althoff, UW CSE481DS: Data Science Capstone, http://www.cs.washington.edu/cse481ds

Thank you for sharing
your feedback with us!

https://bit.ly/cse481ds-feedb

ack

Tim Althoff, UW CSE481DS: Data Science Capstone, http://www.cs.washington.edu/cse481ds

40

https://bit.ly/cse481ds-feedback
https://bit.ly/cse481ds-feedback

