Courtesy reminder: Make use of office hours – we're here to help! © Remember: 50% is meeting expectations. >50% is exceeding expectations.

Data Science at Scale: MapReduce & Spark

CSE481DS Data Science Capstone
Tim Althoff
PAUL G. ALLEN SCHOOL
OF COMPUTER SCIENCE & ENGINEERING

Thank you for sharing your feedback with us!

https://bit.ly/cse481ds-feedb ack

Lecture: Distributed Computing for Data Science

Agenda

Commodity Computing

Computing with thousands of failures a day

Map Reduce

Plumbing for billions of data points

Spark

A great tool for a nasty problem

Data Engineering in Practice

What to look forward to

Lab!

Commodity Computing

Large-scale Computing

- Large-scale computing for data mining problems on commodity hardware
- Challenges:
 - How do you distribute computation?
 - How can we make it easy to write distributed programs?
 - Machines fail:
 - One server may stay up 3 years (1,000 days)
 - If you have 1,000 servers, expect to lose 1/day
 - With 1M machines 1,000 machines fail every day!

Storage Infrastructure

Problem:

• If nodes fail, how to store data persistently?

Answer:

- Distributed File System
 - Provides global file namespace

Typical usage pattern:

- Huge files (100s of GB to TB)
- Data is rarely updated in place
- Reads and appends are common

Distributed File System

Chunk servers

- File is split into contiguous chunks
- Typically each chunk is 16-64MB
- Each chunk replicated (usually 2x or 3x)
- Try to keep replicas in different racks

Master node

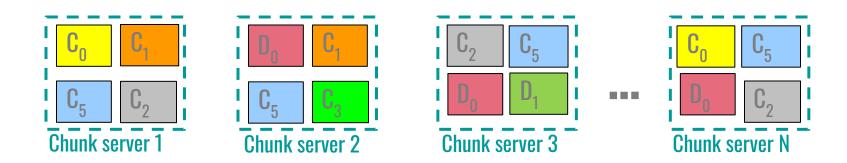
- a.k.a. Name Node in Hadoop's HDFS
- Stores metadata about where files are stored
- Might be replicated

Client library for file access

- Talks to master to find chunk servers
- Connects directly to chunk servers to access data

Distributed File System

- Reliable distributed file system
- Data kept in "chunks" spread across machines
- Each chunk replicated on different machines
 - Seamless recovery from disk or machine failure



Bring computation directly to the data!

Chunk servers also serve as compute servers

An Issue and a Solution

- Issue:
 - Copying data over a network takes time
- Idea:
 - Bring computation to data
 - Store files multiple times for reliability
- Map Reduce address these problems
 - Storage Infrastructure File system
 - Google: GFS. Hadoop: HDFS
 - Programming model
 - MapReduce
 - Spark

Programming Model

- MapReduce is a style of programming designed for:
 - Easy parallel programming
 - Invisible management of hardware and software failures
 - Easy management of very-large-scale data
- It has several implementations, including Hadoop, Spark (used in this class), Flink, and the original Google implementation just called "MapReduce"

MapReduce: Overview

3 steps of MapReduce

- Map:
 - Apply a user-written Map function to each input element
 - Mapper applies the Map function to a single element
 - Many mappers grouped in a Map task (the unit of parallelism)
 - The output of the Map function is a set of 0, 1, or more key-value pairs.
- Group by key: Sort and shuffle
 - System sorts all the key-value pairs by key, and outputs key-(list of values) pairs
- Reduce:
 - User-written Reduce function is applied to each key-(list of values)

Outline stays the same, Map and Reduce change to fit the problem

Map-Reduce: A diagram

Input

MAP:

Read input and produces a set of key-value pairs

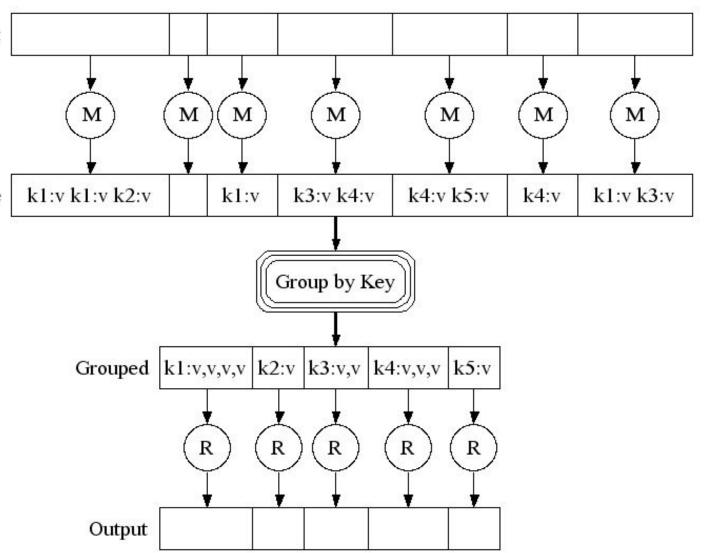
Intermediate

Group by key:

Collect all pairs with same key (Hash merge, Shuffle, Sort, Partition)

Reduce:

Collect all values belonging to the key and output



Example: Word Counting

Example MapReduce task:

- We have a huge text document
- Count the number of times each distinct word appears in the file

Many applications of this:

- Analyze web server logs to find popular URLs
- Statistical machine translation:
 - Need to count number of times every 5-word sequence occurs in a large corpus of documents

ds rea sequentia

MapReduce: Word Counting

Provided by the programmer

MAP:

Read input and produces a set of key-value pairs

Group by key: Collect all pairs

(crew, 1)

(key, value)

Provided by the programmer

Reduce:

Collect all values belonging to the key and output

The crew of the space shuttle Endeavor recently returned to Earth as ambassadors, harbingers of a new era of space exploration. Scientists at NASA are saying that the recent assembly of the Dextre bot is the first step in a long-term space-based man/mache partnership. "The work we're doing now -- the robotics we're doing -is what we're going to need

Big document

(The, 1) (crew, 1) (of, 1)(the, 1) (space, 1) (shuttle, 1) (Endeavor, 1) (recently, 1)

(key, value)

(crew, 1) (space, 1) (the, 1) (the, 1) (the, 1) (shuttle, 1) (recently, 1)

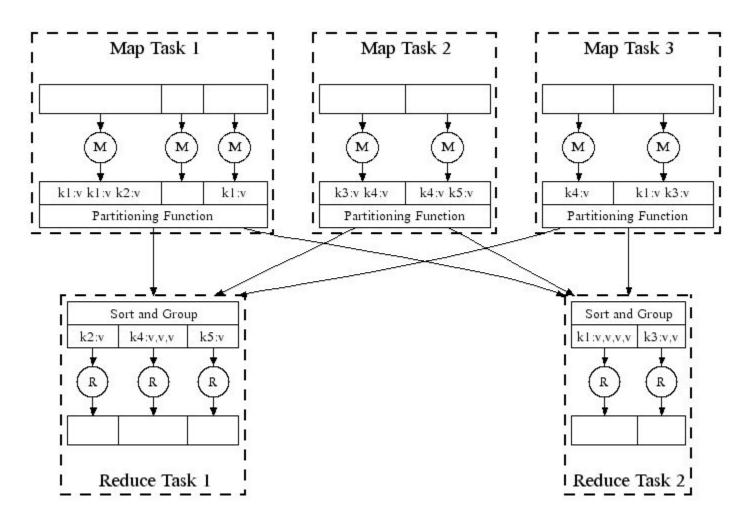
(key, value)

(crew, 2) (space, 1) (the, 3) (shuttle, 1) (recently, 1)

Word Count Using MapReduce

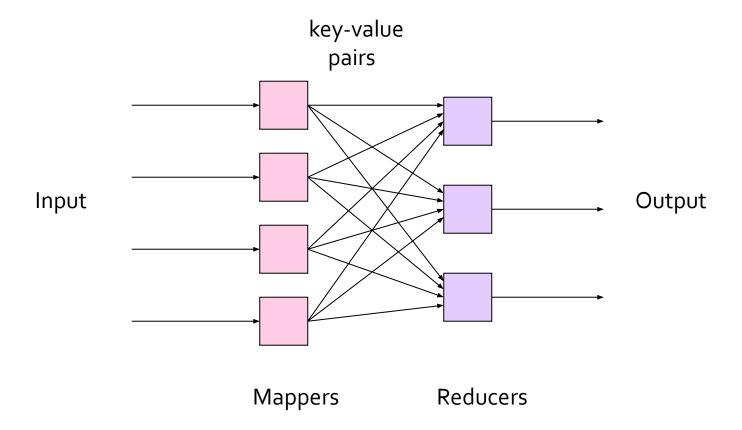
```
map(key, value):
# key: document name; value: text of the document
  for each word w in value:
  emit(w, 1)
reduce(key, values):
# key: a word; value: an iterator over counts
   result = 0
   for each count v in values:
      result += v
   emit(key, result)
```

Map-Reduce: In Parallel



All phases are distributed with many tasks doing the work

MapReduce Pattern



MapReduce: Environment

MapReduce environment takes care of:

- Partitioning the input data
- Scheduling the program's execution across a set of machines
- Performing the group by key step
 - In practice this is is the bottleneck
- Handling machine failures
- Managing required inter-machine communication

Dealing with Failures

Map worker failure

- Map tasks completed or in-progress at worker are reset to idle and rescheduled
- Reduce workers are notified when map task is rescheduled on another worker

Reduce worker failure

 Only in-progress tasks are reset to idle and the reduce task is restarted

Spark

Problems with MapReduce

- Two major limitations of MapReduce:
 - Difficulty of programming directly in MR
 - Many problems aren't easily described as map-reduce
 - Performance bottlenecks, or batch not fitting the use cases
 - Persistence to disk typically slower than in-memory work
- In short, MR doesn't compose well for large applications
 - Many times one needs to chain multiple map-reduce steps

Data-Flow Systems

- MapReduce uses two "ranks" of tasks:
 One for Map the second for Reduce
 - Data flows from the first rank to the second

- Data-Flow Systems generalize this in two ways:
 - Allow any number of tasks/ranks
 - 2. Allow functions other than Map and Reduce
 - As long as data flow is in one direction only, we can have the blocking property and allow recovery of tasks rather than whole jobs

Spark: Most Popular Data-Flow System

Expressive computing system, not limited to the map-reduce model

Additions to MapReduce model:

- Fast data sharing
 - Avoids saving intermediate results to disk
 - Caches data for repetitive queries (e.g. for machine learning)
- General execution graphs (DAGs)
- Richer functions than just map and reduce
- Compatible with Hadoop

Spark: Overview

- Open source software (Apache Foundation)
- Supports Java, Scala and Python
- Key construct/idea: Resilient Distributed Dataset (RDD)
- Higher-level APIs: DataFrames & DataSets
 - Introduced in more recent versions of Spark
 - Different APIs for aggregate data, which allowed to introduce SQL support

Spark: RDD

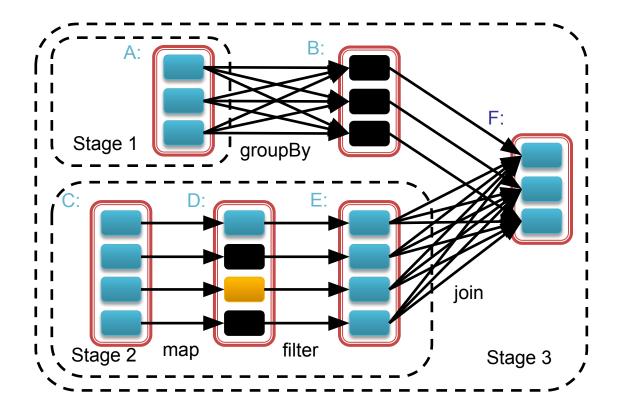
Key concept Resilient Distributed Dataset (RDD)

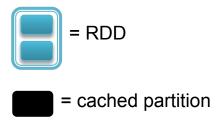
- Partitioned collection of records
 - Generalizes (key-value) pairs
- Spread across the cluster, Read-only
- Caching dataset in memory
 - Different storage levels available
 - Fallback to disk possible
- RDDs can be created from Hadoop, or by transforming other RDDs (you can stack RDDs)
- RDDs are best suited for applications that apply the same operation to all elements of a dataset

Spark RDD Operations

- Transformations build RDDs through deterministic operations on other RDDs:
 - Transformations include map, filter, join, union, intersection, distinct
 - Lazy evaluation: Nothing computed until an action requires it
- Actions to return value or export data
 - Actions include count, collect, reduce, save
 - Actions can be applied to RDDs; actions force calculations and return values

Task Scheduler: General DAGs





- Supports general task graphs
- Pipelines functions where possible
- Cache-aware data reuse & locality
- Partitioning-aware to avoid shuffles

DataFrame & Dataset

DataFrame:

- Unlike an RDD, data organized into named columns,
 e.g. a table in a relational database.
- Imposes a structure onto a distributed collection of data, allowing higher-level abstraction

Dataset:

 Extension of DataFrame API which provides type-safe, object-oriented programming interface (compile-time error detection)

Both built on Spark SQL engine. Both can be converted back to an RDD

Useful Libraries for Spark

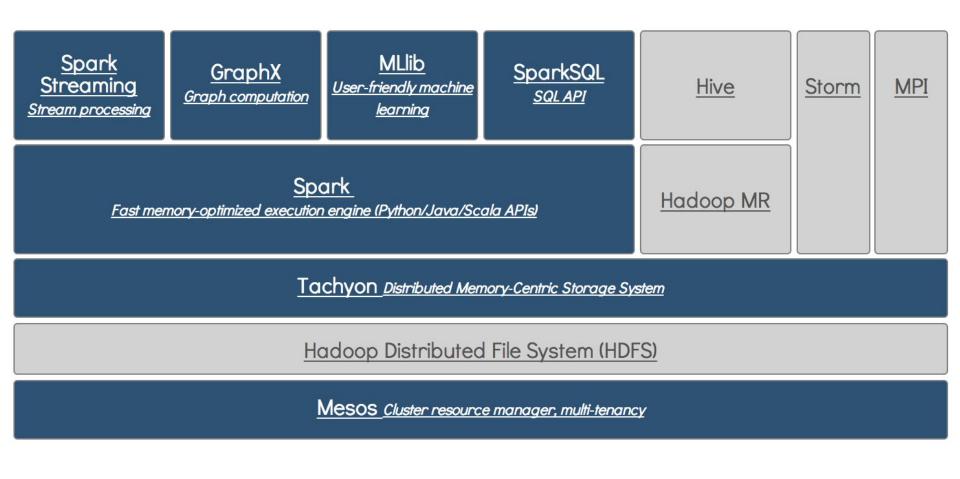
- Spark SQL
- Spark Streaming stream processing of live datastreams
- MLlib scalable machine learning
- GraphX graph manipulation
 - extends Spark RDD with Graph abstraction: a directed multigraph with properties attached to each vertex and edge

Spark vs. Hadoop MapReduce

- Performance: Spark normally faster but with caveats
 - Spark can process data in-memory; Hadoop MapReduce persists back to the disk after a map or reduce action
 - Spark generally outperforms MapReduce, but it often needs lots of memory to perform well; if there are other resource-demanding services or can't fit in memory, Spark degrades
 - MapReduce easily runs alongside other services with minor performance differences, & works well with the 1-pass jobs it was designed for
- Ease of use: Spark is easier to program (higher-level APIs)
- Data processing: Spark is more general

Data Engineering in Practice

Data Analytics Software Stack



Some other technologies to keep an eye on...

Pros: Map Reduce with Pandas API Cons: Unstable, Not much support

Pros: Map Reduce via SQL, integrations

Cons: Not as flexible

Pros: Loads of integrations, promises a lot

Cons: New-ish player, lots of development ahead

Thank you for sharing your feedback with us!

https://bit.ly/cse481ds-feedb ack