Data Science Process and Objectives

CSE481DS Data Science Capstone
Tim Althoff
PAUL G. ALLEN SCHOOL
OF COMPUTER SCIENCE & ENGINEERING

Presentation of Project Plans

Groups	Project Topic
Group 1	Evaluating how addition of green spaces/ third spaces to a neighborhood affect the socio-economic status of residents
Group 2	Discovering indicators of business with seasonal traffic (foot traffic, yelp data, google reviews, advertising data)
Group 3	Track heallth expectations using dataset
Group 4	Understanding visual perceptions using brain EEG
Group 5	Magic the gathering
Group 6	

Today's order: {1, 2, 3, 5, 4}

Please make this interactive and share your feedback.

5 Minute Break

What is Data Science?

What is science?

- From the Latin word scientia, meaning knowledge
- A systematic enterprise that builds and organizes knowledge in the form of testable explanations and predictions about the universe

So what is data science?

 Data Science seeks to discover new knowledge by answering questions through data

What data science is **not**

https://xkcd.com/1838/

How to turn observational, biased, **scientifically** "weak" data into strong scientific results?

Fundamental Data Science Challenges

Scientific method in data science

- Ask a **question**.
- State a **hypothesis** about the answer to the question.
- 3. provide evidence in favor of the hypothesis if correct.
- Test the prediction via an **experiment** 4. involving data.
- Draw the appropriate conclusions 5. through analyses of experimental results.

Associated Challenges

Domain Knowledge & Theory

Construct Validity Make a **testable prediction** that would Are you measuring what you think you are measuring?

> **Internal Validity** Confounding & Causal Inference Robustness of findings

> > Model Intelligibility

External Validity Incomplete picture of external world

Goal: Valid inferences from data

Worldwide non-commercial space launches

correlates with

Sociology doctorates awarded (US)

http://www.tylervigen.com/spurious-correlations

Prediction is not enough!

Causality

- We are typically interested in cause and effect
 - T causes Y if changing T leads to a change in Y keeping everything else constant
- Intervention: What if we do X?
- Counterfactual: Was it X that caused Y? What if I had acted differently?

We will learn about causality later in the course!

Importance for Decision Making

- Which treatment should doctor recommend for kidney stones?
- Simpson's paradox: After accounting for the confounder (stone size) the best choice reverses.

Treatment A Treatment B

78% (273/350) **83%** (289/350)

Why Observational (Data) Science is still critical

In many cases, we cannot randomize / intervene / A-B test (cf. offline evaluation).

- Practicality: Exposure to treatment may be hard to manipulate
 - Ex: Environmental effects (air pollution)
- Ethical concerns: Known negative effects
 - Ex: Is suicide contagious?
- Efficiency: Experimental science is expensive and takes time
 - Ex: Studying impact on mortality 10 years later
- •••

Big data to the rescue?

- "Look at how much data I had..."
- "How could I be wrong? I used 3 billion data points!"
- "This is just noise. All the problems will cancel out..."

- Beware! You need to worry about bias and variance!
- More data does not help you reduce bias!
- This course: Sources of bias, how to model it, & what to do about it

The Reasonable Uneffectiveness of Big Data

- "The Unreasonable Effectiveness of Data"
 - By Alon Halevy, Peter Norvig, and Fernando Pereira at Google
 - Simple models + Lots of data work very well
- Now consider context of causal inference
 - Measurement error, confounding, and selection bias common threats to causal inference, are independent of sample size
 - When we can't observe counterfactuals, observing more data will not help us!

We will learn about causality later in the course!

Challenge 1: Construct Validity

- Def: Are you measuring what you think you are measuring?
 - Especially important operationalization of theoretical construct / new "sensor" (e.g. social media, linguistic proxy)
- How to demonstrate?
 - Convergent validity: Simultaneous measures of same construct correlate
 - Discriminant validity: Doesn't measure what it shouldn't

Big Data typically means little control over how anything was measured

Challenge 2: Internal Validity

- Def: Soundness of research design
- What potential selection effects / confounding are there?
 - Is data missing non-randomly?
 - Could measurement be biased across key groups?
 - Does population change across multiple analyses (complicating comparisons)?

Internal Validity (cont.)

- How robust are findings across different choices along the way?
 - How robust are results with respect to inclusion/exclusion of outliers?
- How many hypotheses are being tested?
 - May need to control false discovery rate
- Are distributional / parametric assumptions valid?
 - Consider non-parametric models and bootstrapping

Big Data typically means observational data, convenience samples, and no pre-registration

Challenge 3: External Validity

- Def: Can findings be generalized to other situations and to other people?
- How biased is the study population?
 - Ex: "Internet Explorer users"
 - Ex: "Chrome latest beta users"
 - Ex: "Smartphone owner + health app installed"
 - Convenience samples can be WEIRD, especially motivated, lack key groups of interest, ...

Big Data typically means more data, but more of the same!

Big Data does not address...

...common threats to causal inference, including:

- 1. Construct validity
 - E.g. measurement error
- 2. Internal Validity
 - E.g. confounding
- 3. External Validity
 - E.g. selection effects

Summary: Data Science Objectives

- 1. Formulate a research question
- 2. Identify a dataset with which to answer the question
- Design an analysis process (next)
- 4. Consider construct, internal and external validity
 - Remember that more data doesn't necessarily help

What is the Data Science Process?

Data Science as a Process

- Separate iterative process into a sequence of activities with different points of failure
- What does it take to get data science right?

Data Analysis Process Decision

 Framework for your group projects and evaluating data science projects

Define

Define the goal and type of the analysis. Failure modes: Goal of analysis does not match scientific or business need.

Collect

Measure / collect data to analyze. Failure modes: Selection bias (e.g., population mismatch, selective labeling...).

Annotate

Augment data with labels or other metadata. Failure modes: Annotator disagreement; erroneous codes or labels.

Wrangle

Clean, filter, summarize, and/or integrate data. Failure modes: Incorrect filtering, e.g., high-leverage outliers. Incorrect joins with other datasets.

Process Steps Explained (3)

Profile

Inspect shape and structure of data. Failure modes: Overlook data quality issues or violations of distributional assumptions.

Operationalize

 Define and validate central measures, which may be proxies. Failure modes: Lack of construct validity (i.e., not measuring what you think you are measuring).

Explore

Interactively explore data and variable relationships. Failure mode: Confirmation bias; unclean split between train/test data.

Model

Define and fit models of relationships in data. Failure modes: Lack of internal validity. Failure to identify effect, e.g., due to confounding or violated assumptions.

Decision

Evaluate

 Measure explanatory power or predictive accuracy of model using appropriate statistical techniques. Failure modes: phacking, overuse of test set data.

Report

Report results and potential generalizations. Failure modes: Misinterpretation (e.g., generalization, uncertainty), miscommunication via errors or omissions. Lack of focus on most important findings.

Deploy

Deploy model or enact decision. Failure modes: Distribution drift, e.g., changes in data pipeline upstream, changing assumptions, adversarial input.

What does this mean for you?

- Plan your own project along these stages
- When learning about other projects pay attention to potential pitfalls across all phases
- When working on your own project, explicitly address each step and failure modes

Please record class attendance/participation!

