
Courtesy reminder: Make use of office hours – we’re here to help! J
Remember: 50% is meeting expectations. >50% is exceeding expectations.

Thank you for sharing
your feedback with us!

https://bit.ly/cse481ds-
feedback

Tim Althoff, UW CSE481DS: Data Science Capstone, http://www.cs.washington.edu/cse481ds 3

https://bit.ly/cse481ds-feedback
https://bit.ly/cse481ds-feedback

Group Reflection on
Process & Validity

Tim Althoff, UW CSE481DS: Data Science Capstone, http://www.cs.washington.edu/cse481ds

Lecture:
Distributed Computing

for Data Science

Tim Althoff, UW CSE481DS: Data Science Capstone, http://www.cs.washington.edu/cse481ds

¡ Commodity Computing
Computing with thousands of failures a day

¡ Map Reduce
Plumbing for billions of data points

¡ Spark
A great tool for a nasty problem

¡ Data Engineering in Practice
What to look forward to

¡ Lab!

Tim Althoff, UW CSE481DS: Data Science Capstone, http://www.cs.washington.edu/cse481ds

¡ Large-scale computing for data mining
problems on commodity hardware

¡ Challenges:
§ How do you distribute computation?
§ How can we make it easy to write distributed

programs?
§ Machines fail:

§ One server may stay up 3 years (1,000 days)
§ If you have 1,000 servers, expect to lose 1/day
§ With 1M machines 1,000 machines fail every day!

Tim Althoff, UW CSE481DS: Data Science Capstone, http://www.cs.washington.edu/cse481ds

¡ Problem:
§ If nodes fail, how to store data persistently?

¡ Answer:
§ Distributed File System

§ Provides global file namespace
¡ Typical usage pattern:
§ Huge files (100s of GB to TB)
§ Data is rarely updated in place
§ Reads and appends are common

Tim Althoff, UW CSE481DS: Data Science Capstone, http://www.cs.washington.edu/cse481ds

¡ Reliable distributed file system
¡ Data kept in “chunks” spread across machines
¡ Each chunk replicated on different machines
§ Seamless recovery from disk or machine failure

Tim Althoff, UW CSE481DS: Data Science Capstone, hDp://www.cs.washington.edu/cse481ds

C0 C1

C2C5

Chunk server 1

D1

C5

Chunk server 3

C1

C3C5

Chunk server 2

…
C2D0

D0

Bring computation directly to the data!

C0 C5

Chunk server N

C2D0

Chunk servers also serve as compute servers

¡ Issue:
Copying data over a network takes time

¡ Idea:
§ Bring computation to data
§ Store files multiple times for reliability

¡ Map Reduce address these problems
§ Storage Infrastructure – File system

§ Google: GFS. Hadoop: HDFS

§ Programming model
§ MapReduce
§ Spark

Tim Althoff, UW CSE481DS: Data Science Capstone, http://www.cs.washington.edu/cse481ds

¡ MapReduce is a style of programming
designed for:
1. Easy parallel programming
2. Invisible management of hardware and software

failures
3. Easy management of very-large-scale data

¡ It has several implementations, including
Hadoop, Spark (used in this class), Flink, and
the original Google implementation just called
“MapReduce”

Tim Althoff, UW CSE481DS: Data Science Capstone, http://www.cs.washington.edu/cse481ds

3 steps of MapReduce
¡ Map:

§ Apply a user-written Map function to each input element
§ Mapper applies the Map function to a single element

§ Many mappers grouped in a Map task (the unit of parallelism)
§ The output of the Map function is a set of 0, 1, or more

key-value pairs.
¡ Group by key: Sort and shuffle

§ System sorts all the key-value pairs by key, and
outputs key-(list of values) pairs

¡ Reduce:
§ User-written Reduce function is applied to each

key-(list of values)

Tim Althoff, UW CSE481DS: Data Science Capstone, hDp://www.cs.washington.edu/cse481ds

Outline stays the same, Map and Reduce change to fit the problem

Tim Althoff, UW CSE481DS: Data Science Capstone, http://www.cs.washington.edu/cse481ds

MAP:
Read input and

produces a set of
key-value pairs

Group by key:
Collect all pairs with

same key
(Hash merge, Shuffle,

Sort, Partition)

Reduce:
Collect all values
belonging to the
key and output

Example MapReduce task:
¡ We have a huge text document
¡ Count the number of Hmes each

disHnct word appears in the file

¡ Many applicaGons of this:
§ Analyze web server logs to find popular URLs
§ StaPsPcal machine translaPon:

§ Need to count number of Nmes every 5-word sequence
occurs in a large corpus of documents

Tim Althoff, UW CSE481DS: Data Science Capstone, http://www.cs.washington.edu/cse481ds

Tim Althoff, UW CSE481DS: Data Science Capstone, http://www.cs.washington.edu/cse481ds

The crew of the space
shuttle Endeavor recently
returned to Earth as
ambassadors, harbingers of
a new era of space
exploration. Scientists at
NASA are saying that the
recent assembly of the
Dextre bot is the first step in
a long-term space-based
man/mache partnership.
'"The work we're doing now
-- the robotics we're doing -
- is what we're going to
need ……………………..

Big document

(The, 1)
(crew, 1)

(of, 1)
(the, 1)

(space, 1)
(shuttle, 1)

(Endeavor, 1)
(recently, 1)

….

(crew, 1)
(crew, 1)

(space, 1)
(the, 1)
(the, 1)
(the, 1)

(shuttle, 1)
(recently, 1)

…

(crew, 2)
(space, 1)

(the, 3)
(shuttle, 1)

(recently, 1)
…

MAP:
Read input and

produces a set of
key-value pairs

Group by key:
Collect all pairs
with same key

Reduce:
Collect all values
belonging to the
key and output

(key, value)

Provided by the
programmer

Provided by the
programmer

(key, value)(key, value)

eq
ue

nt
ia

lly
 re

ad
 th

e
da

ta
O

nl
y

se

qu
en

tia
l

 r
ea

ds

map(key, value):
key: document name; value: text of the document
 for each word w in value:
 emit(w, 1)

Tim Althoff, UW CSE481DS: Data Science Capstone, http://www.cs.washington.edu/cse481ds

reduce(key, values):
key: a word; value: an iterator over counts
 result = 0
 for each count v in values:
 result += v
 emit(key, result)

Tim Althoff, UW CSE481DS: Data Science Capstone, hDp://www.cs.washington.edu/cse481ds

All phases are distributed with many tasks doing the work

Tim Althoff, UW CSE481DS: Data Science Capstone, http://www.cs.washington.edu/cse481ds

Mappers Reducers

Input Output

key-value
 pairs

MapReduce environment takes care of:
¡ Partitioning the input data
¡ Scheduling the program’s execution across a

set of machines
¡ Performing the group by key step
§ In practice this is is the bottleneck

¡ Handling machine failures
¡ Managing required inter-machine

communication

Tim Althoff, UW CSE481DS: Data Science Capstone, http://www.cs.washington.edu/cse481ds

¡ Map worker failure
§ Map tasks completed or in-progress at

worker are reset to idle and rescheduled
§ Reduce workers are notified when map task is

rescheduled on another worker
¡ Reduce worker failure
§ Only in-progress tasks are reset to idle and the

reduce task is restarted

Tim Althoff, UW CSE481DS: Data Science Capstone, http://www.cs.washington.edu/cse481ds

¡ Two major limitations of MapReduce:
§ Difficulty of programming directly in MR

§ Many problems aren’t easily described as map-reduce
§ Performance bottlenecks, or batch not fitting the

use cases
§ Persistence to disk typically slower than in-memory work

¡ In short, MR doesn’t compose well for large
applications
§ Many times one needs to chain multiple map-

reduce steps

Tim Althoff, UW CSE481DS: Data Science Capstone, http://www.cs.washington.edu/cse481ds

¡ MapReduce uses two “ranks” of tasks:
One for Map the second for Reduce
§ Data flows from the first rank to the second

¡ Data-Flow Systems generalize this in two ways:
1. Allow any number of tasks/ranks
2. Allow functions other than Map and Reduce
§ As long as data flow is in one direction only, we can

have the blocking property and allow recovery of
tasks rather than whole jobs

Tim Althoff, UW CSE481DS: Data Science Capstone, http://www.cs.washington.edu/cse481ds

¡ Expressive computing system, not limited to
the map-reduce model

¡ Additions to MapReduce model:
§ Fast data sharing

§ Avoids saving intermediate results to disk
§ Caches data for repetitive queries (e.g. for machine learning)

§ General execution graphs (DAGs)
§ Richer functions than just map and reduce

¡ Compatible with Hadoop
Tim Althoff, UW CSE481DS: Data Science Capstone, hDp://www.cs.washington.edu/cse481ds

¡ Open source software (Apache Foundation)
¡ Supports Java, Scala and Python

¡ Key construct/idea: Resilient Distributed Dataset
(RDD)

¡ Higher-level APIs: DataFrames & DataSets
§ Introduced in more recent versions of Spark
§ Different APIs for aggregate data, which allowed to

introduce SQL support

Tim Althoff, UW CSE481DS: Data Science Capstone, http://www.cs.washington.edu/cse481ds

Key concept Resilient Distributed Dataset (RDD)
§ Partitioned collection of records

§ Generalizes (key-value) pairs
¡ Spread across the cluster, Read-only
¡ Caching dataset in memory

§ Different storage levels available
§ Fallback to disk possible

¡ RDDs can be created from Hadoop, or by
transforming other RDDs (you can stack RDDs)

¡ RDDs are best suited for applications that apply the
same operation to all elements of a dataset

Tim Althoff, UW CSE481DS: Data Science Capstone, http://www.cs.washington.edu/cse481ds

¡ TransformaGons build RDDs through
determinisHc operaHons on other RDDs:
§ TransformaPons include map, filter, join, union,

intersec2on, dis2nct
§ Lazy evaluaJon: Nothing computed unPl an acPon

requires it

¡ AcGons to return value or export data
§ AcPons include count, collect, reduce, save
§ AcPons can be applied to RDDs; acPons force

calculaPons and return values
Tim Althoff, UW CSE481DS: Data Science Capstone, http://www.cs.washington.edu/cse481ds

join

filter

groupBy

Stage 3

Stage 1

Stage 2

A: B:

C: D: E:

F:

= cached partition

= RDD

map

¡ Supports general task graphs
¡ Pipelines functions where possible
¡ Cache-aware data reuse & locality
¡ Partitioning-aware to avoid shuffles

Tim Althoff, UW CSE481DS: Data Science Capstone, http://www.cs.washington.edu/cse481ds

¡ DataFrame:
§ Unlike an RDD, data organized into named columns,

e.g. a table in a relational database.
§ Imposes a structure onto a distributed collection of

data, allowing higher-level abstraction
¡ Dataset:

§ Extension of DataFrame API which provides type-safe,
object-oriented programming interface (compile-time
error detection)

Both built on Spark SQL engine. Both can be
converted back to an RDD

Tim Althoff, UW CSE481DS: Data Science Capstone, http://www.cs.washington.edu/cse481ds

¡ Performance: Spark normally faster but with caveats
§ Spark can process data in-memory; Hadoop

MapReduce persists back to the disk aOer a map or
reduce acPon

§ Spark generally outperforms MapReduce, but it o6en
needs lots of memory to perform well; if there are
other resource-demanding services or can’t fit in
memory, Spark degrades

§ MapReduce easily runs alongside other services with
minor performance differences, & works well with the
1-pass jobs it was designed for

¡ Ease of use: Spark is easier to program (higher-level
APIs)

¡ Data processing: Spark is more general

Tim Althoff, UW CSE481DS: Data Science Capstone, http://www.cs.washington.edu/cse481ds

Tim Althoff, UW CSE481DS: Data Science Capstone, http://www.cs.washington.edu/cse481ds

Tim Althoff, UW CSE481DS: Data Science Capstone, http://www.cs.washington.edu/cse481ds

Pros: Map Reduce with Pandas API
Cons: Unstable, Not much support

Pros: Map Reduce via SQL, integrations
Cons: Not as flexible

Pros: Loads of integrations, promises a lot
Cons: New-ish player, lots of development ahead

5 min break J

Tim Althoff, UW CSE481DS: Data Science Capstone, http://www.cs.washington.edu/cse481ds

Thank you for sharing
your feedback with us!

https://bit.ly/cse481ds-
feedback

Tim Althoff, UW CSE481DS: Data Science Capstone, http://www.cs.washington.edu/cse481ds 38

https://bit.ly/cse481ds-feedback
https://bit.ly/cse481ds-feedback

Lab Part:
Intro to Spark

Tim Althoff, UW CSE481DS: Data Science Capstone, hDp://www.cs.washington.edu/cse481ds

