
Courtesy reminder: Make use of office hours – we’re here to help! J 
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Group Reflection on 
Process & Validity
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Lecture: 
Distributed Computing 

for Data Science
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¡ Commodity Computing
Computing with thousands of failures a day 

¡ Map Reduce
Plumbing for billions of data points

¡ Spark
A great tool for a nasty problem

¡ Data Engineering in Practice
What to look forward to

¡ Lab!
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¡ Large-scale computing for data mining 
problems on commodity hardware

¡ Challenges:
§ How do you distribute computation?
§ How can we make it easy to write distributed 

programs?
§ Machines fail:

§ One server may stay up 3 years (1,000 days)
§ If you have 1,000 servers, expect to lose 1/day
§ With 1M machines 1,000 machines fail every day!
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¡ Problem:
§ If nodes fail, how to store data persistently? 

¡ Answer:
§ Distributed File System

§ Provides global file namespace
¡ Typical usage pattern:
§ Huge files (100s of GB to TB)
§ Data is rarely updated in place
§ Reads and appends are common
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¡ Reliable distributed file system
¡ Data kept in “chunks” spread across machines
¡ Each chunk replicated on different machines 
§ Seamless recovery from disk or machine failure
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¡ Issue: 
Copying data over a network takes time

¡ Idea:
§ Bring computation to data
§ Store files multiple times for reliability

¡ Map Reduce address these problems
§ Storage Infrastructure – File system

§ Google: GFS. Hadoop: HDFS

§ Programming model
§ MapReduce
§ Spark
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¡ MapReduce is a style of programming 
designed for:
1. Easy parallel programming
2. Invisible management of hardware and software 

failures
3. Easy management of very-large-scale data

¡ It has several implementations, including 
Hadoop, Spark (used in this class), Flink, and 
the original Google implementation just called 
“MapReduce”
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3 steps of MapReduce
¡ Map:

§ Apply a user-written Map function to each input element
§ Mapper applies the Map function to a single element

§ Many mappers grouped in a Map task (the unit of parallelism)
§ The output of the Map function is a set of 0, 1, or more 

key-value pairs.
¡ Group by key: Sort and shuffle

§ System sorts all the key-value pairs by key, and
outputs key-(list of values) pairs

¡ Reduce:
§ User-written Reduce function is applied to each 

key-(list of values)
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Outline stays the same, Map and Reduce change to fit the problem
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MAP:
Read input and 

produces a set of 
key-value pairs

Group by key:
Collect all pairs with 

same key
(Hash merge, Shuffle, 

Sort, Partition)

Reduce:
Collect all values 
belonging to the 
key and output



Example MapReduce task:
¡ We have a huge text document
¡ Count the number of Hmes each 

disHnct word appears in the file

¡ Many applicaGons of this:
§ Analyze web server logs to find popular URLs
§ StaPsPcal machine translaPon:

§ Need to count number of Nmes every 5-word sequence 
occurs in a large corpus of documents

Tim Althoff, UW CSE481DS: Data Science Capstone, http://www.cs.washington.edu/cse481ds



Tim Althoff, UW CSE481DS: Data Science Capstone, http://www.cs.washington.edu/cse481ds

The crew of the space 
shuttle Endeavor recently 
returned to Earth as 
ambassadors, harbingers of 
a new era of space 
exploration. Scientists at 
NASA are saying that the 
recent assembly of the 
Dextre bot is the first step in 
a long-term space-based 
man/mache partnership. 
'"The work we're doing now 
-- the robotics we're doing -
- is what we're going to 
need ……………………..
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map(key, value):
# key: document name; value: text of the document
 for each word w in value:
  emit(w, 1)
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reduce(key, values):
# key: a word; value: an iterator over counts
 result = 0
 for each count v in values:
  result += v
 emit(key, result)
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All phases are distributed with many tasks doing the work



Tim Althoff, UW CSE481DS: Data Science Capstone, http://www.cs.washington.edu/cse481ds

Mappers Reducers

Input Output

key-value
    pairs



MapReduce environment takes care of:
¡ Partitioning the input data
¡ Scheduling the program’s execution across a 

set of machines
¡ Performing the group by key step
§ In practice this is is the bottleneck

¡ Handling machine failures
¡ Managing required inter-machine 

communication
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¡ Map worker failure
§ Map tasks completed or in-progress at 

worker are reset to idle and rescheduled
§ Reduce workers are notified when map task is 

rescheduled on another worker
¡ Reduce worker failure
§ Only in-progress tasks are reset to idle and the 

reduce task is restarted
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¡ Two major limitations of MapReduce:  
§ Difficulty of programming directly in MR 

§ Many problems aren’t easily described as map-reduce
§ Performance bottlenecks, or batch not fitting the 

use cases 
§ Persistence to disk typically slower than in-memory work

¡ In short, MR doesn’t compose well for large 
applications
§ Many times one needs to chain multiple map-

reduce steps
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¡ MapReduce uses two “ranks” of tasks: 
One for Map the second for Reduce
§ Data flows from the first rank to the second

¡ Data-Flow Systems generalize this in two ways:
1. Allow any number of tasks/ranks
2. Allow functions other than Map and Reduce
§ As long as data flow is in one direction only, we can 

have the blocking property and allow recovery of 
tasks rather than whole jobs
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¡ Expressive computing system, not limited to 
the map-reduce model

¡ Additions to MapReduce model: 
§ Fast data sharing 

§ Avoids saving intermediate results to disk
§ Caches data for repetitive queries (e.g. for machine learning)

§ General execution graphs (DAGs)
§ Richer functions than just map and reduce

¡ Compatible with Hadoop
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¡ Open source software (Apache Foundation)
¡ Supports Java, Scala and Python

¡ Key construct/idea: Resilient Distributed Dataset 
(RDD)

¡ Higher-level APIs: DataFrames & DataSets
§ Introduced in more recent versions of Spark
§ Different APIs for aggregate data, which allowed to 

introduce SQL support
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Key concept Resilient Distributed Dataset (RDD)
§ Partitioned collection of records

§ Generalizes (key-value) pairs
¡ Spread across the cluster, Read-only
¡ Caching dataset in memory

§ Different storage levels available
§ Fallback to disk possible

¡ RDDs can be created from Hadoop, or by 
transforming other RDDs (you can stack RDDs)

¡ RDDs are best suited for applications that apply the 
same operation to all elements of a dataset
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¡ TransformaGons build RDDs through 
determinisHc operaHons on other RDDs:
§ TransformaPons include map, filter, join, union, 

intersec2on, dis2nct
§ Lazy evaluaJon: Nothing computed unPl an acPon 

requires it

¡ AcGons to return value or export data
§ AcPons include count, collect, reduce, save
§ AcPons can be applied to RDDs; acPons force 

calculaPons and return values
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join

filter

groupBy

Stage 3

Stage 1

Stage 2
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= cached partition

= RDD

map

¡ Supports general task graphs
¡ Pipelines functions where possible
¡ Cache-aware data reuse & locality
¡ Partitioning-aware to avoid shuffles
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¡ DataFrame:
§ Unlike an RDD, data organized into named columns, 

e.g. a table in a relational database.
§ Imposes a structure onto a distributed collection of 

data, allowing higher-level abstraction
¡ Dataset:

§ Extension of DataFrame API which provides type-safe, 
object-oriented programming interface (compile-time 
error detection)

Both built on Spark SQL engine. Both can be 
converted back to an RDD
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¡ Performance: Spark normally faster but with caveats
§ Spark can process data in-memory; Hadoop 

MapReduce persists back to the disk aOer a map or 
reduce acPon

§ Spark generally outperforms MapReduce, but it o6en 
needs lots of memory to perform well; if there are 
other resource-demanding services or can’t fit in 
memory, Spark degrades

§ MapReduce easily runs alongside other services with 
minor performance differences, & works well with the 
1-pass jobs it was designed for

¡ Ease of use: Spark is easier to program (higher-level 
APIs)

¡ Data processing: Spark is more general
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Pros: Map Reduce with Pandas API
Cons: Unstable, Not much support

Pros: Map Reduce via SQL, integrations
Cons: Not as flexible

Pros: Loads of integrations, promises a lot 
Cons: New-ish player, lots of development ahead



5 min break J
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Lab Part: 
Intro to Spark
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