Communicating data science through visualization CSE481DS Data Science Capstone Jina Suh #### Agenda - 1. Visualization in data science - 2. Human perception - 3. Storytelling with data - 4. Visualization design - 5. Break + Prototype - 6. Visualization for papers - 7. Bad visualization - 8. Visualization tools and resources #### Acknowledgements Contents of this lecture are generously borrowed from: - The internet - UW CSE 512 Data Visualization course slides by Jeff Heer and guest lecturers (Matt Conlen, Michael Correll) - Tutorial by Marinka Zitnik from Harvard University ### Visualization in Data Science What is the role of visualization in data science? #### What is data science Data contains value and knowledge Data science extracts knowledge from data, seeks to discover new knowledge by answering question through data #### What is visualization? Transformation of the symbolic into the geometric - McCormick et al. 1987 The use of computer-supported, interactive, visual representations of abstract data to **amplify cognition** - Card, Mackinlay, and Shneiderman 1999 #### What does visualization do? Graphics **reveal data**. Indeed graphics can be more precise and revealing than conventional statistical computations. - Tufte 1983 One great virtue of good graphical representation is that it can serve to **display clearly and effectively a message** carried by quantities whose calculation or observation is far from simple. - Tukey and Wilk 1965 #### Superpower of visualization When applied effectively to promote data exploration, analysis, and insight, we will experience what Joseph Berkson called "interocular traumatic impact: a conclusion that hits us between the eyes." - Cleveland 1993 **Empower** understanding of data and analysis processes ### Visualization in data analysis process Data Analysis Process Decision #### Visualization in data analysis process #### Collect: Do I have the right population? - Less female than male - Females are younger https://clauswilke.com/dataviz/histograms-density-plots.html #### Annotate: Are there disagreements? - 84% accuracy (32/38) - All errors isolated in versicolor https://medium.com/@rakeshrajpurohit/confusion-matrix-469248ed0397 ### Wrangle I spend more than half of my time integrating, cleansing and transforming data without doing any actual analysis. Most of the time I'm lucky if I get to do any "analysis" at all. - Anonymous Data Scientist But wait... Visualizations can be my superpower ### Wrangle The first sign that a visualization is good is that it **shows you a problem in your data**... ... every successful visualization that I've been involved with has had this stage where you realize, "Oh my God, this data is not what I thought it would be!" So already, you've discovered something. - Martin Wattenberg #### Wrangle: How messy is this dataset? What feature can I live without? https://github.com/ResidentMario/missingno #### Wrangle: How messy is this dataset? Which pairs can I live without? #### Wrangle: Do I impute or not? To impute or not to impute, that is the question https://observablehq.com/@d3/line-with-missing-data #### Wrangle: Do I impute or not? To impute or not to impute, that is the question https://observablehq.com/@d3/line-with-missing-data ### Profile: How is my data distributed? | 101 | 1 | | II | | III | | IV | | |-------|-------|-------|-------|-------|-------|-------|-------|-------| | - | X | У | X | У | X | У | Х | У | | | 10 | 8,04 | 10 | 9,14 | 10 | 7,46 | 8 | 6,58 | | | 8 | 6,95 | 8 | 8,14 | 8 | 6,77 | 8 | 5,76 | | | 13 | 7,58 | 13 | 8,74 | 13 | 12,74 | 8 | 7,71 | | | 9 | 8,81 | 9 | 8,77 | 9 | 7,11 | 8 | 8,84 | | | 11 | 8,33 | 11 | 9,26 | 11 | 7,81 | 8 | 8,47 | | | 14 | 9,96 | 14 | 8,1 | 14 | 8,84 | 8 | 7,04 | | | 6 | 7,24 | 6 | 6,13 | 6 | 6,08 | 8 | 5,25 | | | 4 | 4,26 | 4 | 3,1 | 4 | 5,39 | 19 | 12,5 | | | 12 | 10,84 | 12 | 9,13 | 12 | 8,15 | 8 | 5,56 | | | 7 | 4,82 | 7 | 7,26 | 7 | 6,42 | 8 | 7,91 | | | 5 | 5,68 | 5 | 4,74 | 5 | 5,73 | 8 | 6,89 | | SUM | 99,00 | 82,51 | 99,00 | 82,51 | 99,00 | 82,50 | 99,00 | 82,51 | | AVG | 9,00 | 7,50 | 9,00 | 7,50 | 9,00 | 7,50 | 9,00 | 7,50 | | STDEV | 3,32 | 2,03 | 3,32 | 2,03 | 3,32 | 2,03 | 3,32 | 2,03 | #### Profile: How is my data distributed? Visualization. Perception. Storytelling. Design. Prototype. Papers. #### Profile: How is my data distributed? #### Hidden in the bars Data revealed in scatterplots may be masked within a bar chart. Check my assumptions https://knowablemagazine.org/article/mind/2019/science-data-visualization #### Visualization in data analysis process ### **Explore** Open-ended Specific Data quality Univariate summaries Check assumptions Distributions Relationships among variables Correlations Breakdowns Checking different models Hypothesis testing #### Visual exploration process Pick a question Construct visualizations Inspect the answer Identify new questions Repeat ### Visual analysis journal Write down your question Generate the visualization Summarize your insight Identify next steps or question Document the how #### Visual exploration tips Avoid premature fixation! Not just on insights but also on visualization Show data variation, not design variation Your viz may not be perfect, but does it do a decent job? Iterate quickly Choose the right tool for the right job #### Visualization in data analysis process #### Model #### **Evaluate** #### **Model & Evaluate** ``` data = ({"id": "0", "children": [{"id": "1", "impurity": "0.0", "samples": "39", "value": "[39. 0. 0.]", "class": "0", "self": "0"}, {"id": "2", "children": [{"id": "3", "children": [{"id": "4", "impurity": "0.0", "samples": "33", "value": "[0. 33. 0.]", "class": "1", "self": "1"}, {"id": "5", "children": [{"id": "6", "impurity": "0.0", "samples": "1", "value": "[0. 1. 0.]", "class": "1", "self": "1"}, {"id": "7", "impurity": "0.0", "samples": "3", "value": "[0. 0. 3.]", "class": "2", "self": "2"}], "name": "sepal length (cm) <= 6.0500", "impurity": "0.375", "samples": "4"}], "name": "petal length (cm) <= 5.0000", "impurity": "0.1490138787436085", "samples": "37"}, {"id": "8", "children": [{"id": "9", "children": [{"id": "10", "impurity": "0.0", "samples": "3", "value": "[0. 0. 3.]", "class": "2", "self": "2"}, {"id": "11", "impurity": "0.0", "samples": "1", "value": "[0. 1. 0.]", "class": "1", "self": "1"}], "name": "sepal width (cm) <= 3.1000", "impurity": "0.375", "samples": "4"}, {"id": "12", "impurity": "0.0", "samples": "32", "value": "[0. 0. 32.]", "class": "2", "self": "2"}], "name": "petal length (cm) <= 4.8500", "impurity": "0.054012345679012363", "samples": "36"}], "name": "petal width (cm) <= 1.6500", "impurity": "0.4991555638956652", "samples": "73"}], "name": "petal length (cm) <= 2.6000", "impurity": "0.6659757653061225", "samples": "112"}) ``` #### Visualization in data analysis process #### Report RESEARCH #### RESEARCH ARTICLE SUMMARY #### A global genetic interaction network maps a wiring diagram of cellular function Michael Costanzo,* Benjamin VanderSluis,* Elizabeth N. Koch,* Anastasia Baryshnikova, Carles Pons,* Guihong Tan,* Wen Wang, Matej Usaj, Julia Hanchard, Susan D. Lee, Vicent Pelechano, Erin B. Styles, Maximilian Billmann, Jolanda van Leeuwen, Nydia van Dyk, Zhen-Yuan Lin, Elena Kuzmin, Justin Nelson, Jeff S. Piotrowski, Tharan Srikumar, Sondra Bahr, Yiqun Chen, Raamesh Deshpande, Christoph F. Kurat, Sheena C. Li, Zhijian Li, Mojca Mattiazzi Usaj, Hiroki Okada, Natasha Pascoe, Bryan-Joseph San Luis, Sara Sharifboor, Emira Shuterigi, Scott W. Simpkins, Jamie Snider, Harsha Garadi Suresh, Yizhao Tan, Hongwei Zhu, Noel Malod-Dognin, Vuk Janjic, Natasa Przulj, Olga G. Troyanskaya, Igor Stagljar, Tian Xia, Yoshikazu Ohya, Anne-Claude Gingras, Brian Raught, Michael Boutros, Lars M. Steinmetz, Claire L. Moore, Adam P. Rosebrock, Amy A. Caudy, Chad L. Myers, † Brenda Andrews, † Charles Boone INTRODUCTION: Genetic interactions occur | diseases. Here, we describe construction and when mutations in two or more genes combine to generate an unexpected phenotype. An tion network for a eukaryotic cell. extreme negative or synthetic lethal genetic interaction occurs when two mutations, neither Conversely, positive genetic interactions occur when two mutations produce a phenotype that and can be harnessed for biological discovery SCIENCE sciencemag.org RATIONALE: Genome sequencing projects are lethal individually, combine to cause cell death. | providing an unprecedented view of genetic variation. However, our ability to interpret genetic information to predict inherited phenois less severe than expected. Genetic interactions | types remains limited, in large part due to the identify functional relationships between genes | extensive buffering of genomes, making most individual eukaryotic genes dispensable for and therapeutic target identification. They may life. To explore the extent to which genetic inalso explain a considerable component of the teractions reveal cellular function and contrib- undiscovered genetics associated with human ute to complex phenotypes, and to discover the netic interactions tend to connect functionally A global network of genetic interaction profile similarities. (Left) Genes with similar genetic interaction profile similarities. (Left) Genes with similar genetic interaction profiles are connected in a global network, such that genes exhibiting more similar profiles are located "connected (CLM) ternsked closer to each other, whereas genes with less similar profiles are positioned farther apart. (Right) Spatial analysis of functional enrichment was used to identify and color network regions enriched for similar Gene general principles of genetic networks, we used automated yeast genetics to construct a global genetic interaction network. RESULTS: We tested most of the ~6000 genes in the wast Sacharomans convision for all possible pairwise genetic interactions, identifying nearly 1 million interactions, including ~550,000 negative and ~350,000 positive interactions, spanning ~90% of all yeast genes. Es- ON OUR WEBSITE sential genes were network hubs, displaying five times as many interactions as nonessential genes. The set science.aaf1420 of genetic interactions or the genetic interaction profile for a gene provides a quantitative measure of function, and a global network based on genetic interaction profile similarity reyealed a hierarchy of modules reflecting the functional architecture of a cell. Negative interactions connected functionally related genes, napped core bioprocesses, and identified pleiotropic genes, whereas positive interactions often mapped general regulatory connections associated with defects in cell cycle progression or cellular proteostasis. Importantly, the global network illustrates how coherent sets of negative or positive genetic interactions connect protein complex and pathways to map a func tional wiring diagram of the cell. CONCLUSION: A global genetic interaction network highlights the functional organization of a cell and provides a resource for predicting gene and pathway function. This network emphasizes the prevalence of genetic interactions and their potential to compound phenotypes associated with single mutations. Negative ge- > related genes and thus may be predicted using alternative func tional information. Although less functionally informative, positive interactions may provide insights into general mechanisms of genetic suppression or resiliency We anticipate that the ordered topology of the global genetic net work, in which genetic interac tions connect coherently within and between protein complexes and pathways, may be exploited to decipher genotype-to-phenotype relationships. III ca (B.A.); charlie.boone@utoronto.ca (C.B.) 353. aaf1420 (2016), DOI: 10.1126/science. 23 SEPTEMBER 2016 • VOL 353 ISSUE 6306 1381 #### Extensive Data Shows Punishing Reach of Racism for Black Boys By EMILY BADGER, CLAIRE CAIN MILLER, ADAM PEARCE and KEVIN QUEALY MARCH 19, 2018 Black boys raised in America, even in the wealthiest families and living in some of the most well-to-do neighborhoods, still earn less in adulthood than white boys with similar backgrounds, according to a sweeping new study that traced the lives of millions of children. White boys who grow up rich are likely to remain that way. Black boys raised at the top, however, are more likely to become poor than to stay wealthy in their own adult households. Follow the lives of 0 boys who grew up in rich families ... Grew up rich Rich adult WHITE MEN BLACK MEN 0 ...and see where they end SHARE Tim Althoff, UW CSE481DS: Data Science Capstone, http://www.cs.washington.edu/cse481ds ### Deploy: Is my distribution shifting? https://rpubs.com/paul4forest/movingdistribution ### **Deploy: Dashboard** https://public.tableau.com/app/profile/keyrus/viz/PaidMediaAnalysisKeyrus/PaidMediaAnalysisOverview #### Visualization in data analysis process Data Analysis Process Decision Collect Wrangle Operationalize Model Report Define Annotate Profile Explore Evaluate Deploy How effective can you be at data science without the aid of visualization? ## Human Perception How do humans see data? ## Perceptual grammar Why should we be interested in visualization? Because the human visual system is a pattern seeker of enormous power and subtlety. The eye and the visual cortex of the brain form a massively parallel processor that provides the highest bandwidth channel into human cognitive centers. At higher levels of processing, perception and cognition are closely interrelated which is the reason why the words "understanding" and "seeing" are synonymous. Figure 1. Adapted from Nakayama et al. 1989 - Ware 1998 ## Perceptual grammar The more general point is that when data is presented in certain ways, the patterns can be readily perceived. We can think of a "grammar" of perception and this grammar of perception can be translated directly into a rules for displaying information. If we can understand this **perceptual grammar**, then we can present our data in such a way that the important and informative patterns stand out. If we disobey the rules, our data will be incomprehensible or misleading. Figure 1. Adapted from Nakayama et al. 1989 ## How can we leverage our perception? Signal detection Magnitude estimation Pre-attentive processing Distinctive colors ## Signal detection Can you read the text? ### Magnitude estimation How many A's in B? ### Magnitude estimation How many A's in B? ## **Encoding** FIGURE 3-12 Visual cues ranked by Cleveland and McGill ### Task to find the best encoding Ranking of visual variables by data type. Mackinlay 1986 ## Multiple encodings #### Redundant encoding can be beneficial https://visualthinking.psych.northwestern.edu/projects/redundantencoding.html ## Multiple encodings Redundant encoding can be beneficial, except when it's not https://www.teknionusa.com/blog/the-10-commandments-of-visual-analytics-in-tableau ### Pre-attentive processing **Subconscious** accumulation of information from the environment All information is pre-attentively processed Brain filters and processes what's important Salient or relevant information is selected and analyzed by conscious (attentive) processing Orientation #### Pre-attentive features **Form** - line orientation, line length, line width, line collinearity, size, curvature, spatial grouping, added marks, luminosity. Color - hue, intensity Motion - flicker, direction of motion **Spatial position** - 2d position, stereoscopic depth, convex/concave shape from shading Number Enclosure Convexity/concavity Addition Curved/straight Information Visualization, Ware 1999 ### Effective use of color In order to use color effectively it is necessary to recognize that it deceives continually. - Josef Albers, Interaction of Color ### Effective use of color Are the lines in the middle of the two boxes the same color? ### Color Best for **nominal variables** (categorical, binary) ### Visually distinct colors Heer & Stone, 2012 ### Brewer palettes Color combinations selected for cartography Don't forget about colorblindness and black/white printing Number of data classes: 3 how to use | updates | downloads | credits Nature of your data: sequential \(\) diverging \(\) qualitative Pick a color scheme: Single hue: ON ED OF THE STATE photocopy safe #e5f5f9 context #99d8c9 roads #2ca25f cities borders **Background:** solid color terrain color transparency http://colorbrewer2.org # Storytelling with Data How do we tell stories with visualization? ## **Exploratory analysis** Understand and get familiar with your data and generate lots of information ### Mining! ## **Explanatory analysis** Learning more about what you found to communicate what you found and tell a story about it ### Steps to storytelling with data Think about the context Who are you telling the story to? Craft the narrative How are you telling the story? Design appropriate visualizations What are you telling the story with? ### Context matters....a lot Who? What? How? ### Context matters....a lot Who? Who is your audience? Can you be very specific? What's your relationship with your audience? Do they know you well enough to understand your assumptions? Do you have credibility? ### Context matters....a lot #### What? What do you want your audience to know or do? What action do you want them to take? How will you communicate to your audience? What affordances do you have? How much control do you have? ### Context matters....a lot How? What data do you have to make your case? How will you present your data? ## **Example context** #### Who? Program directors who approved funding for research internship program. #### What? Funded research under the program was a success and provided tangible impact to the product. They should continue funding the program. #### How? Illustrate the number of publications, product features that were shipped, successful career paths of the interns in the program. ### Steps to storytelling with data Think about the context Who are you telling the story to? Craft the narrative How are you telling the story? Design appropriate visualizations What are you telling the story with? ### Constructing the narrative https://www.storytellingwithdata.com/ ### The beginning: set the stage Setting: when and where does the story take place? Main character: who is driving the action? Imbalance: Why is it necessary, what has changed? Balance: What do you want to see happen? Solution: How will you bring about the changes? ### The middle: show the data Provide evidence through data Incorporate external context or comparisons Provide examples to illustrate the issue Articulate what would happen if no action was taken Discuss potential mitigations or solutions and benefits Remind them they are in unique position to drive action ### The ending: call to action Tie it back to the beginning Recap problems and resulting need for action Reiterate sense of urgency Key takeaways and action items ### Steps to storytelling with data Think about the context Who are you telling the story to? Craft the narrative How are you telling the story? Design appropriate visualizations What are you telling the story with? # Visualization Design How do we design "good" visualizations? ## What makes a good visualization? #### What Makes a Good Visualization? explicit (implicit) ## Critique by redesign Edward Tufte's redesign of the same chart showing O-Ring failures. Chart shown to the presidential commission investigation on the Space Shuttle Challenger in 1986. The chart shows the history of O-Ring failures https://medium.com/@hint_fm/design-and-redesign-4ab77206cf9 ### Identify and eliminate clutter ### Use visualizations that are easy to read ### Returns driven by Customer A Returns and dollars claimed by customer CALL TO ACTION: Let's discuss what is different about Customer A. What are our next steps? ## Keep consistent order and alignment ### Keep consistent color **Fig. 4. Analysis of familial dispersion.** (**A**) Median distance $[\log_{10}(x+1)]$ of father-offspring places of birth (cyan), mother-offspring (red), and marital radius (black) as a function of time (average year of birth). (**B**) Rate of change in the country of birth for father-offspring (cyan) or mother-offspring (red) stratified by major geographic areas. (**C**) Average IBD (log₂) between couples as a function of average year of birth. Individual dots represent the measured average per year; the black line denotes the smooth trend using locally weighted regression. (**D**) IBD of couples as a function of marital radius. Each dot represents a year between 1650 to 1950. The blue line denotes the best linear regression line in log-log space. Kaplanis et al., Quantitative analysis of population-scale family trees with millions of relatives, Science, 2018. Notable events ## Contextualize your data Rise and Fall of the name Neil in the USA Births 1912-2015 https://questionsindataviz.com/2018/01/06/is-white-space-always-your-friend/ ### Contextualize your data Jaderberg et al., Human-level performance in 3D multiplayer games with population-based reinforcement learning, Science, 2019. ### Draw attention....really draw attention Daily visitors to Aurora Park in summer/fall 2019 ### Draw attention....really draw attention #### Daily visitors to Aurora Park in summer/fall 2019 ### Draw attention....really draw attention #### Daily visitors to Aurora Park in summer/fall 2019 ### Draw attention....really draw attention #### Daily visitors to Aurora Park in summer/fall 2019 ## Design and redesign #### Grades by learning method | GRADE
EARNED | IN-PERSON | | DISTANCE | |-----------------|-----------|------|----------| | | 2019 | 2020 | 2020 | | Α | 59% | 56% | 38% | | В | 23% | 16% | 12% | | С | 9% | 10% | 9% | | D | 4% | 7% | 6% | | F | 5% | 11% | 35% | | TOTAL | 100% | 100% | 100% | DATA SOURCE: The Times Record/Roare-County Reporter | Feb 16, 2021 Companies high school student grade distribution for the second 6-week period of the term #### Grades by learning method Distance learning affected academic performance #### Grades by learning method A higher proportion of students earned "F"'s during distance learning, compared to in-person learning. Data source: The Times Record/Roane County Reporter | Feb 18, 2021 Compares high school student grade distribution for the second 9-week period of the term ## **Takeaways** Four essential components of a good visualization Design, redesign, and critique by redesign Eliminate unnecessary clutter and noise Use visualizations that are easy to read Keep consistent order and alignment Be thoughtful about the use of color Contextualize your data Draw attention to the key points about your data ## 5 Minute Break # Prototyping ## Storytelling with your data Goal: Design a key visualization for your project! Ideate (5 minutes) – within project group Brainstorm key points you want to communicate from your analysis Design (10 minutes) – individually Set the context (audience, context, key point) Design a visualization and its variations Critique (5 minutes) - individually Find someone from another group to swap your designs with Pretend you're the target audience Evaluate their design and provide redesign ideas ## Storytelling with your data Discuss how it went: Who was your audience? What point were you trying to make? What worked and didn't work? What challenges did you encounter in your design? What compromises did you have to make? Did your audience "get" your design? why or why not? What redesign recommendations did you give/receive? # Visualization for Papers How do you create effective figures for scientific papers? ## Why do figures matter? Figures are often the first part of research papers examined by editors and your peers ### Informative and well-designed figures: - Convey facts, ideas, and relationships far more clearly and concisely than text - Provide a means for discovering/quantifying patterns, trends, and comparisons - Help the audience better understand the objective and results of your research ## Why are figures difficult to design? It doesn't come with you to explain it It's the first thing people look at with zero context/background There's no animation or interactivity Design space is limited ### Different types of visual structure ### Interdisciplinary journal papers: Nature, Science, PNAS, etc. The focus is on new **scientific insights** and demonstrating the importance of those insights to advance science ### Core CS conference papers: KDD, WebConf, NeurIPS, ICML, ICLR, AAAI, etc. The focus is on the development of **new methods** and their evaluation and comparison on benchmark datasets ## Interdisciplinary journal papers Figure 1: Dataset, approach and key result Impress your audience! Figure 2: Key result, detailed and unpacked Figure 3: Orthogonal evidence supporting results Figure 4: Orthogonal evidence supporting results **Supplementary Figures**: Methodological contributions, algorithms, robustness analyses ### Core CS conference papers Figure 1: Key methodological contribution Focus on most important information Impress your audience! Is your method/system the fastest, the largest, the most accurate? What is the hard problem that your method solves? What makes your method different from related work? Figure 2-3: Overview and algorithmic details Inputs + Data transformation + Outputs Show details about data transformations: Graph convolutions, neural architectures, etc. Figure 4+: Results Impress your audience #### **Abstract** Supervised learning on molecules has incredible potential to be useful in chemistry, drug discovery, and materials science. Luckily, several promising and closely related neural network models invariant to molecular symmetries have already been described in the literature. These models learn a message passing algorithm and aggregation procedure to compute a function of their entire input graph. At this point, the next step is to find a particularly effective variant of this general approach and apply it to chemical prediction benchmarks until we either solve them or reach the limits of the approach. In this paper, we reformulate existing models into a single common framework we call Message Passing Neural Networks (MPNNs) and explore additional novel variations within this framework. Using MPNNs we demonstrate state of the art results on an important molecular property prediction benchmark; these results are strong enough that we believe future work should focus on datasets with larger molecules or more accurate ground truth labels. Gilmer et al., Neural Message Passing for Quantum Chemistry, ICML, 2017. ### Brag about the speed Figure 1. A Message Passir properties of an organization ural Network predicts quantum te by modeling a computationally "Our method is so fast! Our paper should be published at ICML!" #### **Abstract** Large cascades can develop in online social networks as people share information with one another. Though simple reshare cascades have been studied extensively, the full range of cascading behaviors on social media is much more diverse. Here we study how diffusion protocols, or the social exchanges that enable information transmission, affect cascade growth, analogous to the way communication protocols define how information is transmitted from one point to another. Studying 98 of the largest information cascades on Facebook, we find a wide range of diffusion protocols – from cascading reshares of images, which use a simple protocol of tapping a single button for propagation, to the ALS Ice Bucket Challenge, whose diffusion protocol involved individuals creating and posting a video, and then nominating specific others to do the same. We find recurring classes of diffusion protocols, and identify two key counterbalancing factors in the construction of these protocols, with implications for a cascade's growth: the effort required to participate in the cascade, and the social cost of staying on the sidelines. Protocols requiring greater individual effort slow down a cascade's propagation, while those imposing a greater social cost of not participating increase the cascade's adoption likelihood. The predictability of transmission also varies with protocol. But regardless of mechanism, the cascades in our analysis all have a similar reproduction number (\approx 1.8), meaning that lower rates of exposure can be offset with higher per-exposure rates of adoption. Last, we show how a cascade's structure can not only differentiate these protocols, but also be modeled through branching processes. Together, these findings provide a framework for understanding how a wide variety of information cascades can achieve substantial adoption across a network. Cheng et al., Do Diffusion Protocols Govern Cascade Growth?, ICWSM, 2018. ### Brag about the data size r tree of a cascade with a volunteer diffusion r individuals posted music from an "Cascades can be so large! Despite that, we know how to study them! Our paper should be published at ICWSM!" #### **ABSTRACT** Cascades of information-sharing are a primary mechanism by which content reaches its audience on social media, and an active line of research has studied how such cascades, which form as content is reshared from person to person, develop and subside. In this paper, we perform a large-scale analysis of cascades on Facebook over significantly longer time scales, and find that a more complex picture emerges, in which many large cascades recur, exhibiting multiple bursts of popularity with periods of quiescence in between. We characterize recurrence by measuring the time elapsed between bursts, their overlap and proximity in the social network, and the diversity in the demographics of individuals participating in each peak. We discover that content virality, as revealed by its initial popularity, is a main driver of recurrence, with the availability of multiple copies of that content helping to spark new bursts. Still, beyond a certain popularity of content, the rate of recurrence drops as cascades start exhausting the population of interested individuals. We reproduce these observed patterns in a simple model of content recurrence simulated on a real social network. Using only characteristics of a cascade's initial burst, we demonstrate strong performance in predicting whether it will recur in the future. **Keywords:** Cascade prediction; content recurrence; information diffusion; memes; virality. ### Answer the question in title Figure 1: An example of a image meme that has recurred, or resurfaced in popularity multiple times, sometimes as a continuation of the same copy, and sometimes as a new copy of the same meme (example copies are shown as thumbnails). This recurrence appears as multiple peaks in the plot of reshares as a function of time. "Cascades can be so complex! Despite that, we know how to study them! Our paper should be published at WWW!" #### **ABSTRACT** Deep learning models for graphs have achieved strong performance for the task of node classification. Despite their proliferation, currently there is no study of their robustness to adversarial attacks. Yet, in domains where they are likely to be used, e.g. the web, adversaries are common. Can deep learning models for graphs be easily fooled? In this work, we introduce the first study of adversarial attacks on attributed graphs, specifically focusing on models exploiting ideas of graph convolutions. In addition to attacks at test time, we tackle the more challenging class of poisoning/causative attacks, which focus on the training phase of a machine learning model. We generate adversarial perturbations targeting the node's features and the graph structure, thus, taking the dependencies between instances in account. Moreover, we ensure that the perturbations remain *unnoticeable* by preserving important data characteristics. To cope with the underlying discrete domain we propose an efficient algorithm NETTACK exploiting incremental computations. Our experimental study shows that accuracy of node classification significantly drops even when performing only few perturbations. Even more, our attacks are transferable: the learned attacks generalize to other state-of-the-art node classification models and unsupervised approaches, and likewise are successful even when only limited knowledge about the graph is given. # Make a statement about the problem Figure 1: Small perturbations of the graph structure and node features lead to misclassification of the target. "Yes, graph-based models for deep learning can be easily fooled. Here we show how devastating attacks can be." ## Practical guidelines Sketch low-fidelity prototypes of your visualization Understand visual hierarchy, prioritize information, group/categorize Save raw data and results to a tsv/csv/binary file Your figures will need multiple rounds of editing Read in the data and design figures You may need multiple tools to draw a figure ## Practical guidelines # Save figures as PDF or other vector formats Raster images: - Can't be dramatically resized (pixilation, distortion issues) - When saved, they cannot be reopened and edited! ### Vector images (e.g., PDF, EPS, AI, SVG): - Remain editable! - You can open them in Illustrator and edit text or any other element within the graphic - Can be converted to a raster image but not vice-versa - plt.savefig('myfig.pdf') Only use raster format for web, Github repo, etc. ## **Bad Visualization** How do people misuse visualizations? ## Superpower of visualization When applied effectively to promote data exploration, analysis, and insight, we will experience what Joseph Berkson called "interocular traumatic impact: a conclusion that hits us between the eyes." - Cleveland 1993 **Empower** understanding of data and analysis processes ### Thou shall not create bad visualizations ### Incorrect visualizations ### Bugs bugs bugs ## Illegible visualizations Plenty more at https://viz.wtf/ ## Deceptive visualizations Lie factor Scale manipulation Convention manipulation ### Lie factor The size of the effect shown in the graphic should correspond to the size of the effect in the data ### Lie factor ### Lie factor # Scale manipulation Changing with the scales of your chart to minimize, magnify, or invert the change in the data #### Same Data, Different Y-Axis # Convention manipulation Breaking away from norms ## Convention manipulation # Visualization Tools ## Tools, software, and frameworks Adobe Illustrator Adobe Creative Cloud LaTeXiT chachatelier.fr/latexit Matplotlib matplotlib.org Seaborn seaborn.pydata.org Bokeh bokeh.pydata.org D3.js d3is.org GeoPandas geopandas.org Google Charts developers.google.com/chart Circos circos.ca gnuplut gnuplot.info TikZ texample.net/tikz Plotly plot.ly/python missingno github.com/ResidentMario/mi ssingno billboard.js naver.github.io/billboard.js Squaire.js wsj.github.io/squaire Tableau tableau.com/ Vega vega.github.io/vega/ Vega-lite vega.github.io/vega-lite/ Altair <u>altair-viz.github.io/</u> ## Adobe illustrator and alternatives ### Where to get on campus: For purchase: https://itconnect.uw.edu/wares/uware/adobe-creative-cloud/ Use for Free: UW Library https://www.lib.washington.edu/media/software ### Free alternatives: Inkscape, https://inkscape.org GIMP, https://www.gimp.org Boxy-SVG, https://boxy-svg.com ## Convert JavaScript vis to figure ### Three steps: - 1) Use a JS library from two slide ago and generate a visualization - 2) Generate a PDF file from HTML: - <u>stackoverflow.com/questions/18191893/generate-pdf-from-html-in-div-using-javascript</u> - 3) Open the PDF in Illustrator and make further edits: - Change colors - Add labels and annotations - Add new visual elements, e.g., insets, logos - Combine with other graphics to get a multi-panel figure ## Tools for network & relational data - Gephi, gephi.org - Graphviz, graphviz.org - NetworkX, <u>networkx.github.io</u> - JSNetworkX, <u>jsnetworkx.org</u> - igraph, igraph.org/python - sigma.js, sigmajs.org - Cytoscape, <u>cytoscape.org</u> - Hive plots, <u>hiveplot.com</u> # Where to get ideas for figures? Papers published in last issues of Nature, Science, PNAS, Nature Methods, Nature Biotech, etc. Tools. No need to read the papers, just look at figures! Martin Krzywinski, <u>mkweb.bcgsc.ca</u> Inventor of several popular visualization tools Designed many Nature, Science, etc. covers ### www.d3-graph-gallery.com Gallery with hundreds of chart, graphs, geo, part-of-whole Reproducible & editable source code! ### developers.google.com/chart/interactive/docs/gallery Over 30 chart types, including many non-standard ones Tutorials and source code for every chart type! # Where to get ideas for figures? #### www.d3-graph-gallery.com Many non-standard, but highly effective chart types. Source code! # Where to get ideas for figures? https://developers.google.com/chart with source code! eat meowing for adoption mice #### **Chart Types Chart Gallery Annotation Charts** Area Charts Bar Charts **Bubble Charts** Calendar Charts Candlestick Charts Column Charts Combo Charts Diff Charts **Donut Charts Gantt Charts Gauge Charts** GeoCharts Histograms Intervals Line Charts Maps Org Charts Pie Charts Sankey Diagrams Scatter Charts Stepped Area Charts Table Charts **Timelines** Tree Map Charts Trendlines Waterfall Charts Word Troop Tim Althoff, UW CSE481DS: Data Science Capstone, http://www.cs.washington.edu/cse481ds # Chart guide https://www.storytellingwithdata.com/chart-guide At storytelling with data, we encounter a ton of different graphs. Through our work, we've both learned strategies for effective application and identified common pitfalls (including some things to avoid!). In this guide, we share the good and the bad of commonly used charts and graphs for data communications. Simply click on a graph below to learn more. WHAT IS A LINE GRAPH? WHAT IS A BAR CHART? WHAT IS AN AREA GRAPH? ## Practice visualization redesign https://www.storytellingwithdata.com/letspractice/downloads #### **CHAPTER 3: identify & eliminate clutter** - 3.1: which Gestalt principles are in play? | data | see book for solution - **3.2:** how can we tie words to the graph? | data | solution solutions in other tools: Datawrapper | Flourish | Google Data Studio | PowerBl | Tableau - **3.3:** harness the power of alignment & white space | data | solution - 3.4: declutter! | data | solution - 3.5: which Gestalt principles are in play? | data - 3.6: find an effective visual | see book - 3.7: create alignment and use white space | data - 3.8: declutter! | data - 3.9: declutter (again!) | data - 3.10: declutter (one more time!) | data #### **CHAPTER 4: focus attention** ### Data visualization interactive notebooks ### https://github.com/uwdata/visualization-curriculum #### **Table of Contents** - Introduction to Vega-Lite / Altair Jupyter Book | Jupyter | Colab | Nextjournal | Observable | Deepnote - 2. Data Types, Graphical Marks, and Visual Encoding Channels Jupyter Book | Jupyter | Colab | Nextjournal | Observable | Deepnote - 3. Data Transformation Jupyter Book | Jupyter | Colab | Nextjournal | Observable | Deepnote - Scales, Axes, and Legends Jupyter Book | Jupyter | Colab | Nextjournal | Observable | Deepnote - Multi-View Composition Jupyter Book | Jupyter | Colab | Nextjournal | Observable | Deepnote - 6. Interaction Jupyter Book | Jupyter | Colab | Nextjournal | Observable | Deepnote - 7. Cartographic Visualization Jupyter Book | Jupyter | Colab | Nextjournal | Observable | Deepnote ## Seaborn tutorial ### https://bit.ly/cse481ds-seaborn-tutorial Bootstrapping can be sensitive to outliers! ## Other resources UW CSE 512 course materials: https://courses.cs.washington.edu/courses/cse512/ Collaborative visualization tools: https://observablehq.com/ Interactive visualization publications: https://distill.pub/journal/ Free online book on data visualization https://clauswilke.com/dataviz/index.html # Extra ### Narrative structure ### Author-driven narratives Strong ordering Heavy messaging Limited interactivity Start End ### Narrative structure ### Narrative structure ### Author-driven Strong linear ordering Heavy messaging Limited interactivity Tell stories Need for clarity and speed Most books Reader-driven Weak ordering Light messaging Free interactivity Ask questions Explore and find Choose your own adventure! Fig. 8. Genres of Narrative Visualization. ## A little bit of both Martini glass Interactive slideshow Drill-down story # Martini glass https://graphics.reuters.com/HEALTH-CORONAVIRUS/HERD%20IMMUNITY%20(EXPLAINER)/ygdvzmqqgpw/index.html By Simon Scarr and Manas Sharma Writing by Jane Wardell # Martini glass #### The model Use the sliders to input your own parameters to the Reuters model and see a simulation of the spread. ## Scroller https://pudding.cool/2018/08/pockets/ #### By Jan Diehm & Amber Thomas August 2018 ## Slideshow ### **Gun Deaths In America** By Ben Casselman, Matthew Conlen and Reuben Fischer-Baum CLICK to advance https://fivethirtyeight.com/features/gun-deaths/ 1 2 3 4 5 6 7 8 9 10 11 12 Explore the data for yourself » ## Interactive articles # Communicating with Interactive Articles Examining the design of interactive articles by synthesizing theory from disciplines such as education, journalism, and visualization. https://distill.pub/2020/communicating-with-interactive-articles/ # Thank you for your feedback! https://bit.ly/cse481ds-jina