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Due next week

Midpoint presentation video
See template on website under deliverables
10 min 0 sec max.

Think of this as a draft of your final project presentation but
without major results.

We expect that you have completed 50% of the project.
We would like to see your data and some initial results

Provide a complete picture of your project even if certain key parts
have not yet been implemented/analyzed/solved.
We grade based on the quality, as well as the completion of

sections described on the next slide.

Reminder: Now is a good time to start planning for your final
report writing as well.

Midpoint includes briefly highlighting two similar research papers.
Start early!

Tim Althoff, UW CSE481DS: Data Science Capstone, http://www.cs.washington.edu/cse481ds


https://docs.google.com/presentation/d/1GHLBydrl57vTAScgis1qqU0jn5eHoTyjK4xKqb3vRnc/edit

Acknowledgements

Covered: Visualization for data science focused
research papers, typically 2D in PDF

Not covered here: Building interactive
visualizations, focus on web
CSE512 Data Visualization by Jeff Heer

Interactive Data Visualization for the Web, 2nd Edition.
Scott Murray. Read online for free.

Slides based on Tutorial by Marinka Zitnik
(Harvard University)

Tim Althoff, UW CSE481DS: Data Science Capstone, http://www.cs.washington.edu/cse481ds


https://courses.cs.washington.edu/courses/cse512/19sp/index.html
http://alignedleft.com/work/d3-book-2e

What is visualization?

“The use of computer-generated, interactive,
visual representations of data to amplify

cognition.” [Card, Mackinlay, & Shneiderman
1999]

“... finding the artificial memory that best

supports our natural means of perception.”
[Bertin 1967]

“Transformation of the symbolic into the
geometric” [McCormick et al. 1987]



Anscombe’s Quartet

four data sets that
have nearly identical
simple descriptive
statistics, yet have
very different
distributions and
appear very
different when
graphed.
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What do you use visualizations for?

Understand or make sense of data

Discover insights

Answer questions

Make decisions (high or low stakes)

Augment or extend our capabilities (memory,
estimations, patterns)

Tell a story

Convince or inspire



What does visualization do?



Record information

About the world

VISUAL NOTE TAKING

" (aka: SKEToHNOTING)
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History of O-Ring Damage in Field Joints (Cont)

Make sense of information
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Make sense of information

Make (good) decisions

O-ring damage
index, each launch
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Make sense of information
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See patterns




Make sense of information
Answer questions
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Communicate information
Describe the world
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Communicate mformatlon
Prove a point = |




Visualization is a tool

Analysis tool

Communication tool

— Today we focus primarily on the
communication aspect, i.e. “figures for papers”



Today’s Lecture

Why figures matter
Figures in science
How to design effective figures

Tools, tips, and guidelines

Tim Althoff, UW CSE481DS : Data Science Capstone, http ://www.cs.washington .edu/cse481ds



Today’s Lecture

Why figures matter %\:.

Figures in science
How to design effective figures

Tools, tips, and guidelines

Tim Althoff, UW CSE481DS : Data Science Capstone, http ://www.cs.washington .edu/cse481ds



Why do Figures Matter?

Figures are often the first part of research
papers examined by editors and your peers

Informative and well-designed figures:

Convey facts, ideas, and relationships far more
clearly and concisely than text

Provide a means for discovering/quantifying
patterns, trends, and comparisons

Help the audience better understand the objective
and results of your research

Tim Althoff, UW CSE481DS: Data Science Capstone, http://www.cs.washington.edu/cse481ds



Design once, reuse many times
Reuse figures from papers for
posters, talks proposals etc

RESEARCH

YEAST GENETICS

A global genetic interaction
network maps a wiring diagram

general principles of genetic networks, we used
tomated yeast genetics to construct a global
genetic interaction network.

RESULTS: We tested most of the ~6000 genes
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Promote research ideas and make
them accessible to other scientists

RESEAR

YEAST GENETICS

ARTICLE SUMMAR

A global genetic interaction
network maps a wiring diagram
of cellular function

Michael Costanzo,” Benjamin VanderSluis,”

Carles Pons,” Guihong Tan,* Wen Wang, Matej Usaj, J

Elizabeth N. Koch," Anastasia Baryshnikova,”
ia Hanchard, Susan D. Lee,

Vicent Pelechano, Erin B. Styles, Maximilian Billmann, Jolanda van Leeuwen,

Nydia van Dyk, Zhen-Yuan Lin, Elena Kuzmin, Justin Nelson, Jeff S. Piotrowski,

‘Tharan Srikumar, Sondra Bahr, Yigun Chen, Raamesh Deshpande, Christoph F. Kurat,
Sheena C. Li, Zhijian Li, Mojca Mattiazzi Usaj, Hiroki Okada, Natasha Pascoe,
Bryan-Joseph San Luis, Sara Sharifpoor, Emira Shuteriqi, Scott W. Simpkins,

Jamie Snider, Harsha Garadi Suresh, Yizhao Tan, Hongwei Zhu, Noel Malod-Dognin,

Vuk Janjie, Natasa Przulj, Olga G. Troyanskaya, Igor Stagljar, Tian Xia, Yoshikazu Ohya,
Anne-Claude Gingras, Brian Raught, Michael Boutros, Lars M. Steinmetz, Claire L. Moore,
Adam P. Rosebrock, Amy A. Caudy, Chad L. Myers,{ Brenda Andrews, Charles Boonet

INTRODUCTION: Genetic interactions occur
when mutations in two or more genes com-
bine to generate an unexpected phenotype. An
extreme negative or synthetic lethal genetic
interaction occurs when two mutations, neither
lethal individually, combine to cause cell death.
Conversely, positive genetic interactions occur
when two mutations produce a phenotype that
less severe than expected. Genetic interactions
identify functional relationships between genes
and can be harnessed for biological discovery
and therapeutic target identification. They may
also explain a considerable component of the
undiscovered genetics associated with human
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A global network of genetic interaction profile similarities. (Left) Genes with similar genetic interaction

diseases. Here, we describe construction and
analysis of a comprehensive genetic interac-
tion network for a eukaryotic cell

RATIONALE: Genome sequencing projects are
providing an unprecedented view of genetic
variation. However, our ability to interpret ge-
netic information to predict inherited pheno-
types remains limited, in large part due to the
extensive buffering of genomes, making most
individual eukaryotic genes dispensable for
life. To explore the extent to which genetic in-
teractions reveal cellular function and contrib-
ute to complex phenotypes, and to discover the

ARNA Wobble Modification
Peroxisome

RESEARCH

general principles of genetic networks, we used
automated yeast genetics to construct a global
genetic interaction network.

RESULTS: We tested most of the ~6000 genes
in the yeast Saccharomyees cenevisiae for all possible
pairwise genetic interactions,identifying nearly
1 million interactions, including ~550,000 negtive
and ~350,000 positive intera ctions, spanning
~90% of all yeast genes. Es-
sential genes were network
hubs, displaying five times
as many interactions as
nonessential genes. The set
of genetic interactions or
the genetic interaction pro-
file for a gene provides a quantitative mea-
sure of function, and a global network based
on genetic interaction profile similarity re-
vealed a hierarchy of modules reflecting the
functional architecture of a cell. Negative in-
teractions connected functionally related genes,
mapped core bioprocesses, and identified pleio-
5, whereas positive interactions often
mapped general regulatory connections
ciated with defects in cell cycle progression or
cellular proteostasis. Importantly, the global
network illustrates how coherent sets of nega-
tive or positive genetic interactions connect
protein complex and pathways to map a func-
tional wiring diagram of the cell.

CONCLUSION: A global genetic inter:
network highlights the functional organization
of a cell and provides a resource for predicting
gene and pathway function. This network em-
phasizes the prevalence of genetic interactions
and their potential to compound phenotypes
associated with single mutations. Negative ge-
netic interactions tend to connect functionally
related genes and thus may be
predicted using alternative func-
tional information. Although less
functionally informative, positive
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Promote your research among
general audience and media

Computer Science  All Articles

v

Physics Mathematics  Biology

=,  Dryad @datadryad - 26 Dec 2016
" Featured data from @sciencemagazine: A global genetic interaction network

PRYAD maps a wiring diagram of cellular function dx.doi.org/10.5061/dryad....

.. Y;'-Cluc:ntu

Cytokinesis
Sl Polarty& CHOKNESS oA Wobibe Modification

Morphogenesis
\ St 7~ Peroxisome
pH-dependent B : i
Signaiing, X7\ ¢ o R S Ridatve
Glycosylation, 2 Phosphorylation,
aoteln L4 « Mitochondrial
Folding/Targeting, . 7\ Targeting
Cell Wall , i Protein
Biosynthesis , A L4 = TDegradanon
Vesicle Traffic Metabolism
1 , &Fatty Acid
Ribosome a Biosynthesis
Biogenesis % ~L Mitosis &
. . . * Chromosome
rRNéﬁA- VA > Segrregalfan
nc % s
R * \_ NARsplcaton
mRNAProcessing ~~ . " | _ - qNudear cytoplasmic
ranscripton&
womatin Organization
ERBOARD '
TECHBYVICE

It Took 15 Years to Map Every Gene
Interaction in a Yeast Cell

Thi figure ma](:}s the in‘ttel:-cti;:]s :;rfno:xg various ge:1;s;rfi¥:res$‘nted as (.tltohts) in the Understanding how thousands of individual
genome. Genes with linked effects are connected by lines; genes with more yeast genes interact in pairs could expose the
hely correlated effects are closer together. The color of the dots corresponds to the . R .
underlying genetic bases of human diseases.

h
m 0 I e cu Iar fgical processes and organelles in which the genes are involved.
systemsl Cxm—
biology
il e

Connecting global hubs
incancer genomes

M emBOpress

Tim Althoff, UW CSE481DS: Data Science Capstone, http://www.cs.washington.edu/cse481ds




Effective figures
Improve your papers

Maximize impact, boost

citation count, stand out
among your peers

T [thoff, UW CSE481DS: Data Science Capstone, http://www.cs.washington.edu/cse481ds



Today’s Lecture

Why figures matter /

Figures in science

How to design effective figures

Tools, tips, and guidelines

Tim Althoff, UW CSE481DS : Data Science Capstone, http ://www.cs.washington .edu/cse481ds



Two Types of Papers with
Different Visual Structure

Core CS conference papers:
KDD, WebConf, NeurlPS, ICML, ICLR, AAAI, etc.

Interdisciplinary journal papers:

Nature, Science, PNAS, etc.

Tim Althoff, UW CSE481DS : Data Science Capstone, http ://www.cs.washington .edu/cse481ds



Core CS Conference Papers

The focus is on the development
of new methods and their
evaluation and comparison on
benchmark datasets

Tim Althoff, UW CSE481DS : Data Science Capstone, http ://www.cs.washington .edu/cse481ds



Core CS Conference Papers: Visual
Structure

Figure 1: Key methodological contribution
Focus on most important information

Impress your audience!

Is your method/system the fastest, the largest, the most
accurate?

What is the hard problem that your method solves?
What makes your method different from related work?

Figure 2-3: Overview and algorithmic details
Inputs + Data transformation + Outputs

Show details about data transformations:
Graph convolutions, neural architectures, etc.

Figure 4+: Results

Tim Althoff, UW CSE481DS: Data Science Capstone, http://www.cs.washington.edu/cse481ds



Core CS Conference Papers: Visual Structure

Hard: non-standard
design, custom drawings

Figure 1

Figure 2-3

Figure 4+

Easy: standard design,
visualization libraries like

Matplotlib and Seaborn

Tim Althoff, UW CSE481DS: Data Science Capstone, http://www.cs.washington.edu/cse481ds



Examples:

Core CS Conference
Papers




Abstract

Supervised learning on molecules has incredi-
ble potential to be useful in chemistry, drug dis-
covery, and materials science. Luckily, sev-
eral promising and closely related neural network
models invariant to molecular symmetries have
already been described in the literature. These
models learn a message passing algorithm and
aggregation procedure to compute a function of
their entire input graph. At this point, the next
step is to find a particularly effective variant of
this general approach and apply it to chemical
prediction benchmarks until we either solve them
or reach the limits of the approach. In this pa-
per, we reformulate existing models into a sin-
gle common framework we call Message Pass-
ing Neural Networks (MPNNs) and explore ad-
ditional novel variations within this framework.
Using MPNNs we demonstrate state of the art re-
sults on an important molecular property predic-
tion benchmark; these results are strong enough
that we believe future work should focus on
datasets with larger molecules or more accurate
ground truth labels.

Impress your
audience! &

Y

Targets

DFT
~ 103 seconds [£,wp, ...

Message Passing Neural Net

//"\ ,/H
\\ //

~ 1072 seconds

Figure 1. A Message Pasm Network predicts quantum
propertles of an orga modeling a computationally

Focus on key information: “Our
method is so fast! Our paper
should be published at ICML!”

Gilmer et al., Neural Message Passing for Quantum Chemistry, ICML, 2017.

Tim Althoff, UW CSE481DS: Data Science Capstone, http://www.cs.washington.edu/cse481ds



Abstract

Large cascades can develop in online social networks as peo-
ple share information with one another. Though simple re-
share cascades have been studied extensively, the full range
of cascading behaviors on social media is much more di-
verse. Here we study how diffusion protocols, or the social ex-
changes that enable information transmission, affect cascade
growth, analogous to the way communication protocols de-
fine how information is transmitted from one point to another.
Studying 98 of the largest information cascades on Facebook,
we find a wide range of diffusion protocols — from cascading
reshares of images, which use a simple protocol of tapping a
single button for propagation, to the ALS Ice Bucket Chal-
lenge, whose diffusion protocol involved individuals creating
and posting a video, and then nominating specific others to
do the same. We find recurring classes of diffusion protocols,
and identify two key counterbalancing factors in the con-
struction of these protocols, with implications for a cascade’s
growth: the effort required to participate in the cascade, and
the social cost of staying on the sidelines. Protocols requiring
greater individual effort slow down a cascade’s propagation,
while those imposing a greater social cost of not participating
increase the cascade’s adoption likelihood. The predictability
of transmission also varies with protocol. But regardless of
mechanism, the cascades in our analysis all have a similar re-
production number (/1.8), meaning that lower rates of expo-
sure can be offset with higher per-exposure rates of adoption.
Last, we show how a cascade’s structure can not only differ-
entiate these protocols, but also be modeled through branch-
ing processes. Together, these findings provide a framework
for understanding how a wide variety of information cascades
can achieve substantial adoption across a network.

Impress your
audience! &

Figure 1: The”~  \q tree of a cascade with a volunteer

“Cascades can be so large! Despite that,
we know how to study them! Our paper

should be published at ICWSM!”

Cheng et al., Do Diffusion Protocols Govern Cascade Growth?, ICWSM, 2018.

Tim Althoff, UW CSE481DS: Data Science Capstone, http://www.cs.washington.edu/cse481ds



ABSTRACT

Cascades of information-sharing are a primary mechanism by which
content reaches its audience on social media, and an active line of
research has studied how such cascades, which form as content is
reshared from person to person, develop and subside. In this paper,
we perform a large-scale analysis of cascades on Facebook over
significantly longer time scales, and find that a more complex pic-
ture emerges, in which many large cascades recur, exhibiting mul-
tiple bursts of popularity with periods of quiescence in between.
We characterize recurrence by measuring the time elapsed between
bursts, their overlap and proximity in the social network, and the
diversity in the demographics of individuals participating in each
peak. We discover that content virality, as revealed by its initial
popularity, is a main driver of recurrence, with the availability of
multiple copies of that content helping to spark new bursts. Still,
beyond a certain popularity of content, the rate of recurrence drops
as cascades start exhausting the population of interested individu-
als. We reproduce these observed patterns in a simple model of
content recurrence simulated on a real social network. Using only
characteristics of a cascade’s initial burst, we demonstrate strong

performancein predictine whether it will recur in the future,
Keywords:)  Focus on most important  |tion

diffusion; nf jnformation: Figure 1 answers
uestion asked by the title

—ens

Impress your
audience! &

A4

0K - Image Meme
How to be skinny
7.5K - 1. Notice that your body is covered

in skin
2. Say “Wow I'm skinny”

Congratulations you are now skinny

Howto b skinny  How to be skinny How to be skinny

# Reshares
(0)]
PN
]

2.5K - 3

|
Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Figure 1: An example of a image meme that has recurred, or resur-
faced in popularity multiple times, sometimes as a continuation of
the same copy, and sometimes as a new copy of the same meme (ex-
ample copies are shown as thumbnails). This recurrence appears as
multiple peaks in the plot of reshares as a function of time.

“Cascades can be so complex! Despite
that, we know how to study them! Our

paper should be published at WWW!”

Cheng et al., Do Cascades Recur?, WWW, 2016.

Tim Althoff, UW CSE481DS: Data Science Capstone, http://www.cs.washington.edu/cse481ds




ABSTRACT

Deep learning models for graphs have achieved strong performance
for the task of node classification. Despite their proliferation, cur-
rently there is no study of their robustness to adversarial attacks.
Yet, in domains where they are likely to be used, e.g. the web, adver-
saries are common. Can deep learning models for graphs be easily
fooled? In this work, we introduce the first study of adversarial
attacks on attributed graphs, specifically focusing on models ex-
ploiting ideas of graph convolutions. In addition to attacks at test
time, we tackle the more challenging class of poisoning/causative
attacks, which focus on the training phase of a machine learn-
ing model. We generate adversarial perturbations targeting the
node’s features and the graph structure, thus, taking the dependen-
cies between instances in account. Moreover, we ensure that the
perturbations remain unnoticeable by preserving important data
characteristics. To cope with the underlying discrete domain we
propose an efficient algorithm NETTACK exploiting incremental
computations. Our experimental study shows that accuracy of node
classification significantly drops even when performing only few
perturbations. Even more, our attacks are transferable: the lea
attacks generalize to other state-of-the-art node classification
els and unsupervised approaches, and likewise are successful
when only limited knowledge about the graph is given.

Focus on key information: Yes, graph-based
models for deep learning can be easily fooled.
Here we show how devastating attacks can be.
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Figure 1: Small perturbations of the graph structure and
node features lead to misclassification of the target.

Zugner et al., Adversarial Attacks on Neural Networks for Graph Data, KDD, 2018. (Best

paper award)
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Interdisciplinary Journal Papers

The focus is on new scientific
insights and demonstrating the
importance of those insights to

advance science

Tim Althoff, UW CSE481DS : Data Science Capstone, http ://www.cs.washington .edu/cse481ds



Interdisciplinary Journal Papers:
Visual Structure

Figure 1: Dataset, approach and key result

Impress your audience!

Figure 2: Key result, detailed and unpacked

Figure 3: Orthogonal evidence supporting resu

Figure 4: Orthogonal evidence supporting resu

Supplementary Figures: Methodological
contributions, algorithms, robustness analyses

Tim Althoff, UW CSE481DS: Data Science Capstone, http://www.cs.washington.edu/cse481ds




Interdisciplinary Journal
Papers: Visual Structure

Very hard: non-standard
design, custom drawing

Figure 1
Figure 2
Figure 3

Figure 4

Hard: non-standard design,
mixture of custom drawings and
standard visualization libraries

Tim Althoff, UW CSE481DS: Data Science Capstone, http://www.cs.washington.edu/cse481ds



Examples:

Interdisciplinary Journal
Papers




RESEARCH ARTICLE

BIG DATA

Quantitative analysis of

pOpulation-Scale family tree Figures provide a visual
with millions of relatives L= o the sbstact

Joanna Kaplanis,"** Assaf Gordon,"** Tal Shor,”* Omer Weissbrod,’ iger,*
Mary Wahl,»*>'® Michael Gershovits,” Barak Markus,”> Mona Sheikh,>

Melissa Gymrek, “*7%? Gaurav Bhatia,’®"" Daniel G. MacArthur, "?'°

Alkes L. Price,"”""'? Yaniv Erlichl’z’s’ls’m‘]’

Family trees have vast applications in fields as diverse as genetics, anthropology, and
economics. However, the collection of extended family trees is tedious and usually relies on
resources with limited geographical scope and complex data usage restrictions. We
collected 86 million profiles from publicly available online data shared by genealogy
enthusiasts. After extensive cleaning and validation, we obtained population-scale family
trees, including a single pedigree of 13 million individuals. We leveraged the data to
partition the genetic architecture of human longevity and to provide insights into the
geographical dispersion of families. We also report a simple digital procedure to overlay
other data sets with our resource.

Kaplanis et al., Quantitative analysis of population-scale family trees with millions of
relatives, Science, 2018.

Tim Althoff, UW CSE481DS: Data Science Capstone, http://www.cs.washington.edu/cse481ds



Figure 1
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Fig. 1. Overview of the collected data.
(A) The basic algorithmic steps to

form valid pedigree structures from the
input data available via the Geni APL.
Gray, profiles; red, marriages. See fig. S2
for a comprehensive overview. The last
step shows an example of a real pedigree
from the website with ~6000 individuals
spanning about seven generations.

(B) Size distribution of the largest 1000
family trees after data cleaning, sorted
by size.

Kaplanis et al., Quantitative analysis of population-scale family trees with millions of

relatives, Science, 201

8.
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Figure 2
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Fig. 2. Analysis and validation of demographic data. (A) Distribution of the life-span distributions versus Geni (black) and HMD (red). See also
of life expectancy per year. Colors correspond to the frequency of profiles  fig. S5A. (D) Geographic distribution of the annotated place-of-birth

of individuals who died at a certain age for each year. Asterisks indicate information. Every pixel corresponds to a profile in the data set.

deaths at military age in the Civil War and First and Second World (E) Validation of geographical assignment by historical trends. Top:

Wars. (B) Expected life span in Geni (black) and the Oeppen and Cumulative distribution of profiles since 1500 for each city on a logarithmic
Vaupel study [red (27)] as a function of year of death. (C) Comparison scale as a function of time. Bottom: Year of first settlement in the city.

Kaplanis et al., Quantitative analysis of population-scale family trees with millions of
relatives, Science, 2018.
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Figure 3

Further analyses
supporting key result
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Fig. 3. The genetic architecture of longevity. (A) Regression (red) of
child longevity on its mid-parent longevity (defined as difference between
age of death and expected life span). Black squares, average longevity
of children binned by the mid-parent value; gray bars, estimated 95%
confidence interval (Cl). (B) Estimated narrow-sense heritability (red)
with 95% confidence intervals (black bars) obtained by the mid-parent
design stratified by the average decade of birth of the parents.

IBD

(C) Correlation of a trait as a function of IBD under strict additive

(h?, orange), squared (Vaa, purple), and cubic (Vaaa, green) epistasis
architectures after dormancy adjustments. (D) Average longevity
correlation as a function of IBD (black circles) grouped in 5% increments
(gray: 95% Cl) after adjusting for dominancy. A dashed line denotes

the extrapolation of the models toward monozygotic twins from the Danish
Twin Registry (red circle).

Kaplanis et al., Quantitative analysis of population-scale family trees with millions of

relatives, Science, 2018.
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Figure 4
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Fig. 4. Analysis of familial dispersio
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0

s a function of average year of birth. Individual dots represent

of father-offspring places of birth (cyan), -
radius (black) as a function of time (average year of birth). (B) Rate of
change in the country of birth for father-offspring (cyan) or mother-offspring
(red) stratified by major geographic areas. (C) Average IBD (log,) between

Kaplanis et al.,
relatives, Science, 2018.

ured average per year; the black line denotes the smooth trend

using locally weighted regression. (D) IBD of couples as a function of
marital radius. Each dot represents a year between 1650 to 1950. The blue
line denotes the best linear regression line in log-log space.

Quantitative analysis of population-scale family trees with millions of

Tim Althoff, UW CSE481DS: Data Science Capstone, http://www.cs.washington.edu/cse481ds



COMPUTER SCIENCE

Human-level performance in 3D
multiplayer games with population-
based reinforcement learning

Max Jaderberg*t, Wojciech M. Czarnecki”*{, Iain Dunningt, Luke Marris, Guy Lever,
Antonio Garcia Castaiieda, Charles Beattie, Neil C. Rabinowitz, Ari S. Morcos,
Avraham Ruderman, Nicolas Sonnerat, Tim Green, Louise Deason, Joel Z. Leibo,
David Silver, Demis Hassabis, Koray Kavukcuoglu, Thore Graepel

Reinforcement learning (RL) has shown great success in increasingly complex single-agent
environments and two-player turn-based games. However, the real world contains multiple
agents, each learning and acting independently to cooperate and compete with other
agents. We used a tournament-style evaluation to demonstrate that an agent can achieve
human-level performance in a three-dimensional multiplayer first-person video game,
Quake lll Arena in Capture the Flag mode, using only pixels and game points scored as
input. We used a two-tier optimization process in which a population of independent RL
agents are trained concurrently from thousands of parallel matches on randomly
generated environments. Each agent learns its own internal reward signal and rich
representation of the world. These results indicate the great potential of multiagent
reinforcement learning for artificial intelligence research.

Jaderberg et al., Human-level performance in 3D multiplayer games with population-
based reinforcement learning, Science, 2019.

Tim Althoff, UW CSE481DS: Data Science Capstone, http://www.cs.washington.edu/cse481ds
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Reinforcement learning
updates each agent’s

E Population-based training provides diverse policies for

Y respective policy

Population

training games and enables internal reward optimisation

Fig. 1. CTF task and computational training framework. (A and B) Two
example maps that have been sampled from the distribution of (A)
outdoor maps and (B) indoor maps. Each agent in the game sees only its
own first-person pixel view of the environment. (C) Training data are
generated by playing thousands of CTF games in parallel on a diverse
distribution of procedurally generated maps and (D) used to train

the agents that played in each game with RL. (E) We trained a
population of 30 different agents together, which provided a diverse

set of teammates and opponents to play with and was also used to
evolve the internal rewards and hyperparameters of agents and
learning process. Each circle represents an agent in the population,
with the size of the inner circle representing strength. Agents undergo
computational evolution (represented as splitting) with descendents
inheriting and mutating hyperparameters (represented as color).
Gameplay footage and further exposition of the environment variability
can be found in movie S1.

Jaderberg et al., Human-level performance in 3D multiplayer games with population-
based reinforcement learning, Science, 2019.
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Figure 2

Approach: details
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Fig. 2. Agent architecture and benchmarking. (A) How the agent
processes a temporal sequence of observations x; from the environment.
The model operates at two different time scales, faster at the bottom
and slower by a factor of 1 at the top. A stochastic vector-valued

latent variable is sampled at the fast time scale from distribution Q; on the
basis of observations x;. The action distribution &; is sampled conditional
on the latent variable at each time step t. The latent variable is regularized
by the slow moving prior Py, which helps capture long-range temporal
correlations and promotes memory. The network parameters are
updated by using RL according to the agent’'s own internal reward signal
r¢, which is obtained from a learned transformation w of game points

pt. W is optimized for winning probability through PBT, another level of
training performed at yet a slower time scale than that of RL. Detailed

Jaderberg et al.,
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network architectures are described in fig. S11. (B) (Top) The Elo skill
ratings of the FTW agent population throughout training (blue) together
with those of the best baseline agents by using hand-tuned reward
shaping (RS) (red) and game-winning reward signal only (black),
compared with human and random agent reference points (violet, shaded
region shows strength between 10th and 90th percentile). The FTW agent
achieves a skill level considerably beyond strong human subjects,
whereas the baseline agent’s skill plateaus below and does not learn
anything without reward shaping [evaluation procedure is provided in
(28)]. (Bottom) The evolution of three hyperparameters of the FTW
agent population: learning rate, Kullback-Leibler divergence (KL)
weighting, and internal time scale 1, plotted as mean and standard
deviation across the population.

Human-level performance in 3D multiplayer games with population-

based reinforcement learning, Science, 2019.
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according to activation (fig. S5). (D) Distributions of situation conditional (Right) Average occurrence per game of each behavior for the FTW
activations (each conditional distribution is colored gray and green) for agent, the FTW agent without temporal hierarchy (TH), self-play with
particular single neurons that are distinctly selective for these CTF reward shaping agent, and human subjects (fig. S9).

Jaderberg et al., Human-level performance in 3D multiplayer games with population-
based reinforcement learning, Science, 2019.
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Further analyses
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Fig. 4. Progression of agent during training. Shown is the development
of knowledge representation and behaviors of the FTW agent over the
training period of 450,000 games, segmented into three phases (movie
S2). "Knowledge” indicates the percentage of game knowledge that is
linearly decodable from the agent’s representation, measured by average
scaled AUCROC across 200 features of game state. Some knowledge is
compressed to single-neuron responses (Fig. 3A), whose emergence in
training is shown at the top. “Relative internal reward magnitude”
indicates the relative magnitude of the agent’s internal reward weights

of 3 of the 13 events corresponding to game points p. Early in training, the
agent puts large reward weight on picking up the opponent's flag,
whereas later, this weight is reduced, and reward for tagging an opponent
and penalty when opponents capture a flag are increased by a factor of
two. “Behavior probability” indicates the frequencies of occurrence for 3 of

Top Memory Read Locations

Teammate Following

350K 350K

Visitation Map Top Memory Read Locations

the 32 automatically discovered behavior clusters through training.
Opponent base camping (red) is discovered early on, whereas teammate
following (blue) becomes very prominent midway through training
before mostly disappearing. The “home base defense” behavior (green)
resurges in occurrence toward the end of training, which is in line with the
agent’s increased internal penalty for more opponent flag captures.
“Memory usage" comprises heat maps of visitation frequencies

for (left) locations in a particular map and (right) locations of the agent
at which the top-10 most frequently read memories were written to
memory, normalized by random reads from memory, indicating

which locations the agent learned to recall. Recalled locations change
considerably throughout training, eventually showing the agent

recalling the entrances to both bases, presumably in order to perform
more efficient navigation in unseen maps (fig. S7).

Jaderberg et al., Human-level performance in 3D multiplayer games with population-
based reinforcement learning, Science, 2019.
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Today’s Lecture

Why figures matter /
Figures in science J

How to design effective figures

Tools, tips, and guidelines @)
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Principle #1: Design figures for the
audience (not for you)

Before your design figures think about:
Make-up of the audience:
Will a figure appear in a specialized journal?

Is a figure aimed at a broad readership?
Background knowledge of the audience:

Audience may not know what you know

Figures should provide all the information necessary
for the audience to fully comprehend them

Disciplinary conventions:

Graphical conventions and norms exist in each field

Tim Althoff, UW CSE481DS: Data Science Capstone, http://www.cs.washington.edu/cse481ds



Principle #2: Design a clear visual
structure with pleasant symmetries

Rolandi et al., A brief guide to designi ng effective figures for the scientific paper. Advanced Materials 23.38 (2011)
fffffffffffffffffffff : Data Science Capstone, http://www.cs.washington.edu/cse481ds



Principle #3: Use visual contrast,
but keep figures simple

ORIENTATION

WEIGHT POSITION

EEEBE
O EEEN
EEEN
I.ll

Rolandi et al., A brief guide to designing effective figures for the scientific paper. Advanced Materials 23.38 (2011)
Tim Althoff, UW CSE481DS: Data Science Capstone, http://www.cs.washington.edu/cse481ds




Principle #4: Use readable
and legible typography

Adequate readability due to high value contrast

text text

Inadequate readability due to low value contrast

Inadequate readability due to patterned background

Hd 1

Rolandi et al., A brief guide to designing effective figures for the scientific paper. Advanced Materials 23.38 (2011)
Tim Althoff, UW CSE481DS: Data Science Capstone, http://www.cs.washington.edu/cse481ds




Principle #5: Be consistent, align
panels and use sufficient padding

ne, http://www.cs.washington.edu/cse481ds
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Today’s Lecture

Why figures matter /
Figures in science J

How to design effective figu rv
Tools, tips, and guidelines :@.




Key Rules to ALWAYS Follow

Save raw data and results to a tsv/csv/binary file:

Your figures will need multiple rounds of editing
Read in the data and design figures

Important: Save figures as PDF or other vector format:

You might need to use multiple tools to draw a figure

" Example:
1. First, use seaborn to draw a clustermap
2. Then, export clustermap as PDF

3. Finally, use Adobe lllustrator to annotate
the clustermap

" Example:
1. First, use D3.js to layout a network

2. Then, export the network as PDF
3. Finally, use Adobe lllustrator to show node features and node labels

Tim Althoff, UW CSE481DS: Data Science Capstone, http://www.cs.washington.edu/cse481ds



Why shouldn’t you use raster
formats (e.q., JPG, GIF, PNG, TIF)?

Raster images:
Use a fixed number of colored pixels and can’t be

dramatically resized (pixilation, distortion issues)
When saved, they cannot be reopened and edited!

Vector

Vector images (e.g., PDF, EPS, Al, SVG): P
Remain editable! . a
You can open them in lllustrator and edit text or any

other element within the graphic
Can be converted to a raster image but not vice-versa

plt.savefig(‘myfig.pdf’)

Only use raster format for web, Github repo, etc.

Tim Althoff, UW CSE481DS: Data Science Capstone, http://www.cs.washington.edu/cse481ds



Visualization Design Guidelines #1

Tufte’s design rules:

sealthreinhold.com/school/tuftes-rules

Data-to-ink-ratio: Maximize data-ink and erase as
much non-data-ink as possible (avoid chart junk)

Art is science is art, mkweb.bcgsc.ca Final

version
First r—b
version -1

Tim Althoff, UW CSE481DS: Data Science Capstone, http://www.cs.washington.edu/cse481ds


http://www.sealthreinhold.com/school/tuftes-rules/
http://mkweb.bcgsc.ca/

Visualization Design Guidelines #2

Google’s principles for designing charts:

material.io/design/communication/data-
visualization.html

= Principles: Be honest, Lend a helping hand, Delight users,
Give clarity of focus, Embrace scale, Provide structure

Manuel Lima. Design Lead @ Google:

N ‘ Filter by: [ susJecT L)
e e e R
J'Q = e T = "":5: e 2
Fig. /- = = .

Art (74)

LA Sy b
PR R 4 ’ Biology (60)
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Computer Systems (39)
Food Webs (16)

Knowledge Networks (141)
Multi-Domain Representation (70)
Music (47)

Others (77)

Pattern Recognition (53)

Political Networks (34)

Semantic Networks (44)

Social Networks (135)
Transportation Networks (70)
World Wide Web (55)

See All (1000)
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Tools, Software &

Frameworks

Tim Althoff, UW CSE481DS: Data Science Capstone, http://www.cs.washington.edu/cse481ds



Tools, Software, and Frameworks

Adobe lllustrator

= Adobe Creative Cloud
LaTeXiT

= chachatelier.fr/latexit
Matplotlib

= matplotlib.org

Seaborn
= seaborn.pydata.org

Bokeh

= pokeh.pydata.org
D3.js

= d3js.org
GeoPandas

= geopandas.org

Tim Althoff, UW CSE481DS: Data Scienc

Google Charts

= developers.google.com/chart
Circos

= circos.ca

gnuplut

= onuplot.info

TikZ

= texample.net/tikz

Plotly

= plot.ly/python
missingno

= github.com/ResidentMario/missingno

billboard.js

= paver.github.io/billboard.js
Squaire.js

= wsj.github.io/squaire

e Capstone, http://www.cs.washington.edu/cse481ds
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Adobe lllustrator and Alternatives

Where to get on campus:

= For purchase: https://itconnect.uw.edu/wares/uware/adobe-
creative-cloud/

= Use for Free: UW Library
https://www.lib.washington.edu/media/software

Free alternatives:
= Inkscape, https://inkscape.org

= GIMP, https://www.gimp.org

= Boxy-SVG, https://boxy-svg.com
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How to get from a JS vis to an
effective figure?

Three steps:
Use a JS library from two slide ago and generate a

visualization

Generate a PDF file from HTML:

stackoverflow.com/questions/18191893/generate-pdf-
from-html-in-div-using-javascript

Open the PDF in lllustrator and make further edits:

Change colors

Add labels and annotations

Add new visual elements, e.g., insets, logos

Combine with other graphics to get a multi-panel figure
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Tools for Network & Relational Data

Gephi, gephi.org

Graphviz, graphviz.org
NetworkX, networkx.github.io
JSNetworkX, jsnetworkx.org
igraph, igraph.org/python
sigma.js, sigmajs.org
Cytoscape, cytoscape.org
Hive plots, hiveplot.com
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Colors
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Color Advice

Adobe color, https://color.adobe.com

Color Wheel

Apply Color Harmony
Rule

© Analogous

O Monochromatic
O Triad

O Complementary
O Compound

O shades

O custom

Color Mode
RGB v

Extract from an Image

4 Color rules
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Color Advice: Brewer Palettes

Brewer palettes: Color combinations selected for

their special propert

visualization
3 types of palettes:

qualitative — colors do not

have a perceived order

sequential — colors have a

perceived order and

perceived difference between
successive colors is uniform

diverging — two back-to- owmnvsCOL::ssmrﬁf“m;::
back sequential palettes oo e 10000
starting from a common color | cose &¢

d.arkoz.QO o0 ot o000 PQWO

ies for us

e in data

Color Brewer, http://colorbrewer?2.org

Number of data cl. 3
U 0
Nature of your d
© sequential qualitati
|
Pick a color scheme: | |
Multi-hue: Single hue: %
i i i i i j——w_
Onlyshow: i | 3-class BuGn
— . ~ -~ | / m
co.lorb\ {{{{{{{ D 2 4 x —
lllllllllllll HEX o
ooooooooooooo 3
e5f5f9
Context: i
9999999

http //mkweb bcqsc Ca/brewer

DIVERGING

o0
o0
o0

Color palettes for color blindness, http://mkweb.bcgsc.ca/colorblind
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Where to Get Ideas for

Effective Figures?




Where to get ideas for figures?

Papers published in last issues of Nature, Science,
PNAS, Nature Methods, Nature Biotech, etc.

No need to read the papers, just look at figures!
Martin Krzywinski, mkweb.bcgsc.ca

Inventor of several popular visualization tools

Designed many Nature, Science, etc. covers
www.d3-graph-gallery.com

Gallery with hundreds of chart, graphs, geo, part-of-whole

Reproducible & editable source code!
developers.google.com/chart/interactive/docs/gallery

Over 30 chart types, including many non-standard ones
Tutorials and source code for every chart type!
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Where to get ideas for figures?

Evolution

www.d3-graph-gallery.com

vy Many non-standard, but highly
M ‘ M 12 22 3 effective chart types. Source code!

Line plot Area Stacked area Streamq
Distribution
Map th
I
Y ; \ L I"" I—
o o alll,  HEH S=E
ag ¥ N oS A
< Lol S—
3 N : -." Violin Density Histogram Boxplot Ridgeline
L : " %
AN
~
Choropleth Hexbin map Cartog Correlation
| 1| o0 o .
ee ® L 111} ] { TXJ '.
ees® EEEEEE °o 000 ..
3032 % EEEEN o0o
A ® P o )

o
000
. |
N Scatter Heatmap Correlogram Bubble Connected scatter Density 2d
Ranking

Chord diagram Network Sankey Arc dia
General knowledge .
5
i E < Barplot Spider / Radar Wordcloud Parallel Lollipop Circular Barplot
) @ -

C Part of a whole

Basics Custom Interactivity Shape h . .

Treemap Doughnut Pie chart Dendrogram Circular packing
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Where to get ideas for figures?

https://developers.google.com/chart with source code!

Chart Types
Chart Gallery
Annotation Charts
Area Charts

Bar Charts

Bubble Charts
Calendar Charts
Candlestick Charts
Column Charts
Combo Charts
Diff Charts

Donut Charts
Gantt Charts
Gauge Charts
GeoCharts
Histograms
Intervals

Line Charts

Maps

Org Charts

Pie Charts

Sankey Diagrams
Scatter Charts
Stepped Area Charts
Table Charts
Timelines

Tree Map Charts
Trendlines
Waterfall Charts
Word Trees

Miscellaneous Examples

Red Sox Attendance

Jan Feb Mar Apr May Jun Jul Aug Sep

At AL

m M4 42w

w M H4HsSAH4Z2n
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Where to get ideas for figures?

https://developers.google.com/chart with source code!

Chart Types
Chart Gallery
Annotation Charts
Area Charts

Bar Charts

Bubble Charts
Calendar Charts
Candlestick Charts
Column Charts
Combo Charts
Diff Charts

Donut Charts
Gantt Charts
Gauge Charts
GeoCharts
Histograms
Intervals

Line Charts

Maps

Org Charts

Pie Charts

Sankey Diagrams
Scatter Charts
Stepped Area Charts
Table Charts
Timelines

Tree Map Charts
Trendlines
Waterfall Charts
Word Trees

Miscellaneous Examples

Red Sox Attend =

e OX endaance -
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

S

M |

T

w Region GeoCharts

T

; H The regions style fills entire regions (typically countries) with colors corresponding to the values that you assign.

S

M

T
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T »

F e

S L
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Tim Althoff, UW CSE481DS: Data Science Capstone, http://www.cs.washington.edu/cse481ds



https://developers.google.com/chart/

Where to get ideas for figures?

https://developers.google.com/chart with source code!

Chart Types
Chart Gallery
Annotation Charts
Area Charts

Bar Charts

Bubble Charts
Calendar Charts
Candlestick Charts
Column Charts
Combo Charts
Diff Charts

Donut Charts
Gantt Charts
Gauge Charts
GeoCharts
Histograms
Intervals

Line Charts

Maps

Org Charts

Pie Charts

Sankey Diagrams
Scatter Charts
Stepped Area Charts
Table Charts
Timelines

Tree Map Charts
Trendlines
Waterfall Charts
Word Trees

Miscellaneous Examples

Red Sox Attendance

Jan Feb Mar Apr May Jun Jul Aug Sep

Region GeoCharts

M4 =42 »m

Angola I
Morocco
Portugal
-

I Brazil *
‘

China
I Spain Senegal I
I Mexico

France [7
South Africa
Canada 3R]

Oct Nov Dec

The regions style fills entire regions (typically countries) with colors corresponding to the values that you assign.

% fﬁ‘

USA Erlnd Mali
india I
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Where to get ideas for figures?

https://developers.google.com/chart with source code!

Chart Types
Chart Gallery
Annotation Charts
Area Charts

Bar Charts

Bubble Charts
Calendar Charts
Candlestick Charts
Column Charts
Combo Charts
Diff Charts

Donut Charts
Gantt Charts
Gauge Charts
GeoCharts
Histograms
Intervals

Line Charts

Maps

Org Charts

Pie Charts

Sankey Diagrams
Scatter Charts
Stepped Area Charts
Table Charts
Timelines

Tree Map Charts
Trendlines
Waterfall Charts
Word Trees

Miscellaneous Examples

Red Sox Attendance

Jan Feb Mar Apr May Jun Jul Aug Sep

= »

T
VTV Region GeoCharts
g The regions style fills entire regions (typically countries) with colors corresponding to the values that you assign.
20l
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I””‘° - evil
weird
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cats kibble
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% fﬁ‘

{

eat :
mice

- meowing
in the cradle lyrics
for adoption
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Where to get ideas for figures?

https://developers.google.com/chart with source code!

Chart Types
Chart Gallery
Annotation Charts
Area Charts

Bar Charts

Bubble Charts
Calendar Charts
Candlestick Charts
Column Charts
Combo Charts
Diff Charts

Donut Charts
Gantt Charts
Gauge Charts
GeoCharts
Histograms
Intervals

Line Charts

Maps

Org Charts

Pie Charts

Sankey Diagrams
Scatter Charts
Stepped Area Charts
Table Charts
Timelines

Tree Map Charts
Trendlines
Waterfall Charts
Word Trees

Miscellaneous Examples

27000
Red Sox Attendance -
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
S
M
T
VTV Region GeoCharts
g The regions style fills entire regions (typically countries) with colors corresponding to the values that you assign.
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Today’s Lecture

Why figures matter
Figures in science
How to design effective figur

Tools, tips, and guidelines




Three Takeaway Messages

Figures are often the first part of research
papers examined by editors and your peers

Well-designed figures convey facts, ideas, and
relationships far more clearly/concisely than
text

Focus on effectively conveying complex
information rather than on attention-getting

decoration
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Your Turn ©
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Visualization Prototyping Activity

Goal: Design and prototype the key figure(s) for your
project!
Take a piece of paper and draw out what you might
see in your data and how you’d like to communicate [5
min]

What do you want to communicate?

Who is your audience?

Prototype and iterate! Great figures take many iterations.
Iterate with your partner [10 min]

Could you communicate the same idea more concisely and
effectively?

How could you impress your audience?
Share your insights in class [10 min]
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Visualization Lab
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