Data Science at Scale: MapReduce & Spark

CSE481DS Data Science Capstone Tim Althoff PAUL G. ALLEN SCHOOL OF COMPUTER SCIENCE & ENGINEERING

Group Reflection on Process & Validity

Lecture Part: Distributed Computing for Data Science

Large-scale Computing

- Large-scale computing for data mining problems on <u>commodity hardware</u>
- Challenges:
 - How do you distribute computation?
 - How can we make it easy to write distributed programs?
 - Machines fail:
 - One server may stay up 3 years (1,000 days)
 - If you have 1,000 servers, expect to lose 1/day
 - With 1M machines 1,000 machines fail every day!

An Idea and a Solution

Issue:

Copying data over a network takes timeIdea:

- Bring computation to data
- Store files multiple times for reliability
- Spark/Hadoop address these problems
 - Storage Infrastructure File system
 - Google: GFS. Hadoop: HDFS
 - Programming model
 - MapReduce
 - Spark

Storage Infrastructure

Problem:

If nodes fail, how to store data persistently?

Answer:

- Distributed File System
 - Provides global file namespace

Typical usage pattern:

- Huge files (100s of GB to TB)
- Data is rarely updated in place
- Reads and appends are common

Distributed File System

Chunk servers

- File is split into contiguous chunks
- Typically each chunk is 16-64MB
- Each chunk replicated (usually 2x or 3x)
- Try to keep replicas in different racks

Master node

- a.k.a. Name Node in Hadoop's HDFS
- Stores metadata about where files are stored
- Might be replicated
- Client library for file access
 - Talks to master to find chunk servers
 - Connects directly to chunk servers to access data

Distributed File System

- Reliable distributed file system
- Data kept in "chunks" spread across machines
- Each chunk replicated on different machines
 - Seamless recovery from disk or machine failure

Bring computation directly to the data!

Chunk servers also serve as compute servers

Programming Model

- MapReduce is a style of programming designed for:
 - 1. Easy parallel programming
 - 2. Invisible management of hardware and software failures
 - 3. Easy management of very-large-scale data
- It has several implementations, including Hadoop, Spark (used in this class), Flink, and the original Google implementation just called "MapReduce"

MapReduce: Overview

3 steps of MapReduce

Map:

- Apply a user-written Map function to each input element
 - Mapper applies the Map function to a single element
 - Many mappers grouped in a *Map task* (the unit of parallelism)
- The output of the Map function is a set of 0, 1, or more key-value pairs.

Group by key: Sort and shuffle

System sorts all the key-value pairs by key, and outputs key-(list of values) pairs

Reduce:

User-written *Reduce function* is applied to each key-(list of values)

Outline stays the same, Map and Reduce change to fit the problem

Map-Reduce: A diagram

Map-Reduce: In Parallel

All phases are distributed with many tasks doing the work

MapReduce Pattern

Example: Word Counting

Example MapReduce task:

- We have a huge text document
- Count the number of times each distinct word appears in the file

Many applications of this:

- Analyze web server logs to find popular URLs
- Statistical machine translation:
 - Need to count number of times every 5-word sequence occurs in a large corpus of documents

MapReduce: Word Counting

Word Count Using MapReduce

map(key, value):

key: document name; value: text of the document for each word w in value: emit(w, 1)

reduce(key, values):

```
# key: a word; value: an iterator over counts
result = 0
for each count v in values:
    result += v
emit(key, result)
```

MapReduce: Environment

MapReduce environment takes care of:

- Partitioning the input data
- Scheduling the program's execution across a set of machines
- Performing the group by key step
 - In practice this is is the bottleneck
- Handling machine failures
- Managing required inter-machine communication

Dealing with Failures

Map worker failure

- Map tasks completed or in-progress at worker are reset to idle and rescheduled
- Reduce workers are notified when map task is rescheduled on another worker

Reduce worker failure

 Only in-progress tasks are reset to idle and the reduce task is restarted

Problems with MapReduce

Two major limitations of MapReduce:

- Difficulty of programming directly in MR
 - Many problems aren't easily described as map-reduce
- Performance bottlenecks, or batch not fitting the use cases
 - Persistence to disk typically slower than in-memory work

In short, MR doesn't compose well for large applications

 Many times one needs to chain multiple mapreduce steps

Data-Flow Systems

- MapReduce uses two "ranks" of tasks: One for Map the second for Reduce
 - Data flows from the first rank to the second

Data-Flow Systems generalize this in two ways:

- 1. Allow any number of tasks/ranks
- 2. Allow functions other than Map and Reduce
- As long as data flow is in one direction only, we can have the blocking property and allow recovery of tasks rather than whole jobs

Spark: Most Popular Data-Flow System

- Expressive computing system, not limited to the map-reduce model
- Additions to MapReduce model:
 - Fast data sharing
 - Avoids saving intermediate results to disk
 - Caches data for repetitive queries (e.g. for machine learning)
 - General execution graphs (DAGs)
 - Richer functions than just map and reduce
- Compatible with Hadoop

Spark: Overview

- Open source software (Apache Foundation)
- Supports Java, Scala and Python
- Key construct/idea: Resilient Distributed Dataset (RDD)
- Higher-level APIs: DataFrames & DataSets
 - Introduced in more recent versions of Spark
 - Different APIs for aggregate data, which allowed to introduce SQL support

Spark: RDD

Key concept *Resilient Distributed Dataset* (RDD)

- Partitioned collection of records
 - Generalizes (key-value) pairs
- Spread across the cluster, Read-only
- Caching dataset in memory
 - Different storage levels available
 - Fallback to disk possible
- RDDs can be created from Hadoop, or by transforming other RDDs (you can stack RDDs)
- RDDs are best suited for applications that apply the same operation to all elements of a dataset

Spark RDD Operations

- Transformations build RDDs through deterministic operations on other RDDs:
 - Transformations include map, filter, join, union, intersection, distinct
 - Lazy evaluation: Nothing computed until an action requires it
- Actions to return value or export data
 - Actions include count, collect, reduce, save
 - Actions can be applied to RDDs; actions force calculations and return values

Task Scheduler: General DAGs

- Supports general task graphs
- Pipelines functions where possible
- Cache-aware data reuse & locality
- Partitioning-aware to avoid shuffles

DataFrame & Dataset

DataFrame:

- Unlike an RDD, data organized into named columns, e.g. a table in a relational database.
- Imposes a structure onto a distributed collection of data, allowing higher-level abstraction
- Dataset:
 - Extension of DataFrame API which provides type-safe, object-oriented programming interface (compile-time error detection)

Both built on Spark SQL engine. Both can be converted back to an RDD

Useful Libraries for Spark

Spark SQL

- Spark Streaming stream processing of live datastreams
- MLlib scalable machine learning
- GraphX graph manipulation
 - extends Spark RDD with Graph abstraction: a directed multigraph with properties attached to each vertex and edge

Data Analytics Software Stack

Mesos Cluster resource manager, multi-tenancy

Spark vs. Hadoop MapReduce

- Performance: Spark normally faster but with caveats
 - Spark can process data in-memory; Hadoop MapReduce persists back to the disk after a map or reduce action
 - Spark generally outperforms MapReduce, but it often needs lots of memory to perform well; if there are other resource-demanding services or can't fit in memory, Spark degrades
 - MapReduce easily runs alongside other services with minor performance differences, & works well with the 1-pass jobs it was designed for
- Ease of use: Spark is easier to program (higher-level APIs)
- Data processing: Spark is more general

Lab Part: Intro to Spark