Announcements:
• Validity Reflection presentation due next week
 (6 slides, 6 min, see template)
1. Formulate a research question
2. Identify a dataset with which to answer the question
3. Design an analysis process (next)
4. Consider construct, internal and external validity
 - Remember that more data doesn’t necessarily help
Plan your own project along these stages
When learning about other projects pay attention potential pitfalls across all phases
When working on your own project, explicitly address each step and failure modes
Brief Recap of Study Context & Main Results
How Physically Active Are We?

Physical activity is extremely important for health [Lee et al., 2012]. **But we do not know how much physical activity people get!**

According to WHO:

- 5-54% of Germans don’t get enough activity
- No data for Switzerland and Israel

Health research limitations today:

- High cost, short-term, limited scale
- Biases from self-reporting
Wearable and Mobile Devices

69% adults own smartphones in developed countries
46% in developing economies (rapidly growing)

Wearable and mobile devices generate massive
digital traces of real-world behavior and health
Activity Tracking

Tracking actions
- Steps (automatic)
- Runs
- Walks
- Workouts
- Biking
- Weight
- Heart rate
- Food
- Drinks
- And many, many others
Dataset Statistics

- Data from 2011
- 717,527 anonymized users
- Users from 111 countries
- 68 million days of steps tracking
 - 100 billion data points (2TB), Minute-by-minute
- Focus on 46 countries with >=1,000 users
 - 32 high-income, 14 middle-income countries

Today: 6M users, 160M days of activity, 800M actions tracked
Data in Context

- Our data: 68 million days of activity from over 700,000 individuals in 111 countries

1400x larger than largest existing gold-standard datasets:

- NHANES [Troiano et al., MSSE 2008]
- IPEN [Van Dyck et al., Int. J. Obes. 2015]

Population data available at:
http://activityinequality.stanford.edu/
But, how is activity distributed within the population?
Result 1: Inequality of Physical Activity

Difference in means

For the first time, sufficient data to estimate tails of distribution

- How (un)evenly is activity distributed?
- Gini index of the activity distribution:
 - Activity rich vs. activity poor people

\[
G = \frac{\sum_{i=1}^{n} \sum_{j=1}^{n} |x_i - x_j|}{2 \sum_{i=1}^{n} \sum_{j=1}^{n} x_j}
\]
Result 2: Activity Inequality Predicts Obesity

Tails/extremes matter more than the mean

$R^2=0.64$ (vs. 0.47 for avg. activity)

Massive digital traces *uniquely enable* studying tails!
Result 3: Walkability Reduces Inequality
Stage 1: Define
Stage 1: Define

- Define the goal and type of the analysis.
- Failure modes: Goal of analysis does not match scientific or business need.
Motivation: How Physically Active Are We?

Physical activity is extremely important for health [Lee et al., 2012]. But we do not know how much physical activity people get!

According to WHO:

- 5-54% of Germans don’t get enough activity
- No data for Switzerland and Israel

Health research limitations today:

- High cost, short-term, limited scale
- Biases from self-reporting
Concrete Research Questions

1. How does physical activity vary across and within countries?

2. What are the relationships between physical activity disparities, health outcomes such as obesity, and modifiable factors such as the built environment?
How to figure out the right question? Engage domain experts!

Data Experts
Don’t know what questions to ask & scientific impact

Domain Experts
Don’t know data and how new methods could address their big questions

Gaining insights requires intersection of

• Knowing **CS methods** to extract insights from massive data
• Knowing **data**, its limitations, and how to address them
• Knowing **big questions** and how to find new ways to address them
Stage 2: Collect
Stage 2: Collect

- Measure / collect data to analyze.
- Failure modes: Selection bias (e.g., population mismatch, selective labeling...).
In our study...

- Key idea was to use smartphones people already have and already collected data – a “convenience sample”
- Selection bias is likely: Participants need to own smartphone (rich?) and use a particular health app (more interested in their own health?)
 - Which population do we want to reason about?
 - Need to investigate selection effects
Who Is Using These Apps?

- Demographics fairly representative (USA)
 - Gender: 50.2% female (publ.: 50.8%)
 - Age: median 35 years (publ.: 37 years)
 - Obesity: 28.8% (published: 29-35%)

- Method: Bootstrap resample data according to representative estimates
 - Majority of public health studies may not be representative either – scale allows adjusting
Association between activity inequality and obesity holds within country income groups
Relationship between walkability and activity inequality holds within cities of similar median household income (quartiles)
Goal: To verify that subjects with missing data on gender, age, or BMI are not different from those who report data.

Method: We computed the standardized mean difference (SMD) in age, gender, BMI, and average steps per day between groups with and without missing data.

- SMD: Difference in means between groups divided by the standard deviation among the groups

\[\beta = \frac{\mu_1 - \mu_2}{\sqrt{\sigma_1^2 + \sigma_2^2}}. \]

Result: “Across all combinations of missing variables (age, gender, BMI) and outcomes (age, gender, BMI, daily steps), the groups were balanced, with all standard mean differences lower than 0.25.”

- Implication: The selective labeling of age, gender, BMI was not awfully biased
Stage 3: Annotate
Stage 3: Annotate

- Augment data with labels or other metadata.
- Failure modes: Annotator disagreement; erroneous codes or labels.
No Location Data!

- **Game over?** Data did not include location information (e.g. GPS)

But:

- **Phones sync regularly with server**
 - Can get IP address from requests and localize
 - Works well on country level (but not city level) (>99% accuracy)

- **Newer app versions get weather updates and use nearest cell tower**
 - Can get city level location from cell tower (>99% accuracy)
Can we trust self-reported height and weight?

- Consider self-reported height and weight as annotation here
 - Also makes sense to ask these questions when considering construct validity for obesity measures (we’ll come back to this)

- Lots of studies have shown that people generally overreport their height and underreport their weight (say ~1lbs).
 - Essentially we like rounding up our height and round down our weight.
- Often this effect is systematic but minor.
 - Some studies have reported 0.99 correlation between self-report and actual weight.
Stage 4: Wrangle
Stage 1: Wrangle

- Clean, filter, summarize, and/or integrate data.
- Failure modes: Incorrect filtering, e.g., high-leverage outliers. Incorrect joins with other datasets.
To avoid incorrect filtering or incorrect joins always check your output size and output examples.

These issues are bugs and tend to be simpler than “real validity issues”, which look fine from a join and output perspective but the exact values are systematically biased in some way.

This stage often takes a lot of time, but often are reported only in minimal ways.
Data Filtering

- Ignore days with total steps under 500 (didn’t move at all) or over 50k (ran more than a marathon)
 - Filtering criteria based on prior work or domain knowledge
- How many data points do you need to get a reasonably representative picture?
 - You can sample and check the variance in your estimate
 - You can use external data to validate (e.g. correlate with existing PA data, see later)
- Final filtering in this study:
 - Per user: At least 10 days of tracking (average around 90 days)
 - Per country: At least 1000 users
- Always check whether your key results depend on these “harmless” parameters. You’ll be surprised!
Can your effect be explained through outliers?

- Sometimes very few data points can have extraordinary impact on the result.

- Paper: “We further verified that the relationship between activity inequality and obesity is not unduly driven by outliers. We removed the potential outliers of Indonesia, Malaysia and the Philippines from our dataset and found that activity inequality was still a better predictor of obesity than average volume of steps recorded (R^2 was 0.69 for activity inequality versus 0.56 for average steps).”
Stage 5: Profile
Stage 5: Profile

- Inspect shape and structure of data.
- Failure modes: Overlook data quality issues or violations of distributional assumptions.
Why inspect your data?

- Always “stay close” to your data and question it!
- Anscombe's quartet: All datasets have identical mean and variance of x and y, similar correlations and regression lines.
No real dataset is ever “clean”...

- Profiling allows you to check for errors
 - For example, we found:
 - Negative age or weight
 - Age $>>$ 100
 - Daily steps $>>$ multiple marathons
 - IP geolocation does not work well on city level (e.g. all mobile phones get same IP range for some carriers)

- To avoid distributional assumptions we use Bootstrapping
 - Bootstrapping assigns measures of accuracy (bias, variance, confidence intervals, ...) to sample estimates. This technique allows estimation of the sampling distribution of almost any statistic using random sampling methods (with replacement).
 - We don’t need to make assumptions like “X follows a Normal distribution”
Stage 6: Operationalize
Stage 6: Operationalize

- Define and validate central measures, which may be proxies. Failure modes: Lack of construct validity (i.e., not measuring what you think you are measuring).
In our case...

- Is **physical activity** appropriately measured by smartphone-determined steps? Does wear time add a systematic bias?
- Is self-reported **obesity** data trustworthy?
- Should **activity inequality** be operationalized through the Gini coefficient or some other measure of inequality?
- Does WalkScore appropriately quantify the **walkability** of the environment?

- **This step is absolutely critical and important!**
 (and too often ignored or taken lightly)
Validity of New Sensor: Smartphone Steps ~ PA?

- Smartphone data reproduce established relationships between age, gender, weight status, and activity
- Smartphones provide accurate step counts
 [Case et al., 2015] [Hekler et al., 2015]

[Hallal et al., Lancet 2012] [Bassett et al., MSSE. 2010]
[Bauman et al., Lancet 2012] [Troiano et al., MSSE. 2008]
[Van Duck et al., Int. J. Obes. 2015] [Tudor-Locke et al., MSSE. 2009]
Prior Surveillance Data

Limitations in comparison:
- % active vs. avg. daily steps
- Self-report vs. accelerometry can differ [Prince et al., 2008]
- WHO confidence intervals are very large
How Does Wear Time Affect Results?

- **Daily span** of recorded activity (time between first and last recorded step each day)

- What about disparate impact on women?
 30min shorter span compared to men
Do Women Wear Phones Less?

- Yes, women 30min shorter average wear time than men (13.7h vs. 14.2h)

- Consistent with longer average sleep duration of females

- Similar gender activity gap to previous studies using both accelerometry and survey measures
Prior Surveillance Data: Obesity

![Graph showing the correlation between fraction obese (WHO 2014) and fraction obese (dataset).](image)

- **United States**: 0.3
- **United Kingdom**: 0.2
- **Japan**: 0.1
- **Canada**: 0.05
- **Germany**: 0.05
- **France**: 0.05
- **Singapore**: 0.05
- **Turkey**: 0.05
- **Qatar**: 0.05

Correlation Coefficient (r): 0.69

Sources:
- WHO 2010
- Dataset

Tim Althoff, UW CSE481DS: Data Science Capstone, http://www.cs.washington.edu/cse481ds
Choice of inequality measure

- **Activity Inequality**: Gini coefficient of activity distribution
What about other ways to quantify inequality?

“Several other measures have been used to quantify inequality and statistical dispersion including the coefficient of variation, decile ratio, and others; we find that these measures are all highly correlated with the Gini coefficient (r=0.96 or higher) when applied to step counts within countries.”

→ It doesn’t matter. They all are virtually identical in this case.
There is no agreement in the literature on the best measure.

Without large-scale objective measurements it’s impossible to evaluate which measure is better.

Used WalkScore.com because it was freely available and used in prior literature. Our domain scientist collaborators seemed to trust it.

Operationalizing walkability

- There is no agreement in the literature on the best measure.
- Without large-scale objective measurements it’s impossible to evaluate which measure is better.
- Used WalkScore.com because it was freely available and used in prior literature. Our domain scientist collaborators seemed to trust it.
Phase 6: Operationalize

- What are the central constructs in your research questions?
- How will you operationalize them? What would be alternative ways of doing so? How does domain knowledge inform your decision?
- Concretely, how can you validate your choices (e.g. how to demonstrate discriminant and convergent validity)?
Stage 7: Explore
Stage 7: Explore

- Interactively explore data and variable relationships.
- Failure mode: Confirmation bias; unclean split between train/test data.
Exploring the data

- Not well documented like the research paper but critical
- Probably created ~10,000 visualizations over multiple years before we arrived at the final publication

- Always look at the raw data. Investigate. Interrogate your dataset. See where you can trust it. What’s broken? Every dataset is messy!
Example explorations along the way
Example explorations along the way (2)
Stage 8: Model
Stage 8: Model

- Define and fit models of relationships in data.
- Failure modes: Lack of internal validity. Failure to identify effect, e.g., due to confounding or violated assumptions.
There is no machine learning model!

- Data science frequently includes machine learning models
- But it is not necessary!

- Science matters, not your machine learning model!
What could be confounding the analysis?

- No random assignment of participants to locations, to activity levels, to tracking, to reporting → we cannot make any causal claims
 - What would be a way to get to better causal evidence?

- Why do we share share correlational results?
 - Construct validity: PA measures are meaningful
 - The results are plausible - yet striking and others couldn’t quantify them before
 - The results are actionable – they quantify existing inequality and modifiable factors
Sample correction, stratification, outlier, and balance testing

Conclusions are robust to

- Missing data (discussed before)
- Outliers
- Population bias in age and gender (holding also within these groups)
San Francisco, San Jose, and Fremont
- Geographically close
- Socioeconomically similar

<table>
<thead>
<tr>
<th>City</th>
<th>Walkability Score</th>
<th>Activity Inequality* (Percentile)</th>
</tr>
</thead>
<tbody>
<tr>
<td>San Francisco, CA</td>
<td>83.9</td>
<td>0.227 (0.07)</td>
</tr>
<tr>
<td>San Jose, CA</td>
<td>48.1</td>
<td>0.264 (0.33)</td>
</tr>
<tr>
<td>Fremont, CA</td>
<td>44.5</td>
<td>0.268 (0.48)</td>
</tr>
</tbody>
</table>
Country-level example: USA vs. Mexico

- Similar daily steps
 - 4,774 versus 4,692
- USA larger activity inequality
 - 0.303 versus 0.279 (10th versus 7th decile)
- USA larger obesity prevalence
 - 27.7% versus 18.1% (10th versus 8th decile)
Model assumptions

- We use LOWESS regression model
 - Very flexible and we still show data points

- Advice: Show your data. Don’t put layers and layers of complex models in between you and your data.

- Use bootstrapping for non-parametric confidence intervals (no std error etc)
Stage 9: Evaluate
Stage 9: Evaluate

- Measure explanatory power or predictive accuracy of model using appropriate statistical techniques. Failure modes: p-hacking, overuse of test set data.

- Think about how you will tell whether your project was successful?
Activity Inequality Predicts Obesity

Tails/disparities matter more than the mean

$R^2 = 0.64$ (vs. 0.47 for avg. activity)

64% of obesity variance can be explained with a single variable!
Gender Gap: 43% of Inequality

![Graph showing the gender gap in average steps per day vs. activity inequality. The graph illustrates a downward trend for both male and female participants, with the female line showing a slightly steeper slope.]
Walkability Reduces Inequality

![Graph showing the relationship between walkability and activity inequality across various cities]

- Arlington, TX
- Fort Worth, TX
- Cleveland, OH
- San Antonio, TX
- Memphis, TN
- Houston, TX
- Miami, FL
- San Diego, CA
- Philadelphia, PA
- Denver, CO
- Los Angeles, CA
- Chicago, IL
- Arlington, VA
- San Francisco, CA
- Boston, MA
- New York, NY

Walkability vs. Activity Inequality

Walkability:
- 0.20
- 0.22
- 0.24
- 0.26
- 0.28
- 0.30
- 0.32

Activity Inequality:
- 20
- 30
- 40
- 50
- 60
- 70
- 80
- 90
- 100

10/19/20

Tim Althoff, UW CSE481DS: Data Science Capstone, http://www.cs.washington.edu/cse481ds
Stage 10: Report
Stage 10: Report

- Report results and potential generalizations.
- Failure modes: Misinterpretation (e.g., generalization, uncertainty), miscommunication via errors or omissions.

- Think about who your audience is? How do you need to communicate your findings? What is the story of your findings?
 - Avoid long “laundry lists” of results. Crystallize your findings into a coherent story. Less is often more!
The Challenge: Convincing Domain Experts

- New construct + new instrument = skepticism
- Domain experts know that these data are ...
 - Noisy
 - Sometimes inaccurate
 - Observational
 - Biased and full of selection effects
- That is why data have been thrown out before
- Designed and conducted over 20 reweighting, resampling, stratification, and simulation experiments to demonstrate validity of results
Demonstrating Validity of Results

...in light of valid concerns

- Flawed sensor?
- But women wear phones less?
- Obesity data inaccurate?
- Biased population?
- Due to rich people?
- Missing data? Outliers?
- Inaccuracy of location inference?
- Reproducible: Publicly released analyses & data
Design your visualizations to effectively communicate your data and results

- We will have a full lecture on data visualization
- Show your data – it helps build understanding and trust in your approach
Example 1: Inequality of Physical Activity

- How (un)evenly is activity distributed?
- Gini index of the activity distribution:
 - Activity rich vs. activity poor people

\[
G = \frac{\sum_{i=1}^{n} \sum_{j=1}^{n} |x_i - x_j|}{2 \sum_{i=1}^{n} \sum_{j=1}^{n} x_j}
\]
Gender Gap: 43% of Inequality

![Graph showing gender gap in activity inequality]

- **Male**
- **Female**

Average steps per day

Activity inequality

0.22, 0.24, 0.26, 0.28, 0.30, 0.32
Example 2: Gender Activity Gap

Larger variances due to reduced activity in females, not just increase in variance overall!
Stage 11: Deploy
Stage 11: Deploy

- Deploy model or enact decision. Failure modes: Distribution drift, e.g., changes in data pipeline upstream, changing assumptions, adversarial input.
In our case...

- No deployments as part of this research project
- We released all data publicly for use by others – various cities and countries and journalists used it

- Consider how you can have the largest impact?
- But beware when making decisions based on data, especially when they are automated without humans in the loop.
 - Example: Predictive policing – “optimally” assign resources to areas of high crime. What are the implications?
 - Think about what your projects and products could be used for

- Every study needs a “so what?” or “why should we care?”
 - This won’t happen by accident. Design for it from the beginning.
Here: So what? Research Implications

• Pioneered new paradigm for monitoring populations
• Stronger evidence through objective measures
• Publicly released data on physical activity and inequality
• Implications for health policy and urban planning
• Highlighted importance of built environment for physical activity
Recap: Data Science Process

- **Plan** your own project along these stages
- When learning about other projects **pay attention** potential pitfalls across all phases
- When working on your own project, **explicitly** address each step and failure modes
Any Questions?
Your turn 😊 [10 min in group, 10 min report]

- **Phase 9: Evaluate**
 - How will you tell whether you were successful?
 - How will you determine the practical significance of your findings?
 - What challenges do you expect in your evaluation (e.g. multiple hypotheses testing, subjectivity)

- **Phase 10: Report**
 - What do you anticipate your main result to be?
 - Who should learn about this result (audience)? How does this inform your approach?
 - What might be your story? What evidence do you plan to produce to support this story?

- **Phase 11: Deploy**
 - What could be the “so what?” for your project?
 - How can you set yourself up to create a “so what” no matter the exact outcomes of your study?
 - What are opportunities for deployment, demos, or follow-up for your project?
Plan your own project along these stages
- When learning about other projects pay attention potential pitfalls across all phases
- When working on your own project, explicitly address each step and failure modes
Any Questions?