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An Approach Based on
Hidden Markov Model and
Gaussian Mixture Regression

W
e present a probabilistic approach to learn-
ing robust models of human motion
through imitation. The combination of

hidden Markov model (HMM) and Gaus-
sian mixture regression (GMR) allows us to

extract redundancies across multiple demonstrations and build
robust models to reproduce the dynamics of the observed
movements. The approach is first compared with state-of-the-
art approaches by using generated trajectories, sharing similar
characteristics to those of humans. Three applications on differ-
ent types of robots are then presented. An experiment with the
iCub humanoid robot, acquiring a bimanual dancing motion,
is first presented to show that the system can cope with cyclic
and crossing motions. An experiment with a seven-degrees of
freedom (DoF) WAM robotic arm learning the motion of hit-
ting a ball with a table tennis racket is presented to highlight
the possibility to encode several movements in a single model.
Finally, an experiment with a HOAP-3 humanoid robot hold-
ing a spoon and learning to feed the Robota humanoid robot is
presented. It shows the capability of the system to handle
several constraints simultaneously.

Robot programming by demonstration (PbD) covers
methods by which a robot learns new skills through human
guidance. Also referred to as learning by imitation, lead-
through teaching, tutelage, or apprenticeship learning, PbD
takes inspiration from the way humans learn new skills by imi-
tation to develop methods by which new tasks can be trans-
mitted to a robot [1], [2].

Learning control strategies for numerous DoF platforms
that interact in complex and variable environments is faced
with two key challenges: first, the complexity of the tasks to
be learned is such that pure trial-and-error learning would
be too slow. PbD thus appears as a way to speedup learning
by reducing the search space, while still allowing the robot
to refine its model of the demonstration through trial and
error [3]. Second, there should be a continuum between
learning and control, so that control strategies can adapt in
real time to perturbations, such as changes of position and
orientation of objects. The present work addresses both
challenges in investigating and comparing methods by
which PbD is used to learn the dynamics of demonstrated
movements and, hence, provides the robot with a generic
and adaptive model of control.

Related Work and Motivations
PbD is of interest for different levels of task representation. A
large body of work in PbD follows a symbolic approach to
the representation and encoding of the tasks, see e.g., [4]–[9].Digital Object Identifier 10.1109/MRA.2010.936947
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Such a symbolic description offers the advantage that it pro-
vides a way to easily tackle sequences or hierarchies of
actions. One major drawback, however, is that they rely on
strong biases to predefine the important cues and to segment
those efficiently.

Most approaches to trajectory modeling estimate a time-
dependent model of the trajectories by either exploiting var-
iants along the concept of spline decomposition [10], [11] or
through an explicit encoding of the time–space dependencies
[12]. Such modeling methods are effective and precise in the
description of the actual trajectory and benefit from explicit
time precedence across the motion segments to ensure precise
reproduction of the task. However, the explicit time depend-
ency of these models requires the use of other methods for
realigning and scaling the trajectories to handle spatial and
temporal perturbations. As an alternative, other approaches
have considered modeling the intrinsic dynamics of motion
[13]–[16]. Such approaches are advantageous in that the sys-
tem does not depend on an explicit time variable and can be
modulated to produce trajectories with similar dynamics in
areas of the workspace not covered during training.

We use HMM in this work, which has been previously
reported as a robust probabilistic method to handle the spatial
and temporal variabilities of human motion across various
demonstrations [14], [16]. Most of the approaches proposed so
far, however, require either a high number of states to cor-
rectly reproduce the motion (i.e., higher than for recognition
purposes) or an additional smoothing procedure that has the
drawback of reducing important peaks in the motion.

The proposed model relies on GMR [12], [18], [19] to
generalize the motion during reproduction. In contrast to
other regression methods such as locally weighted regression
(LWR) [20], locally weighted projection regression (LWPR)
[21], or Gaussian process regression [22], [15], GMR does not
model the regression function directly but models a joint
probability density function of the data. It then derives the
regression function from the joint density model. This is an
advantage in some robotic applications since the input and
output components are only specified at the very last step of
the process. Density estimation can thus be learned in an off-
line phase, while the regression process can be computed very
rapidly. It can also handle different sources of missing data, as
the system is able to consider any combination of input/output
mappings during the retrieval phase.

Proposed Approach
M examples of a skill are demonstrated to the robot in slightly
different situations. Each demonstration m 2 f1, . . . , Mg con-
sists of a set of Tm D-dimensional positions x ¼ fxtgTm

t¼1 and
velocities _x ¼ f _xtgTm

t¼1. The joint distribution P(x, _x) is
encoded in a continuous HMM of K states. The output distri-
bution of each state is represented by a Gaussian locally encod-
ing variation and correlation information. The parameters of
the HMM are defined by fP, a, l, Rg and learned using the
Baum-Welch algorithm [17], which is a variant of EM algo-
rithm. Pi is the initial probability of being in state i, and aij is
the transitional probability from state i to state j. li and Ri

represent the center and the covariance matrix of the ith Gaus-
sian distribution of the HMM. Input and output components
in each state of the HMM are defined as

li ¼
lx

i
l _x

i

� �
and Ri ¼ Rx

i Rx _x
i

R _xx
i R _x

i

� �
,

with i 2 f1, . . . , Kg. The indices x and _x refer to position and
velocity, respectively.

A desired velocity _̂x ¼
PK

i¼1 hi(x)P( _xjx, i) is estimated
through GMR as:

_̂x ¼
XK

i¼1

hi(x) l _x
i þ R _xx

i (Rx
i )�1(x� lx

i )
� �

: (1)

Given the current position, a velocity command is esti-
mated iteratively to control the system. In [23], we considered
a second-order model. Here, our estimate is done solely on
the first derivative, which in practice proves to be more robust
to compute. In the original GMR framework [18], the influ-
ence of the different Gaussians is represented by weights
hi 2 R½0, 1�, defined as the probability of an observed input
belonging to each of the Gaussians. We propose to extend this
estimation by recursively computing a likelihood through the
HMM representation, thus taking into consideration not only
the spatial information but also the sequential information
probabilistically encapsulated in the HMM (we will omit the
indices t in further equations):

hi(xt) ¼
PK

j¼1 hj(xt�1)aji

� �
N (xt ; lx

i , Rx
i )PK

k¼1

PK
j¼1 hj(xt�1)ajk

� �
N (xt ; lx

k , Rx
k)

h i ,

where, hi(xt) represents the HMM forward variable [17], initial-
ized with hi(x1) ¼ piN (x1; lx

i , Rx
i )=
PK

k¼1 pkN (x1; lx
k , Rx

k)
� �

,
and corresponding to the probability of observing the partial
sequence fx1, x2, . . . , xtg and of being in state i at time t.

Figure 1(a) presents an example of encoding and repro-
duction using this basic control scheme, where the number
of states in the HMM has been deliberately fixed to a low
value. Two reproduction attempts are represented by the
thick blue and red lines, where the initial positions are repre-
sented by points.

When the motion is initialized nearby the original demon-
strations, the system behaves as desired. However, if initialized
in a region that has not been covered during the demonstra-
tions (see trajectory represented by red lines), the system does
not follow the desired trajectory.

Robot programming by
demonstration covers methods by

which a robot learns new skills
through human guidance.
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To prevent the system from departing from the desired
trajectory, we add a secondary term that takes the form of a
mass–spring–damper system that brings back the trajectories
toward the centers of the Gaussians. Each of these centers
acts as a transient tracking point to this secondary system,
hence driving the motion along the way. Transition across
tracking points is ensured by the transition probabilities of
the HMM.

The stabilizer is derived as follows. At each time step, a tar-
get velocity and target position are retrieved from our estimate
of the dynamics of motion, following (1) and

x̂ ¼
XK

i¼1

hi(x)½lx
i þ Rx _x

i (R _x
i )�1( _x� l _x

i )�:

Tracking of the desired velocity _̂x and desired position x̂ is
then ensured by the proportional-derivative controller. The
acceleration command is determined by:

€x ¼ ( _̂x� _x)jV
zfflfflfflfflffl}|fflfflfflfflffl{€xV

þ (x̂� x)jP
zfflfflfflfflfflffl}|fflfflfflfflfflffl{€xP

, (2)

where jV and jP are gain parameters similar to damping and
stiffness factors.

In (2), €xV allows the robot to follow the demonstrated
velocity profile. €xP prevents the robot from departing from a
known situation and forces it to come back to the subspace
of demonstrations, if a perturbation occurs. The nonlinear
dynamics of the movement is thus approximated by a
mixture of linear systems, where the influence of the differ-
ent linear models is estimated through a nonlinear process.
Equation (2) can be formulated as a mixture of linear systems,
see [12] for details.

Note that the tracking term in (3) may distort the original
estimate of the dynamics (oscillations around the original dem-
onstrations). Avoiding such oscillations and minimizing the
distortions depends on choosing carefully the gains parameters.
In practice, for the experiments reported here (and for well-
chosen gains), the behavior of the system followed the desired
dynamics. Analysis and solutions to the problem of stabilizing
the first-order system of “Unstable Estimate of the Motion
Dynamics” section can be found in [24].

Figure 1(b) presents reproduction results with the stabilizer,
where the robot smoothly comes back to the demonstrated
movement when starting from a different initial situation.

Using constant gains in (2) may distort the demonstrated
dynamics of the movement in-between two consecutive
Gaussians (the effect tends to disappear by increasing the
number of Gaussians). Although this solution may be accepta-
ble for some tasks, we suggest here the use of adaptive gains.
By setting a proportional gain that decreases when the system
is close to the demonstrated trajectories, the system reprodu-
ces not only the demonstrated path but also follows the
dynamics of the movement while following this path (see [32]
for details).

Parts of the movement where the variations across the
demonstrations are high indicate that the position does not
need to be tracked very precisely. Setting adaptive gains as in
[32] allows the controller to focus on the other constraints of
the task, such as following a desired velocity. On the other
hand, parts of the movement exhibiting strong invariance
across the demonstrations will be tracked more precisely, i.e.,
the gain controlling the error on position will automatically
be increased.

Evaluation Through Generated Data

Generation of Humanlike Motion Data
To analyze systematically the proposed system, several sets of
trajectories are randomly generated. First, a set of key points X
of D dimensions is created [each variable fXigD

i¼1 is generated
with a uniform random distribution U(0, 1)].

A vector integration to endpoint system, which has been
suggested as a biologically plausible model of human reach-
ing movement [25], is then used to generate trajectories by
starting from a first key point and recursively defining the
next key point as the target. It is defined here as a critically
damped mass–spring–damper controller €x ¼ (X � x)jP�
_xjV with parameters jV ¼ 25, jP ¼ (jV )2=4, and time step
s ¼ 0:003 s. For every 50 iterations, the target is switched to
the next key point. For the last key point, 50 additional itera-
tions are used to let the system converge to the last key point.
To simulate motion variability, each data set consists of three
trajectories produced by slightly varying, with a Gaussian
noiseN (0, 0:1), the positions of the key points. The resulting
trajectories present natural-looking motions that share simi-
larities with those of humans. The automation of the genera-
tion process allows us to flexibly evaluate the imitation
performance of our algorithm with respect to several data sets
of different dimensionalities.

x1

x 2

(a)

x1

x 2

(b)

Figure 1. Example of motion encoding and reproduction
using: (a) the unstable estimate of the motion dynamics and
(b) the stabilizer.

GMR does not model the regression
function directly but models a joint
probability density function
of the data.
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Comparison with Other Approaches
The approach that we propose in this article will be further
denoted as HMM, as its core representation is based on
HMM. We compare this approach with four state-of-the-
art methods that have proven good performance in ro-
botics applications.

Time-Dependent GMR
Time-dependent GMR (TGMR) [12] is based on our previ-
ous work, where time is used as an explicit input variable and
the demonstrations are first aligned in time through dynamic
time warping (DTW). Then, the distribution of temporal and
spatial variables ft, x, _xg is encoded in a Gaussian mixture
model (GMM). At each time step during the reproduction
process, a desired position x̂ and a desired velocity _̂x are then
retrieved through GMR by estimating P(x, _xjt). The control-
ler used by the robot to reproduce the skill is the mass–spring–

damper system defined in (2).

Locally Weighted Regression
LWR [20] is a memory-based probabilistic approach. It is
used here to estimate a desired position x̂ and a desired veloc-
ity _̂x at each time step. Each data point of the data set partici-
pates in the estimation of the solution by using a Gaussian
kernel with fixed diagonal covariance matrix centered at the
current position to weight the influence of each data point.
The controller used by the robot is the mass–spring–damper
system defined in (2).

Locally Weighted Projection Regression
LWPR is an incremental regression algorithm that performs
piecewise linear function approximation [21]. The algorithm
does not require storage of the training data and has been
proved to be efficient in a variety of robot learning tasks,
including high-dimensional data. We use here an implemen-
tation of LWPR with the input space defined by a set of recep-
tive fields with full covariance matrices. By detecting locally
redundant or irrelevant input dimensions, the method locally
reduces the dimensionality of the input data by finding local
projections through partial least squares regression. The learn-
ing parameters have been set based on the recommendations
provided in [21]. During reproduction, LWPR is used at each
iteration to estimate a desired velocity _̂x given the current
position x. The receptive fields are then used to determine a
desired position x̂ in a similar manner to the methods earlier.
The controller used by the robot is the mass–spring–damper
system defined in (2).

Dynamic Movement Primitives
The dynamic movement primitives (DMPs) approach was
originally proposed by Ijspeert et al. [13]. The method
allows a target to be reached by modulating a set of mass–
spring–damper systems. This allows a particular path to be
followed with the guarantee that the velocity vanishes at the
end of the movement. A phase variable acts as a decay term
for ensuring that the system asymptotically converges to a
reaching point.

Metrics of Imitation Performance
Five metrics are used to evaluate a reproduction attempt
x0 2 R(D 3 T ) with respect to the set of demonstrations
x 2 R(D 3 M 3 T ) rescaled in time with T ¼

PM
m¼1 Tm=M .

Root-Mean-Square ErrorM1

This metric evaluates the generalization capability by
measuring how well the reproduced trajectory matches the
different demonstrations. It evaluates the accuracy of the
reproduction in terms of spatial and temporal information,
where a root-mean-square (RMS) error on position (with
respect to the M ¼ 3 demonstrations of the data set) is com-
puted along the reproduced motion M1 ¼ 1=MTPM

m¼1

PT
t¼1 jjx0t � xm;tjj.

RMS Error After DTWM2

For this metric, the reproduced motion is first temporally
aligned with the demonstrations through DTW, and a RMS
error on position similar toM1 is then computed. In contrast
with M1, spatial information is prioritized here (i.e., the
metric compares the path followed by the robot instead of the
exact trajectory along time).

Norm of JerkM3

This metric evaluates the smoothness of the reproduction
based on RMS jerk quantification. This measure, based on the
derivative of acceleration, has been shown to be a good candi-
date to evaluate smoothness of human motion [26] M3 ¼
1=T

PT
t¼1 jj

...x0tjj.

Learning TimeM4

This is the computation time of the learning process.

Retrieval DurationM5

This is the computation time of the retrieval process for
one iteration.
M4 and M5 are evaluated through nonoptimized MAT-

LAB implementations of the algorithms running on a 2.5-GHz
Pentium processor.

Evaluation Results
Three different sets of movements are generated with the
approach presented in the “Generation of Humanlike Motion
Data” section. For each set of movements, three reproduction
attempts are performed. This process is then repeated for vari-
ous numbers of states, dimensionalities, and ranges of pertur-
bation. The quantitative results are presented in Figures 2–4.

Figure 2 shows the influence of the number of states K in
the model (or basis functions), for the different methods and

A faster regression process
is then used to control the robot in

an online manner during the
reproduction phase.
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metrics. As LWPR is an online incremental learning method,
the parameter that determines when new basis functions are
created (parameter wgen in [21]) has been gradually increased
until the number of receptive fields matches the desired num-
ber of states. We see with M1 and M2 that all methods
perform very well, accurately following the demonstrated
movements in terms of RMS errors. By encapsulating correla-
tion information across input and output variables, HMM per-
forms well with a very small number of states.

We see with M3 that DMP reproduces the smoothest
movement (it actually smoothes the original demonstrations,
see RMS jerk depicted in dashed line). It is noticeable that
smoothness is not much affected by the number of states in
general. ForM4, DMP and LWR show the best performance
in terms of the computation time used by the learning process
(LWR is zero as it is a data-driven approach without learning),
while HMM and TGMR (both trained by EM) show a
slightly worse performance. For a better comparison with the
online learning nature of LWPR, ten passes have been per-
formed with the data set shuffled randomly. It should thus be
noted that, by using a single pass, the computation time can be
reduced by an order of magnitude.

In this experiment, we concentrated on a case where the
learning process is separated from the retrieval process. In this
context, both a batch-learning process and an online-learning
process can be employed. For the subset of robotic tasks that
we consider here, the computation time needed for learning

has less importance than the one required for real-time repro-
duction of a skill. In Figure 2, we see that all the methods
learned in less than 2 s. We make the assumption that this idle
time remains acceptable for the user. Note, however, that a
stricter constraint can be considered by modifying the stopping
criteria of the iterative EM procedure to take into account a
measure of the acceptable waiting time.

For M5, the computation time used by LWR for repro-
duction is not competitive and is thus not depicted here (it
goes more than 7 3 10�2 s as in the proposed implementation,
each data point contributes to the estimation). The other
approaches show a linear dependency on the number of states
and are all suitable for online application in robotics (less than
1 ms per iteration for the considered number of states).

Figure 3 shows the influence of the dimensionality D on
the metrics for the different approaches (see legend in Figure
2), when considering K ¼ 4 states in the model. We see with
M1 andM2 that the methods perform equally well in terms
of RMS errors.

When the dimensionality is low, the difficulty is to cor-
rectly handle the crossing points that can appear when ran-
domly generating trajectories (i.e., when passing through the
same point several times during a demonstration). When the
dimensionality is high, these crossings are less likely to occur.
However, the difficulty is in this case to efficiently handle the
sparsity of the data (curse of dimensionality). This fact is
reflected by the data and is particularly noticeable for LWR.

The comparison with LWPR should be
treated cautiously here as the lower
performance is related to the online
nature of the learning process (an online
algorithm cannot determine in advance
whether loops in the motion will be
encountered, while a batch-learning
process can cluster the crossing points
more easily).

ForM4 in Figure 3, we see that the
computation time of EM used by
HMM and TGMR produces very
variable results. Indeed, EM is a local
search procedure that starts randomly
(with k-means initialization) and stops,
e.g., once a local maximum likelihood
is reached (other stopping criteria can
be defined). Depending on the initiali-
zation, a very different number of itera-
tions may be required to reach a local
optimum. [In practice, a maximum
number of iterations can be set (which
was not the case in this experiment) to
guarantee that the learning time
remains short.] For reproduction, M5

shows that the different methods
remain competitive in terms of online
retrieval of data (less than 1 ms and
nearly linear increase for dimensions
below D ¼ 12).
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Figure 2. Influence of the number of states K on the metrics, for D ¼ 7 dimensions.
The dashed line inM3 represents the mean RMS jerk of the demonstrations.
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We can conclude from this evaluation that the HMM
method is competitive with respect to the other approaches.
The next sections present three robot learning applications,
which are aimed at showing the interesting characteristics of
the proposed approach. The experiments present different
learning situations where the above quantitative measures
would not be an appropriate benchmark to highlight the
properties of the approach.

Experiment with iCub Humanoid Robot
In the applications that we present next, we consider the
dynamics of the movement, but we do not consider the dynam-
ics of the robot itself. In the tasks that we consider, the robot is
sufficiently fast and precise to track the dynamics of the trajec-
tory (and the inertia remains low). However, if tracking errors
occur, they are intrinsically handled by the system, which acts as
an autonomous system robust to perturbation. Videos of the
experiments accompany the article.

The aims of the experiment with iCub are to show that:
1) the proposed approach can be used to learn periodic motion
containing crossings; and 2) the algorithm can cope with
bimanual movements in joint angle space.

The iCub robot is used in the experiment [27]. Out of the
53 DoF, 14 are used to control the two arms of the robot. A
set of motion sensors are used to record the user’s gestures by
collecting joint angle trajectories of the upper-body torso (see
Figure 4). Six X-Sens motion sensors are attached to the
upper-arms, lower-arms, and at the back
of the hands of the user, sending 14 DoF
data to the robot.

A simple rhythmic movement is
demonstrated through the motion sen-
sors and simultaneously reproduced on
the iCub. After having observed 3–4
periods of the movement, the robot
learns a model of the cyclic motion. The
motion is reproduced by the HMM
approach presented in “Proposed Ap-
proach” and compared with DMP. For
DMP, the version of the algorithm for
periodic motion is employed, where the
period of the movement has been
explicitly defined.

Figure 4 presents the encoding, repro-
duction, and evaluation results. The 14
DoF motion contains a crossing in joint
space, which is also observed in the PCA
projection of the data. For visualization
purpose, the 14 DoF periodic trajectories
and associated HMM have been pro-
jected into a latent space of three dimen-
sions fn1, n2, n3g through PCA. At a
given iteration, the robot must thus
move differently depending on the
preceding postures and movements along
the trajectory. We see that the high-
dimensional periodic movement with

crossing is correctly handled by DMP and HMM (eight states
have been used in both cases). DMP shows the best score in
terms of accuracy and smoothness. The cyclic form must how-
ever be set beforehand (discrete and periodic signals use a differ-
ent representation in DMP), with an external method required
to estimate the period of the motion.

In contrast to HMM and DMP, LWR and LWPR fail to
reproduce the movement at the crossing point. Passing
through the same point several times along the cycle is not
correctly handled here. When reaching the crossing point,
these two methods retrieve an undesirable average of the
different motion behaviors learned at this point. The sys-
tem can also follow indefinitely only a single part of the
periodic movement. For this reason, LWR and LWPR
have not been quantitatively evaluated here. Similarly,
TGMR has not been evaluated, as it cannot efficiently
encode periodic motion because of the explicit encoding
of time in the model.

The stabilizer takes the form of a
mass–spring–damper system that

brings back the trajectories toward
the centers of the Gaussians.
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Figure 3. Influence of the dimensionality D of the data set on the metrics, for K ¼ 4
states. The dashed line inM3 represents the mean RMS jerk of the demonstrations.
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Experiment with WAM Robotic Arm
This experiment shows that the framework can be used in an
unsupervised learning manner. By that, we mean that several
movements can be encoded in a single HMM, without specify-
ing the number of movements and without associating the differ-
ent demonstrations with a class or label.

The experiment consists of learning and reproducing the
motion of hitting a ball with a table tennis racket by using a

Barrett WAM 7 DoF robotic arm [see
Figure 5(a)]. One objective is to demon-
strate that such movements can be
transferred using the proposed ap-
proach, where the skill requires that the
target be reached with a given velocity,
direction, and amplitude. In the experi-
ment presented here, we extend the dif-
ficulty of the tennis task described in
[13] by assuming that the robot must hit
the ball with a desired velocity set by the
demonstrations.

In table tennis, topspin occurs when
the top of the ball is going in the same
direction as the ball is moving. Topspin
causes the ball to drop faster than by
gravity alone, and it is used by players to
allow the ball to be hit harder and still
land on the table. The stroke with no
spin is referred to as drive. The motion
and orientation of the racket at the
impact thus differ when performing a
topspin or a drive stroke. Training was
done by an intermediate-level player,
demonstrating several topspin and drive
strokes to the robot by putting it in an
active gravity compensation control
mode, which allows him to move the
robot manually. Through this kines-
thetic teaching process, the user molds
the robot’s behavior by putting it
through the task of hitting the ball with
a desired spin. The ball is fixed on a stick

during demonstration, and its initial position is tracked by a
color-based stereoscopic vision tracking system (Vivotek cam-
eras with a resolution of 640 3 480 pixels).

The recordings are performed in Cartesian space by consid-
ering the position x and orientation q of the racket with respect
to the ball, with associated velocities _x and _q. A quaternion
representation of the orientation is used, where three of the
four quaternion components are used (the fourth quaternion
component is reconstructed afterward). The user demonstrates
in total four topspin strokes and four drive strokes in a random
order. The categories of strokes are not provided to the robot,
and the number of states in the HMM is selected through
Bayesian information criterion [28]. A damped least square
inverse kinematics solution with optimization in the null space
of the Jacobian matrix is used to reproduce the task (see [12]
for details).

Figures 5 and 6 present the encoding and playback results.
In Figure 6, the position of the ball is depicted by a plus sign,
and the initial points of the trajectories are depicted by dots.
The trajectories corresponding to topspin and drive strokes are
represented in blue and red, respectively, for visualization pur-
poses, but the robot does not have this information and is also
not aware of the number of categories that has been demon-
strated. We see that the HMM approach reproduces an
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Figure 5. (a) Teaching the Barrett WAM robotic arm to hit a
ball, with reproduction of (b) a drive stroke and (c) topspin
stroke. (d) Teaching the HOAP-3 humanoid robot to feed a
Robota robotic doll.
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respectively. ForM3, the dotted line depicts the RMS jerk value for the training data.
(c) Model and (d) reproductions.
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appropriate motion in the two situations. Figure 7(a) presents
the states transitions learned by the HMM. The states of the
HMM are spatially organized around a circle for representa-
tion purposes. The possible transitions are depicted inside the
circle by arrows, while the probabilities of starting from an
initial state are represented outside the circle by arrows. Proba-
bilities above 0.1 are represented by black lines (self-transitions
probabilities are not represented here). From this representa-
tion, two different sequences defined by states transitions 2-3-
1-7 and 4-6-5-8 appear, initiated by two or three for the first
one, and by four or six for the second one. We see that the
model has correctly learned that two different dynamics can be
achieved here depending on the initial position of the robot. It
is thus possible to encode several motion alternatives in a single
model, without having to provide the number (and labels) of
the movements during the demonstration phase. The different
gestures are then automatically retrieved depending on the
initial situation. Figure 7 also presents the results of the strokes
at the time of the impact with the ball. We see that the system
correctly strikes the ball at a velocity similar to that demon-
strated (in terms of both amplitude and direction).

Experiment with HOAP-3 and Robota
This experiment shows that the framework can be used to
learn a controller by simultaneously taking into account

several constraints. Here, we consider the case where a set of
movements relative to a set of landmarks must be considered
for a correct reproduction of the skill (i.e., where several
actions on objects are relevant for the task).

In the previous experiment, we learned trajectories in the
frame of reference of a single object (the ball). This experi-
ment with a humanoid robot extends this approach by con-
sidering trajectories with respect to multiple landmarks. A
HOAP-3 humanoid robot from Fujitsu is used in the experi-
ment. It has 28 DoF in total, of which the 8 DoF of the upper
torso are used in the experiment (4 DoF per arm). A kines-
thetic teaching process is used for demonstration. The
selected motors are set to passive mode, which allows the user
to move freely the corresponding DoF while the robot exe-
cutes the task. The kinematics of each joint motion are
recorded at a rate of 1 kHz.
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Figure 7. (a)–(c) HMM representation of the transitions and
initial state probabilities (the corresponding state output
distributions are represented in Figure 6). Position and velocity
of the racket at the time of the impact for the (b) eight
demonstrations and (c) ten reproduction attempts.
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Figure 6. Encoding and reproduction results of the table
tennis experiment (in position space). (a) Demonstrated
movements and associated HMM, where eight Gaussians are
used to encode the two categories of movements (the learned
transitions are represented in Figure 7). (b) Ten reproduction
attempts by starting from new random positions in the areas
where either topspin or drive strokes have been demonstrated.

IEEE Robotics & Automation MagazineJUNE 2010 51



The experiment consists of feeding a Robota robotic doll
[29], where HOAP-3 first brings a spoon to a plate to collect
mashed potatoes and then moves it with an appropriate path
toward Robota’s mouth (see Figure 5). Four kinesthetic dem-
onstrations are provided by changing the initial positions of
the landmarks from one demonstration to the other.

The set of landmarks (or objects) tracked by the robot is
predefined. The position of the plate is recorded through a
patch attached to it, which is tracked by an external vision sys-
tem placed to the side of the robot. The position of Robota’s
mouth is tracked by proprioception through the robot’s motor
encoders. HOAP-3’s left arm is rigidly attached to Robota,
and HOAP-3 is connected to Robota’s head encoders.
Robota’s head is thus considered as an additional link to the
kinematic model of the robot (a visual marker would easily be
occluded by the spoon moving in the vicinity of the mouth).

In the demonstration phase, the position x of the end effec-
tor is collected in the frame of reference of the robot’s torso
(fixed frame of reference as the robot is seated during the
experiment). This trajectory is expressed in the frames of refer-
ence of the different landmarks (moving frames of references)
defined for each landmark n by position o(n) and orientation
matrix R(n) through x(n) ¼ R(n)>(x� o(n)) and _x(n) ¼ R(n)> _x.

A HMM is learned for each landmark. During the repro-
duction phase, for new position o0(n) and orientation R0(n) of
the landmarks, the generalized position x̂ and velocity _̂x of the
end effector with respect to the different landmarks is pro-
jected back to the frame of reference attached to the torso
through x̂0(n) ¼ R0(n)x̂(n) þ o0(n) and _̂x0

(n) ¼ R0(n) _̂x
(n)

. The associ-
ated covariances matrices are transformed through the linear
transformation property of Gaussian distributions, yielding
R̂0x(n) ¼ R0(n)R̂x(n)R0(n)> and R̂0 _x(n) ¼ R0(n)R̂ _x(n)R0(n)>.

At each time step, the command defined in (2) is used to
retrieve the desired velocity _̂x

0
and desired position x̂0, where

the resulting distributions N ( _̂x
0
, R̂0 _x) and N (x̂0, R̂0x) are com-

puted through the Gaussian products
QN

n¼1N ( _̂x
0(n)

, R̂0 _x(n)) andQN
n¼1N (x̂0(n), R̂0x(n)), respectively. This allows the system to

combine automatically the different constraints associated with
the landmarks.

Figure 8 presents the encoding results. It shows through the
patterns of the Gaussian distributions that parts of the motion
are more constrained than others. With respect to landmark 1,
strong consistency among the demonstrations has been
observed at the beginning of the gesture (motion of the spoon
into the mashed potatoes), which is reflected by the narrower
form of the ellipses at this point. With respect to landmark 2
[Figure 8(a)], strong consistency among the demonstrations has
been observed at the end of the gesture (when reaching for
Robota’s mouth). Figure 8(b) shows the reproduction results.
We see that the robot automatically combines the two sets of
constraints (associated with the plate and with Robota’s
mouth) to find a trade-off satisfying probabilistically the con-
straints observed during the demonstrations.

Discussion
We presented an evaluation experiment based on randomly
generated data and three applications, highlighting different
capabilities of the proposed system. The aim of the experiment
presented in “Evaluation Through Generated Data” section
was to perform a systematic evaluation for various dimension-
alities, and for models of various complexities. It, however,
remains valid only for the subset of tasks that we consider here,
i.e., in the context where an acceleration command is recur-
sively evaluated after having observed a set of position and
velocity data. Future comparison effort is required to evaluate
the different methods for a broader range of tasks.

The proposed HMM approach shares many characteristics
with the DMP approach but has some advantages for the sub-
set of tasks that we considered in the experiments. First, it is
able to encode several motion alternatives in the same model
(see the table tennis experiment in “Experiment with WAM
Robotic Arm” section). Partial demonstrations can be pro-
vided, which is a very important characteristics for the teach-
ing interaction (e.g., to refine one part of the movement
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Figure 8. Trajectories relative to the two landmarks are encoded in two HMMs of four states. Generated trajectories using the
corresponding models are represented with dashed lines, where the dots show the initial positions. The position of the
landmarks is represented with a triangle for the plate and with a square for Robota’s mouth. The final reproduction is
represented by a solid line.
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without having to demonstrate the whole task again). Com-
pared with DMP that must explicitly embed the cyclic or
discrete form of the motion, the HMM approach allows peri-
odic and reaching movements to be handled in a unified way
(and simultaneously), without having to specify the repre-
sentation beforehand (see the dance learning experiment in
“Experiment with iCub Humanoid Robot” section). It is
thus not necessary to specify the frequency of the move-
ment in contrast with DMP that requires the use of an
external system to estimate the fundamental frequency of
the system [30], [31].

DMP is robust to spatial perturbation but requires an
external mechanism to handle temporal perturbations such as
delay and pauses in the motion (the perturbation needs to be
detected in order to re-estimate the value of the decay term).
For example, if the robot needs to reproduce only one part of
the motion, or if the target is moving, the decay term must
be re-evaluated in consequence. Handling this type of
perturbation is in contrast inherently encapsulated in the pro-
posed model.

The proposed model allows automatic learning of the cor-
relations between the different variables and the use of this
information for reproduction. To handle multivariate data,
DMP considers the different variables as separate processes
synchronized by the phase variable, whereas HMM encapsu-
lates the complete correlation information.

The interesting properties of the proposed model, how-
ever, come with a drawback that requires further investiga-
tion. In DMP, the weights are determined through a decay
term, which allows the system to guarantee convergence to
an attractor. In contrast, the HMM method has the disadvant-
age that its stability relies on the proper choice of the gains in
(2). These gains must be set by estimating in advance the per-
turbations that one can expect during reproduction and/or
the range of novel initial positions that the system is expected
to handle.

Conclusions
We presented and evaluated an approach based on HMM,
GMR, and dynamical systems to allow robots to acquire new
skills by imitation. Using HMM allowed us to get rid of the
explicit time dependency that was considered in our previous
work [12], by encapsulating precedence information within
the statistical representation. In the context of separated learn-
ing and reproduction processes, this novel formulation was
systematically evaluated with respect to our previous
approach, LWR [20], LWPR [21], and DMPs [13]. We
finally presented applications on different kinds of robots to
highlight the flexibility of the proposed approach in three dif-
ferent learning by imitation scenarios.
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