
Learning to Control a Low-Cost Manipulator using
Data-Efficient Reinforcement Learning

Marc Peter Deisenroth
Dept. of Computer Science & Engineering

University of Washington
Seattle, WA, USA

Carl Edward Rasmussen
Dept. of Engineering

University of Cambridge
Cambridge, UK

Dieter Fox
Dept. of Computer Science & Engineering

University of Washington
Seattle, WA, USA

Abstract—Over the last years, there has been substantial
progress in robust manipulation in unstructured environments.
The long-term goal of our work is to get away from precise,
but very expensive robotic systems and to develop affordable,
potentially imprecise, self-adaptive manipulator systems that can
interactively perform tasks such as playing with children. In
this paper, we demonstrate how a low-cost off-the-shelf robotic
system can learn closed-loop policies for a stacking task in only
a handful of trials—from scratch. Our manipulator is inaccurate
and provides no pose feedback. For learning a controller in the
work space of a Kinect-style depth camera, we use a model-based
reinforcement learning technique. Our learning method is data
efficient, reduces model bias, and deals with several noise sources
in a principled way during long-term planning. We present a
way of incorporating state-space constraints into the learning
process and analyze the learning gain by exploiting the sequential
structure of the stacking task.

I. INTRODUCTION

Over the last years, there has been substantial progress in
robust manipulation in unstructured environments. While ex-
isting techniques have the potential to solve various household
manipulation tasks, they typically rely on extremely expensive
robot hardware [12]. The long-term goal of our work is to
develop affordable, light-weight manipulator systems that can
interactively play with children. A key problem of cheap
manipulators, however, is their inaccuracy and the limited
sensor feedback, if any. In this paper, we show how to use a
cheap, off-the-shelf robotic manipulator ($370) and a Kinect-
style (http://www.xbox.com/kinect) depth camera (<$120) to
learn a block stacking task [2, 1] under state-space constraints.
We use data-efficient reinforcement learning (RL) to train a
controller directly in the work space of the depth camera.

Fully autonomous RL methods typically require many trials
to successfully solve a task (e.g., Q-learning), a good ini-
tialization (e.g., by imitation [3]), or a deep understanding
of the system. If this knowledge is unavailable, due to the
lack of understanding of complicated dynamics or because a
solution is simply not known, data-intensive learning methods
are required. In a robotic system, however, many physical
interactions with the environment are often infeasible and lead
to worn-out robots. The more fragile a robotic system the more
important data-efficient learning methods are.

To sidestep these problems, we build on PILCO (probabilis-
tic inference for learning control), a data-efficient model-based
(indirect) policy search method [7] that reduces model bias,

Fig. 1. Low-cost robotic arm by Lynxmotion [1] performing a block stacking
task. Since the manipulator does not provide any pose feedback, our system
learns a controller directly in the task space using visual feedback from a
Kinect-style depth camera.

a typical problem of model-based methods: PILCO employs
a flexible probabilistic non-parametric Gaussian process (GP)
dynamics model and takes model uncertainty consistently
into account during long-term planning. PILCO learns good
controllers from scratch, i.e., with random initializations; no
deep understanding of the system is required. In this paper, we
show how obstacle information provided by the depth camera
can be incorporated into PILCO’s planning and learning to
avoid collisions even during training, and how knowledge can
be efficiently transferred across related tasks.

The paper is structured as follows. After discussing related
work, we describe the task to be solved, the low-cost hardware
used, and a basic tracking algorithm in Sec. III. Sec. IV sum-
marizes the PILCO framework and details how we incorporate
collision avoidance into long-term planning under uncertainty.
Sec. V presents the experimental results. Sec. VI concludes
the paper with a discussion.

II. RELATED WORK

In [11], a model-free policy learning method is presented,
which relies on rollouts sampled from the system. Even in a
simple task (mountain-car) with only two policy parameters,
80 rollouts are required. For more complicated tasks, the
number of required rollouts quickly goes into the thousands.

[5] propose a consistent learning-planning method in par-
tially observable domains. A compact model of a discrete
latent space is learned and used for control learning by means
of point-based value iteration [16]. The approach in [5] for

http://www.xbox.com/kinect

learning a latent-space dynamics model requires thousands
of trajectories. Furthermore, it does not naturally deal with
continuous (latent) domains or model uncertainty.

In recent years, GP dynamics models were more often used
for learning robot dynamics [9, 10, 14]. However, they are usu-
ally not used for long-term planning and policy learning, but
rather for myopic control and trajectory following. Typically,
the training data for the GP dynamics models are obtained
either by motor babbling [9] or by demonstrations [14]. For
the purpose of data-efficient fully autonomous learning, these
approaches are not suitable: Motor babbling is data-inefficient
and does not guarantee good models along a good trajectory;
demonstrations would contradict fully autonomous learning.

Other algorithms that use GP dynamics models in an RL
setup were proposed in [20, 8]. In [20, 8], value function mod-
els have to be maintained, which becomes difficult in higher-
dimensional state spaces. Although the approaches in [20, 8]
do long-term planning for finding a policy, they cannot directly
deal with constraints in the state space (e.g., obstacles).

Model-based RL methods are typically better suited for
data-efficient learning than model-free methods. However, they
often employ a certainty equivalence assumption [22, 23, 4]
by assuming that the learned model is a good approxima-
tion of the latent system dynamics. This assumption leads
to “model bias”, which often makes learning from scratch
“daunting” [22], especially when only a few samples from the
system are available. Reducing model bias requires accounting
for model uncertainty during planning [23].

Unlike most other model-based approaches, PILCO [6, 7]
does not make a certainty equivalence assumption on the
learned model or simply take the maximum likelihood model.
Instead, it learns a probabilistic dynamics model and explicitly
incorporates model uncertainty into long-term planning [7].
Unlike [23, 4, 20, 8], PILCO, however, neither requires sam-
pling methods for planning, nor needs to maintain an explicit
value function model.

In [18], the authors also aim at developing low-cost ma-
nipulators. However, while their focus is on building novel
manipulation hardware equipped with sufficient sensing, our
goal is to develop reasoning algorithms to be used with cheap
off-the-shelf systems.

III. PRELIMINARIES

In this paper, we describe how a low-precision robotic
arm can learn to stack a tower of foam blocks—fully au-
tonomously. We employ the following assumptions: First,
since grasping is not the focus of this work, we assume that the
block is placed in the robot’s gripper. Second, the arm’s joint
angles and velocities are not measured internally. However,
the location of the center of the block in the robot’s gripper
can be determined using the depth camera. Third, no desired
path/trajectory is a priori known. This also excludes human
demonstrations. Fourth, we assume that the initial location and
the target location of the block in the gripper are fixed.

Trajectory-following methods such as Jacobian-transpose
control [13] are not suitable in our case: A desired trajectory

is not known in advance. Simply following a straight path
between the initial and the target state might not succeed
due to obstacles (e.g., partial stack). We furthermore have
to cope with multiple sources of uncertainty: camera noise,
time synchronization (camera/controller), idealized assump-
tions (e.g., constant duration between measurements), delays,
image processing noise, and robot arm noise. The camera
noise and the robot arm noise are the major noise sources, see
Sec. III-A for details. For long-term planning and controller
learning, all these uncertainties have to be taken into account.

A. Hardware Description

We use a lightweight robotic arm by Lynxmotion [1], see
also Fig. 1. The arm costs approximately $370 and has six
controllable degrees of freedom: base rotate, three joints,
wrist rotate, and a gripper (open/close). The plastic arm can
be controlled by commanding both a desired configuration
of the six servos (via their pulse durations, which range
from 0.75 ms–2.25 ms) and the duration for executing the
command. The arm is very noisy: Tapping on the base makes
the end effector swing in a radius of about 2 cm. The system
noise is especially pronounced when moving the arm vertically
(up/down). The robotic arm is shipped without any sensors.
Thus, neither the joint angles nor the configuration of the
servos can be obtained directly. Instead of equipping the robot
with further sensors and/or markers, we demonstrate that good
controllers can be learned without additional information.

We use a PrimeSense depth camera [2] for visual tracking.
The camera is identical to the Kinect sensor, providing a
synchronized depth image and a 640×480 color (RGB) image
at 30 Hz. Using structured light, the camera delivers useful
depth information of objects in a range of about 0.5 m–5 m.
The depth resolution is approximately 1 cm at 2 m distance [2].
The total cost of the robot and the camera is about $500.
ROS [19] handles the communication with the hardware.

B. Block Tracking

At every time step, the robot uses the center of the block
in its gripper to compute a continuous-valued control signal
u ∈ R4, which comprises the commanded pulse widths for
the first four servo motors. Wrist rotation and gripper opening/
closing are not learned. For tracking the block in the gripper of
the robot arm, we use a simple but fast blob tracking algorithm.
At the beginning of an experiment, the user marks the object in
the gripper of the robot by clicking on it in a display. Assuming
that the object has a uniform color, we use color-based region
growing starting at the clicked pixel to estimate the extent and
3D center of the object, which is used as the state x ∈ R3 by
the RL algorithm. Finding the 3D center of the block requires
less than 0.02 s per frame.

IV. POLICY LEARNING WITH STATE-SPACE CONSTRAINTS

In the following, we summarize the PILCO-framework [6, 7]
for learning a good closed-loop policy (state-feedback con-
troller) π : R3 → R4 ,x 7→ u. Here, x is called the state
defined as the coordinates of the center (xc, yc, zc) of the block

Algorithm 1 PILCO

1: init: Set controller parameters ψ to random.
2: Apply random control signals and record data.
3: repeat
4: Learn probabilistic GP dynamics model using all data
5: repeat . Model-based policy search
6: Approx. inference for policy evaluation: get Jπ(ψ)
7: Gradients dJπ(ψ)/ dψ for policy improvement
8: Update parameters ψ (e.g., CG or L-BFGS).
9: until convergence; return ψ∗

10: Set π∗ ← π(ψ∗).
11: Apply π∗ to robot (single trial/episode); record data.
12: until task learned

in the gripper. We attempt to learn this policy from scratch,
i.e., with only very general prior knowledge about the task and
the solution itself. Moreover, we want to find π in only a few
trials, i.e., we require a data-efficient learning method.

As a criterion to judge the performance of a controller π,
we use the long-term expected return

Jπ =
∑T

t=0
Ext

[c(xt)] , (1)

of a trajectory (x0, . . . ,xT) when applying π. In Eq. (1),
T is the prediction horizon and c(xt) is the instantaneous
cost of being in state x at time t. If not stated otherwise,
throughout this paper, we use a saturating cost function
c = − exp(−d2/σ2

c) that penalizes Euclidean distances d of
the block in the end effector from the target location xtarget.
We assume the policy π is parametrized by ψ. PILCO learns
a good parametrized policy by following Alg. 1 [7].

A. Probabilistic Dynamics Model

To avoid certainty equivalence assumptions on the learned
model, PILCO takes model uncertainties into account during
planning. Hence, a (posterior) distribution over plausible dy-
namics models is required. We use GPs [21] to infer this
posterior distribution from currently available experience.

Following [21], we briefly introduce the notation and stan-
dard prediction models for GPs, which are used to infer a
distribution on a latent function f from noisy observations
yi = f(xi)+ε, where in this paper, we consider ε ∼ N (0, σ2

ε)
i.i.d. system noise. A GP is completely specified by a mean
function m(·) and a positive semidefinite covariance function
k(· , ·), also called a kernel. Throughout this paper, we con-
sider a prior mean function m ≡ 0 and the squared exponential
(SE) kernel with automatic relevance determination defined as

k(x,x′) = α2 exp
(
− 1

2 (x− x′)>Λ−1(x− x′)
)
. (2)

Here, Λ := diag([`21, . . . , `
2
D]) depends on the characteristic

length-scales `i, and α2 is the variance of the latent function f .
Given n training inputs X = [x1, . . . ,xn] and corresponding
training targets y = [y1, . . . , yn]>, the GP hyper-parameters
(length-scales `i, signal variance α2, noise variance σ2

ε) are
learned using evidence maximization [21].

The posterior predictive distribution p(f∗|x∗) of the func-
tion value f∗ = f(x∗) for an arbitrary, but known, test input
x∗ is Gaussian with mean and variance

mf (x∗) = Ef [f∗] = k>∗ (K + σ2
εI)−1y = k>∗ β , (3)

σ2
f (x∗) = varf [f∗] = k∗∗ − k>∗ (K + σ2

εI)−1k∗ + σ2
ε , (4)

respectively, with k∗ := k(X,x∗), k∗∗ := k(x∗,x∗), β :=
(K+σ2

εI)−1y, and where K is the kernel matrix with entries
Kij = k(xi,xj).

In our robotic system, see Sec. III, the GP models the
function f : R7 → R3, (xt−1,ut−1) 7→ ∆t := xt−xt−1+εt,
where εt ∈ R3 is i.i.d. Gaussian system noise. The training
inputs and targets to the GP model are tuples (xt−1,ut−1),
and the corresponding differences ∆t, respectively.

B. Long-Term Planning through Approximate Inference

Minimizing and evaluating Jπ in Eq. (1) requires long-term
predictions of the state evolution. To obtain the state distribu-
tions p(x1), . . . , p(xT), we cascade one-step predictions. This
requires mapping uncertain (test) inputs through a GP model.
In the following, we assume that these test inputs are Gaussian
distributed and extend the results from [17, 6, 7] to long-term
planning in stochastic systems with control inputs.

For predicting xt from p(xt−1), we require a joint distribu-
tion p(xt−1,ut−1). To compute this distribution, we use that
ut−1 = π(xt−1), i.e., the control is a function of the state:
We first compute the predictive control signal p(ut−1) and
subsequently the cross-covariance cov[xt−1,ut−1]. Finally, we
approximate p(xt−1,ut−1) by a Gaussian distribution with the
correct mean and covariance. The computation depends on the
policy parametrization ψ of the policy π. In this paper, we
assume ut−1 = π(xt−1) = Axt−1 + b, with ψ = {A,b}.
With p(xt−1) = N

(
xt−1 |µt−1,Σt−1

)
, we obtain

p(ut−1) = N
(
ut−1 |µu,Σu

)
,

µu = Aµt−1 + b , Σu = AΣt−1A
> ,

by applying standard results from linear-Gaussian models. In
this example, π is a linear function of xt−1 and, thus, the
desired joint distribution p(xt−1,ut−1) is exactly Gaussian
and given by

N
([

µt−1

Aµt−1 + b

]
,

[
Σt−1 Σt−1A

>

AΣt−1 AΣt−1A
>

])
(5)

with the cross-covariance cov[xt−1,ut−1] = Σt−1A
>. For

many other interesting controller parametrizations, the mean
and covariance can be computed analytically [6], although
p(xt−1,ut−1) may no longer be exactly Gaussian.

From now on, we assume a joint Gaussian distribution
p(x̃t−1) = N

(
x̃t−1 | µ̃t−1, Σ̃t−1

)
at time t − 1, where we

define x̃ := [x>u>]> and µ̃ and Σ̃ are the respective mean
and covariance of this augmented variable. When predicting

p(∆t) =

∫
p(f(x̃t−1)|x̃t−1)p(x̃t−1) dx̃t−1 , (6)

we integrate out the random variable x̃t−1. The transition
probability p(f(x̃t−1)|x̃t−1) is obtained from the posterior GP.

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

∆
t

−1 −0.5 0 0.5 1
0

1

(x
t−1

,u
t−1

)

p
(x

t−
1
,u

t−
1
)

−1

−0.5

0

0.5

1

00.511.5
p(∆

t
)

Fig. 2. GP prediction at an uncertain input. The input distribution
p(xt−1,ut−1) is assumed Gaussian (lower right). Propagating it through
the GP model (upper right) yields the shaded distribution p(∆t) in the upper
left, which is approximated by a Gaussian with the exact mean and variance.

Computing the exact predictive distribution in Eq. (6) is analyt-
ically intractable. Thus, we approximate p(∆t) by a Gaussian
with the exact mean and variance (moment matching). Fig. 2
illustrates the scenario. Note that for computing the mean µ∆

and the variance σ2
∆ of the predictive distribution, the standard

GP predictive distribution (see Eqs. (3) and (4), respectively)
does not suffice because x̃t−1 is not given deterministically.

Assume the mean µ∆ and the covariance Σ∆ of the
predictive distribution p(∆t) are known. Then, a Gaussian
approximation N

(
xt |µt,Σt

)
to the desired state distribution

p(xt) has mean and covariance

µt = µt−1 + µ∆ (7)
Σt = Σt−1 + Σ∆ + cov[xt−1,∆t] + cov[∆t,xt−1] , (8)

cov[xt−1,∆t] = cov[xt−1,ut−1]Σ−1
u cov[ut−1,∆t] , (9)

respectively. The computation of the required cross-
covariances in Eq. (9) depends on the policy parametrization,
but can often be computed analytically.

In the following, we compute the mean µ∆ and the variance
σ2

∆ of the predictive distribution p(∆t), see Eq. (6). We focus
on the univariate case and refer to [6] for the multivariate case.

1) Mean: Following the law of iterated expectations,

µ∆ = Ex̃t−1 [Ef [f(x̃t−1)|x̃t−1]] = Ex∗ [mf (x̃t−1)] (10)

=

∫
mf (x̃t−1)N

(
x̃t−1 | µ̃t−1, Σ̃t−1

)
dx̃t−1 = β>q

with q = [q1, . . . , qn]> and β = (K + σ2
εI)−1y. The entries

of q ∈ Rn are given as

qi =

∫
k(xi,x∗)N

(
x̃t−1 | µ̃t−1, Σ̃t−1

)
dx̃t−1

=
α2 exp

(
− 1

2 (xi−µ̃t−1)>(Σ̃t−1+Λ)−1(xi−µ̃t−1)
)

√
|Σ̃t−1Λ−1+I|

.

2) Variance: Using the law of total variance, we obtain

σ2
∆ = Ex̃t−1 [mf (x̃t−1)2] + Ex̃t−1 [σ2

f (x̃t−1)

− Ex̃t−1
[mf (x̃t−1)]2

= β>Qβ + α2 − tr
(
(K + σ2

εI)−1Q
)
− µ2

∆ + σ2
ε , (11)

where tr(·) is the trace. The entries of Q ∈ Rn×n are

Qij=k(xi, µ̃t−1)k(xj , µ̃t−1)|2Σ̃t−1Λ
−1 + I|−

1
2

× exp
(

1
2z>ij(2Σ̃t−1Λ

−1 + I)−1Σ̃t−1zij
)

with ζi := (xi − µ̃t−1) and zij := Λ−1(ζi + ζj).
Note that both µ∆ and σ2

∆ are functionally dependent on the
mean µu and the covariance Σu of the control signal through
µ̃t−1 and Σ̃t−1, respectively, see Eqs. (10) and (11). We can
see from Eqs. (10) and (11) that the uncertainty about the
latent function f (according to the GP posterior) is integrated
out, which explicitly accounts for model uncertainty.

C. Controller Learning through Indirect Policy Search

From Sec. IV-B we know how to cascade one-step pre-
dictions to obtain Gaussian approximations to the predictive
distributions p(x1), . . . , p(xT). To evaluate the expected return
Jπ in Eq. (1), it remains to compute the expected values

Ext
[c(xt)] =

∫
c(xt)N

(
xt |µt,Σt

)
dxt (12)

of the instantaneous cost c with respect to the predictive state
distributions. We assume that the cost function c is chosen
such that this integral can be solved analytically.

To apply a gradient-based policy search to find controller
parameters ψ that minimize Jπ , see Eq. (1), we first swap
the order of differentiation and summation in Eq. (1). With
Et := Ext [c(xt)] we obtain

dEt
dψ

=
∂Et
∂µt

dµt
dψ

+
∂Et
∂Σt

dΣt

dψ
. (13)

The total derivatives of the mean µt and the covariance Σt

of p(xt) with respect to the policy parameters ψ can be
computed analytically by repeated application of the chain-rule
to Eqs. (7), (8), (9), (10), (11). This also involves computing
the partial derivatives of ∂µu/∂ψ and ∂Σu/∂ψ. We omit
further lengthy details here, but point out that these derivatives
are computed analytically [6, 7]. This allows for standard
gradient-based non-convex optimization methods, e.g., CG or
L-BFGS, which return an optimized parameter vector ψ∗.

D. Planning with State-Space Constraints

In a classical RL setup, it is assumed that the learner is not
aware of any constraints in the state space, but has to discover
walls etc. by running into them and gaining a high penalty. In
a robotic setup, this general, but not necessary, assumption is
less desirable because the robot can be damaged.

If constraints (e.g., obstacles) in the state space are known
a priori, we would like to incorporate this prior knowledge
directly into planning and policy learning. We propose to
define obstacles as “undesirable” regions, i.e., regions the robot
is supposed to avoid. We define “undesirability” as a penalty
in the instantaneous cost function c, which we re-define as

c(x) =
∑K

k=1
c+k (x)−

∑J

j=1
ιjc
−
j (x) , (14)

where c+k are desirable states (e.g., the target state) and c−j are
undesirable states (e.g., obstacles), weighted by ιj ≥ 0. Bigger
values for ιj make the policy more averse to a particular
undesirable state. In this paper, we always set ιj = 1. For
c+k and c−j , we choose negated squared-exponentials, which

−5 −4 −3 −2 −1 0 1 2 3

−0.5

0

0.5

state x

c
o
s
t

c
1

+

c
1

−

c
2

−

c

Fig. 3. Cost function that takes constraints (e.g., obstacles) into account
by making them “undesirable”. The non-solid curves are the individual
components c−j and c+k , see Eq. (14), the solid curve is their sum c.

trade off exploration with exploitation when averaging ac-
cording to the state distribution [6]. The squared exponentials
are unnormalized with potentially different widths Σ+

k . The
widths of the individual constraints c−j define how “soft” the
constraints are. Hard constraints would be described by very
peaked squared exponentials c−j with ιj → ∞. The idea is
related to [24], where planning is performed with fully known
dynamics and a piecewise linear controller.

Fig. 3 illustrates Eq. (14) with two penalties c−j and one
reward c+k . The figure shows that if an undesirable state and a
desirable state are close, the total cost c somewhat trades off
between both objectives. Furthermore, the optimal state x∗ ∈
arg minx c(x) no longer corresponds to x+

∗ ∈ arg minx c
+(x):

Moving a little bit away from the target state (away from the
undesirable state) is optimal.

The expectations of the cost in Eq. (14) and the derivatives
with respect to the mean µt and the covariance Σt of the state
distribution p(xt) can be computed for each individual c+k and
c−j and summed up. Then, we apply the chain-rule according
to Eq. (13) for the gradient-based policy search.

Phrasing constraints in terms of undesirability in the cost
function in Eq. (14) still allows for fully probabilistic long-
term planning and for a guidance of the robot through the state
space without “experiencing” obstacles by running into them.

Collisions within a Bayesian inference framework can be
discouraged, but not strictly excluded in expectation. This
does not mean that averaging out uncertainties is wrong—
it rather tells us that it is not expected to violate constraints
with a certain confidence. A faithful description of predictive
uncertainty is often more worth than claiming full confidence
and occasionally violating constraints unexpectedly.

V. EXPERIMENTAL VALIDATION

In the following, we analyze PILCO’s performance on the
task of learning to stack a tower of six foam blocks B1–B6
(bottom to top), see Fig. 1. The tower’s bottom block B1 was
given. To apply PILCO, we need to specify the initial state
distribution, the target state, the cost function, the controller
parametrization, and optionally obstacles.

As an initial state distribution, we chose p(x0) =
N
(
x0 |µ0,Σ0

)
with µ0 being a single (noisy) measurement

of the initial block location using the tracking method from
Sec. III-B. The initial covariance Σ0 was diagonal with the

initial state

target

camera

Fig. 4. Learning setup 1: The initial position is above the tower’s top.

95%-confidence bounds being the edge length b of the block.
The target state was set to a single noisy measurement using
the tracking method from Sec. III-B.

The first term of the immediate cost in Eq. (14) that de-
scribes favorable states was set to − 1

4

∑4
k=1 exp(− 1

2d
2/σ2

k),
where d := ‖xt − xtarget‖ and σk = { 1

4b,
1
2b, b, 2b}, k =

1, . . . , 4, and b being the edge length of the foam block. The
scale mixture of squared exponentials makes the choice of a
single σk less important and yields non-zero policy gradients
dJ/dψ even relatively far away from the target xtarget.

We used linear controllers, i.e., π(x) = u = Ax + b, and
initialized the controller parameters ψ = {A,b} ∈ R16 to 0.

The Euclidean distance d of the end effector from the
camera was approximately 0.7 m–2.0 m, depending on the
robot configuration. Both the control sampling frequency and
the time discretization ∆t were set to rather slow 2 Hz; the
planning/episode length T was 5 s. After 5 s, the robot opened
the gripper and freed the block.

The motion of the block grasped by the end effector was
modeled by GPs as described in Sec. IV-A. The inferred
system noise standard deviations, which comprise stochasticity
of the robotic arm, synchronization errors, delays, and image
processing errors, ranged from 0.5 cm to 2.0 cm. These learned
noise levels were in the right ballpark: They were slightly
larger than the expected camera noise [2]. The signal-to-noise
ratio in our experiments ranged from 2 to 6.

In Sec. V-A, we evaluate the applicability of the PILCO
framework to autonomous block stacking when starting from
a fully upright robot configuration. For each block, an inde-
pendent controller is learned. In Sec. V-B, we analyze PILCO’s
ability to exploit useful prior information by transferring
knowledge from one learned controller to another one. In
Sec. V-C, the robot learned building a tower, where the initial
position was below the topmost block. For this task, state-
space constraints such as obstacles were taken into account
during planning, see Sec. IV-D. Videos can be found at
http://www.cs.uw.edu/ai/Mobile Robotics/projects/robot-rl.

A. Independent Controllers for Building a Tower

We split the task of building a tower into learning individual
controllers for each target block B2–B6 (bottom to top)
starting from the same initial configuration, in which the robot
arm was upright, see Fig. 4.

http://www.cs.uw.edu/ai/Mobile_Robotics/projects/robot-rl

1 2 3 4 5 6 7 8 9 10
0

5

10

15

20

25

30

training iteration

a
v
e
ra

g
e
 d

is
ta

n
c
e
 t
o
 t
a
rg

e
t
(i
n
 c

m
)

(a) Typical learning curve as a func-
tion of training iterations.

−0.2 −0.1 0 0.1 0.2 0.3

−0.2

−0.1

0

0.1

0.2

0.3

x−dist. to target (in m)

y
−

d
is

t.
 t
o
 t
a
rg

e
t
(i
n
 m

)

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

(b) Two-dimensional slice through the
cost function with obstacles encoded.

Fig. 5. (a) Typical learning curve. The horizontal axis shows the learning
stage, the vertical axis shows the average distance to the target at time T
(with 95% standard error). (b) Two-dimensional slice through the cost function
defined in task space with observed end effector trajectory. The z-coordinate
is set to be at the target. Red and blue colors indicate high and low costs,
respectively.

All independently trained controllers shared the same initial
trial. A total of ten learning-interacting iterations (including
the random initial trial) generally sufficed to learn both good
dynamics models and good controllers. Fig. 5(a) shows a
learning curve for a typical training session (averaged over
ten test runs after each learning stage and all blocks B2–B6).
Learning noticeably kicked in after about four iterations. After
10 learning iterations, the block in the gripper was expected to
be very close (approximately at noise level) to the target. The
required interaction time sums up to only 50 s per controller
and 230 s in total (the initial random trial is counted only
once). This speed of learning is very difficult to achieve by
other RL methods that learn from scratch [7].

A standard myopic task-space control method such as
Jacobian-transpose control [13] (using the GP dynamics
model) could solve the problem, too, without any planning.
However, this approach benefits from a good dynamics model
along the desired trajectory in task space. Obtaining this model
through motor babbling can be data inefficient.

B. Sequential Transfer Learning

We now evaluate how much we can speed up learning by
transferring knowledge. To do so, we exploited the sequential
nature of the block-stacking task. In Sec. V-A, we trained five
independent controllers for the five different blocks B2–B6. In
the following, we report results for training the first controller
for the bottom block B2 as earlier. Subsequently, however,
we reused both the dynamics model and the controller pa-
rameters when learning the controller for the next block. This
initialization of the learning process was more informed than
a random one and gave the learner a head-start: Learning to
stack a new block on the topmost one requires a sufficiently
good dynamics model in similar parts of the state space.

Tab. I summarizes the gains through this kind of transfer
learning. Learning to stack a block of six blocks (the base
B1 is given) required only 90 s of experience when PILCO
exploited the sequential nature of this task, compared to 230 s
when five controllers were learned independently from scratch,
see Sec. V-A. In other words, the amount of data required for

TABLE I
TRANSFER LEARNING GAINS (SETUP 1).

B2 B2–B3 B2–B4 B2–B5 B2–B6
trials (seconds) independent controllers 10 (50) 19 (95) 28 (140) 37 (185) 46 (230)
trials (seconds) sequential controllers 10 (50) 12 (60) 14 (70) 16 (80) 18 (90)
speedup (independent/sequential) 1 1.58 2 2.31 2.56

TABLE II
AVERAGE BLOCK DEPOSIT SUCCESS IN 10 TEST TRIALS AND FOUR

DIFFERENT (RANDOM) LEARNING INITIALIZATIONS (SETUP 1).

B2 B3 B4 B5 B6
independent controllers 92.5% 80% 42.5% 96% 100%
sequential controllers 92.5% 87.5% 82.5% 95% 95%

learning independent controllers for B2–B3 was sufficient to
learn stacking the entire tower of six blocks when knowledge
was transferred. Sequential controller learning required only
two additional trials per block to achieve a performance similar
or better to a corresponding controller learned independent of
all other controllers, see Tab. II.

Tab. II reports the rates for successfully depositing the block
on the top of the current foam tower in 10 test trials and four
different learning initializations. Failures were largely caused
by the foam block bumping off the topmost block. The table
indicates that sequentially trained controllers perform at least
as well as the independently learned controllers—despite the
fact that they use substantially fewer training iterations, see
Tab. I. In one of the four learning setups, 10 learning iterations
did not suffice to learn a good (independent) controller for B4,
which is the reason for the corresponding poor average deposit
success in Tab. II. The corresponding sequential controller
exploited the informative initialization of the dynamics model
from B3 and did not suffer from this kind of failure. Although
deposit failure feedback was not available to the learner, the
deposit success is good across 10 test trials and four different
training setups. Note that high-precision control with the Lynx
arm is difficult because the arm can be very jerky.

Knowledge transfer through the dynamics model is very
valuable. Additionally transferring the controller parameters ψ
in the sequential setup is not decisive: Resetting the controller
parameters to zero and retraining leads to very similar results.
An “informative” controller initialization without the dynamics
model would not help learning because the controller param-
eters are learned in the light of the current dynamics model.

C. Collision Avoidance

If prior knowledge about the environment is known, it is
helpful to incorporate this into planning; at least in order to
extend the robot’s life time. Thus far, we assumed that the
learning system is fully uninformed about the environment.
This means, when there was an obstacle, say, a table, the
robot learned about the table as follows: When the robot arm
banged on the table, the predictive trajectory of the block in
the gripper and the observed trajectory did not match well.
In subsequent trials, when the GP dynamics model accounted
for this experience, the robot discovered a better trajectory that
did not get stuck on the surface of the table.

In the following, we consider a modification of the exper-

target

initial state

Fig. 6. Learning setup 2: The initial position is below the tower’s top.

imental setup: Obstacles in the environment were explicitly
incorporated into planning, see Sec. IV-D when the robot was
supposed to learn building a block tower, where the initial
state was below the target state, see Fig. 6.

Since a desired trajectory was not known in advance,
Jacobian-transpose control would result in a collision between
the block in the end effector and the tower’s top-most block.
Since the control dimension R4 was larger than the task space
dimension R3, a linear policy π : R3 → R4 was still sufficient
to solve this problem, which is nonlinear in task space.

In the experimental setup considered, we modeled the tower
as a set of blocks. Following Sec. IV-D, we added a Gaussian-
shaped penalty for each block: The mean µ−j of the penalty
was the center of the block, and the covariance was set
to Σ−j = (3

4)2I. Defining obstacles in task space can be
automated using 3D object detection algorithms and mixture-
of-Gaussians clustering. Fig. 5(b) shows the most interesting
two-dimensional slice of the cost function in task space around
the target state. The third coordinate is assumed to be in the
target. The penalty due to the tower obstacle is defined through
the high-cost regions. Note that the lowest cost does not occur
exactly in the target but slightly above the tower. In Fig. 5(b),
the ellipse is a two-dimensional projection of the initial state
distribution p(x0), the dashed line is an observed trajectory
when applying the controller. It can be seen how the robot
arm avoids the tower to deposit the block on top of the stack.

To evaluate the effectiveness of our approach to collision-
avoidance, PILCO learned five independent controllers for
building a tower of foam blocks based on planning either
with or without constraints. All controllers shared the same
single random trial and 10 (controlled) training rollouts. This
corresponds to a total experience of 55 s per controller. Tab. III
summarizes the results for these setups (averaged over four
different random learning initializations) under the following
aspects: effectiveness of collision avoidance, block deposit
success rate, and controller quality.

First, we investigated the effectiveness of collision avoid-
ance. We defined a “collision” to occur when the robot arm
collided with the tower of foam blocks. Tab. III indicates that
planning with state-space constraints led to fewer collisions
with the obstacles than agnostic training. Note that the num-
bers in Tab. III are the collisions during training, not during
testing. This means that even in the early stages of learning

(when the dynamics model was very uncertain), PILCO learned
a “cautious” controller to avoid collisions.

Second, Tab. III reports the block-deposit success rates for
10 test runs (and four different training initializations) after
10 training iterations. Here, we see that planning with state-
space constraints led to a substantially higher success rate
in depositing blocks. Planning without state-space constraints
often led to a controller that slightly struck the topmost block
of the tower, i.e., it caused a collision.

Finally, Tab. III reports the distances of the block in
the gripper at time T , averaged over 10 test runs (after
the corresponding controllers have been trained) and four
different training setups. At time T , the gripper opened and
dropped the block. The distances were measured independent
of a collision. In both constrained and unconstrained planning
the learned controller brought the block in the gripper close
to the target location. Note that the distances in Tab. III
approximately equal the noise level (image capture, image
processing, robot arm). The results here do not suggest that
any training setup leads to better “drop-off locations” on
average. However, learning without state-space constraints
started showing improvements one or two stages earlier than
learning based on planning with collision avoidance (not
reported in Tab. III).

VI. DISCUSSION

PILCO is not optimal control because it merely finds a
solution for the task. There are no guarantees of global
optimality: Since the optimization problem for learning the
policy parameters is not convex, the discovered solution is
invariably only a local optimum. It is also conditional on the
experience the learner was exposed to.

PILCO exploits analytic gradients of an approximation to the
expected return Jπ for an indirect policy search. Thus, PILCO
does not need to maintain an explicit value function model,
which does not scale well to high dimensions. Sampling for
estimating the policy gradients [15] is unnecessary.

Computing a plan for a given policy required about one
second of computation time. Learning the policy requires itera-
tive probabilistic planning and updating the policy parameters.
The exact duration depends on size of the GP training set.
In this paper’s experiments, PILCO required between one and
three minutes to learn a policy for a given dynamics model.
Thus, data efficiency comes with the price of more computa-
tional overhead. Nevertheless, applying the policy (testing) is
real-time capable as it requires a simple function evaluation
ut = π(xt), which often is a matrix-vector multiplication.

In principle, there is nothing that prevents PILCO from
scaling to higher-dimensional problems, see [7] for some
examples. Policy evaluation and gradient computation scale
cubically in the state dimension [6]. Although policy search
scales only quadratically in the size n of the GP training
set [6], this is PILCO’s practical bottleneck. Hence, we use
sparse GP approximations for n ≥ 400. This is quickly
exceeded if the underlying dynamics are complicated and/or
high sampling frequencies are used.

TABLE III
EXPERIMENTAL RESULTS FOR PLANNING WITH AND WITHOUT COLLISION AVOIDANCE (SETUP 2).

without collision avoidance B2 B3 B4 B5 B6
collisions during training 12/40 (30%) 11/40 (27.5%) 13/40 (32.5%) 18/40 (45%) 21/40 (52.5%)
block deposit success rate 50% 43% 37% 47% 33%

distance (in cm) to target at time T 1.39 ± 0.81 0.73 ± 0.36 0.65 ± 0.35 0.71 ± 0.46 0.59 ± 0.34

with collision avoidance B2 B3 B4 B5 B6
collisions during training 0/40 (0%) 2/40 (5%) 1/40 (2.5%) 3/40 (7.5%) 1/40 (2.5%)
block deposit success rate 90% 97% 90% 70% 97%

distance (in cm) to target at time T 0.89 ± 0.80 0.65 ± 0.33 0.67 ± 0.46 0.80 ± 0.37 1.34 ± 0.56

VII. CONCLUSION

We presented a data-efficient and fully autonomous ap-
proach for learning robot control even when the robotic system
is very imprecise. Our model-based policy search method
profits from closed-form approximate inference for policy
evaluation and analytic gradients for policy learning. To avoid
collisions, we presented a way of taking knowledge about
obstacles in the environment into account during planning and
controlling under uncertainty. Furthermore, we evaluated the
gains of reusing dynamics models in a sequential task. With
only very general prior knowledge about the robot and the
task to be learned, we demonstrated that good controllers for
a low-cost robotic system consisting of a cheap manipulator
and depth camera could be learned in only a few trials.

Despite the limitations of our current system, we believe
that the overall framework can be readily adapted to handle
more complex tasks. In future work, we aim to learn more
general controllers that can deal with arbitrary start locations
of the gripper and the target stack. Grasping objects with such
a cheap manipulator is also a promising research direction.

ACKNOWLEDGEMENTS

M.P. Deisenroth and D. Fox have been supported by ONR
MURI grant N00014-09-1-1052 and by Intel Labs.

REFERENCES

[1] http://www.lynxmotion.com.
[2] http://www.primesense.com.
[3] P. Abbeel and A. Y. Ng. Exploration and Apprenticeship

Learning in Reinforcement Learning. In ICML, 2005.
[4] J. A. Bagnell and J. G. Schneider. Autonomous He-

licopter Control using Reinforcement Learning Policy
Search Methods. In ICRA, pp. 1615–1620, 2001.

[5] B. Boots, S. M. Siddiqi, and G. J. Gordon. Closing the
Learning-Planning Loop with Predictive State Represen-
tations. In R:SS, 2010.

[6] M. P. Deisenroth. Efficient Reinforcement Learning using
Gaussian Processes. KIT Scientific Publishing, 2010.
ISBN 978-3-86644-569-7.

[7] M. P. Deisenroth and C. E. Rasmussen. PILCO: A
Model-Based and Data-Efficient Approach to Policy
Search. In ICML, 2011.

[8] M. P. Deisenroth, C. E. Rasmussen, and J. Peters. Gaus-
sian Process Dynamic Programming. Neurocomputing,
72(7–9):1508–1524, 2009.

[9] J. Ko, D. J. Klein, D. Fox, and D. Haehnel. Gaussian
Processes and Reinforcement Learning for Identification
and Control of an Autonomous Blimp. In ICRA, 2007.

[10] J. Ko and D. Fox. Learning GP-BayesFilters via Gaussian
Process Latent Variable Models. Autonomous Robots,
30(1), 2011.

[11] J. Kober and J. Peters. Policy Search for Motor Primitives
in Robotics. Machine Learning, 2011.

[12] J. Maitin-Shepard, M. Cusumano-Towner, J. Lei, and
P. Abbeel. Cloth Grasp Point Detection based on
Multiple-View Geometric Cues with Application to
Robotic Towel Folding. In ICRA, 2010.

[13] J. Nakanishi, R. Cory, M. Mistry, J. Peters, and S. Schaal.
Operational Space Control: A Theoretical and Empirical
Comparison. IJRR, 27(737), June 2008.

[14] D. Nguyen-Tuong, M. Seeger, and J. Peters. Model
Learning with Local Gaussian Process Regression. Ad-
vanced Robotics, 23(15):2015–2034, 2009.

[15] J. Peters and S. Schaal. Policy Gradient Methods for
Robotics. In IROS, pp. 2219–2225, 2006.

[16] J. Pineau, G. Gordon, and S. Thrun. Point-based Value
Iteration: An Anytime Algorithm for POMDPs. In IJCAI,
pp. 1025–1030, 2003.

[17] J. Quiñonero-Candela, A. Girard, J. Larsen, and C. E.
Rasmussen. Propagation of Uncertainty in Bayesian
Kernel Models—Application to Multiple-Step Ahead
Forecasting. In ICASSP, pp. 701–704, 2003.

[18] M. Quigley, R. Brewer, S. P. Soundararaj, V. Pradeep,
Q. Le, and A. Y. Ng. Low-cost Accelerometers for
Robotic Manipulator Perception. In IROS, 2010.

[19] M. Quigley, B. Gerkey, K. Conley, J. Faust, T. Foote,
J. Leibs, E. Berger, R. Wheeler, and A. Y. Ng. ROS: An
Open-Source Robot Operating System. In ICRA Open-
Source Software Workshop, 2009.

[20] C. E. Rasmussen and M. Kuss. Gaussian Processes in
Reinforcement Learning. In NIPS, pp. 751–759, 2004.

[21] C. E. Rasmussen and C. K. I. Williams. Gaussian
Processes for Machine Learning. The MIT Press, 2006.

[22] S. Schaal. Learning From Demonstration. In NIPS, pp.
1040–1046, 1997.

[23] J. G. Schneider. Exploiting Model Uncertainty Estimates
for Safe Dynamic Control Learning. In NIPS, 1997.

[24] M. Toussaint and C. Goerick. From Motor Learning to
Interaction Learning in Robots, chapter A Bayesian View
on Motor Control and Planning. Springer-Verlag, 2010.

	Introduction
	Related Work
	Preliminaries
	Hardware Description
	Block Tracking

	Policy Learning with State-Space Constraints
	Probabilistic Dynamics Model
	Long-Term Planning through Approximate Inference
	Mean
	Variance

	Controller Learning through Indirect Policy Search
	Planning with State-Space Constraints

	Experimental Validation
	Independent Controllers for Building a Tower
	Sequential Transfer Learning
	Collision Avoidance

	Discussion
	Conclusion

