Using Kinect with Robotics Developer Studio

Trevor Taylor, PhD
Senior Program Manager
Microsoft Robotics Group
Agenda

- Overview of Robotics Developer Studio
- Kinect Overview
- Kinect Programming
- Demos
- Summary
A development platform for the robotics community (academia, hobbyist, research, and commercial), supporting a wide variety of hardware and application scenarios.
RDS Application Stack

New Opportunities for Developers

Need to Expand and Simplify

Development Tools:
Microsoft Robotics Developer Studio 4 Beta

Visual Studio 2010

Usage Scenarios
- Application 1
- Application 2
- Application 3
- Application 4
- Application 5
- Application 6

High-Level Functions
- Interaction
 - Speech
 - Gestures, Touch
 - Display
- Navigation
 - Collision Avoidance
 - Autonomous Navigation
 - Mapping and Localization
 - Follow Person
- Infrastructure
 - Communication
 - User Management
 - Data Management
 - Application Management

Middleware
- Concurrency
- Coordination
- Distributed Execution

Drivers
- Hardware
- Micro Controller
- Communication

OS
- Windows
- .NET

Micro Controller
- Micro Controller FW
- Micro Controller

Physical Hardware
- Displays
- Microphones
- Cameras
- Sensors
- Motors
- Servos

Oct 2011
Copyright 2011 Microsoft Corporation
Key RDS Runtime Features

- **Concurrency and Coordination Runtime (CCR)**
 - Simplifies writing and managing asynchronous processes
 - Avoids the need to understand manual threading, semaphores, etc.
- **Decentralized system services (DSS)**
 - Service Oriented Architecture (SOA)
 - Makes State observable and easily accessible (RESTful)
 - Provides for reusability and failure tolerance
 - Supports remote/distributed execution
 - Makes the programming model scalable

Copyright 2011 Microsoft Corporation
RDS Services – Basic Building Blocks

- **Services:**
 - Provide abstractions for hardware and software
 - Are inherently distributed and asynchronous
 - Have structured internal state
 - Interact using messages over ports
 - Support handlers (encapsulate behaviors)
 - Can have “partners”
 - Provide aggregated, compositional functions
 - Sensor Fusion
 - Drive System
 - High-level functions, e.g., Computer Vision

- **Basic operations**
 - Create and terminate
 - State retrieval and manipulation
 - Send Notifications

Copyright 2011 Microsoft Corporation

Oct 2011
Visual Simulation Environment

• High resolution 3D rendering
 • Several simulated environments
 • Visual and physics views
• High performance physics engine
 • NVIDIA PhysX™
 • Optional hardware acceleration
• Makes technology accessible without hardware
• Enables fast prototyping and debugging
• Extensible
Visual Programming Language

- Dataflow editing
 - Simple connections
 - Building blocks
 - Asynchronous flows
 - Code generation
- Novice to expert
- Useful for:
 - Education
 - Dashboards
 - Prototyping
- Not useful for:
 - Image processing, etc.
 - Heavy-duty services

http://www.crcpress.com/product/isbn/9781439821657
Kinect Support
- Uses Kinect for Windows SDK
- RGB and Depth Image Viewers
- Simulated Kinect Entity

New Reference Platform Design
- Published specification to standardize hardware
- Differential Drive system
- Utilizes Kinect as a key sensor
- Onboard Computer
- Implemented by multiple vendors
 - Parallax, Inc. (shown)
 - http://www.parallax.com/eddie
Reference Platform Design

- Sharing software is difficult if robots are not identical
- Reference Platform defines suitable hardware as the basis for a personal robotic companion
- Can support Human Robot Interaction through Gestures and Speech (via Kinect)
- Computer includes WiFi (Cloud) connectivity
- Can be extended over time as appropriate
- Available as turnkey solutions through third-parties
- Obstacle Avoidance Drive sample
- A simulation entity is also provided to allow low-cost development without hardware
Simulated Reference Platform
KinectUI Sample
Kinect Overview
Kinect Hardware

- RGB CAMERA
- 3D DEPTH SENSOR
- MULTI-ARRAY MIC
- MOTORIZED TILT
Vision System

RGB camera
IR camera
IR Laser projector
Kinect Video Output

30 Hz Frame Rate; 57 degree Field-Of-View

8-bit VGA RGB
640 x 480

11-bit monochrome
320 x 240
The Audio System

Supercardioid Microphone
Human Depth Sensing

Eyes – Stereo Vision

Object pattern similarity determines disparity
Kinect Depth Sensing

IR Projector IR Camera

IR pattern similarity determines disparity
Depth Computation

Projected IR Pseudo-random Pattern
Depth Map in 3D
Kinect Programming
Kinect SDK

- **Raw sensor streams**
 - Access to raw data streams from the depth sensor, color camera sensor, and four-element microphone array enables developers to build upon the low-level streams that are generated by the Kinect sensor.

- **Skeletal tracking**
 - The capability to track the skeleton image of one or two people moving within the Kinect field of view make it easy to create gesture-driven applications.

- **Advanced audio capabilities**
 - Audio processing capabilities include sophisticated acoustic noise suppression and echo cancellation, beam formation to identify the current sound source, and integration with the Windows speech recognition API.

- **Sample code and documentation**
 - The SDK includes more than 100 pages of technical documentation. In addition to built-in help files, the documentation includes detailed walkthroughs for most samples provided with the SDK.
 - Assumes some programming experience.

- **Easy installation**
 - The SDK installs quickly, requires no complex configuration, and the complete installer size is less than 100 MB. Developers can get up and running in just a few minutes with a standard standalone Kinect sensor unit (widely available at retail outlets).

- **Designed for non-commercial purposes**
 - A commercial version is expected in 2012.

- **Windows 7**
 - Managed (C#, Visual Basic) and Unmanaged (C++) interfaces using Microsoft Visual Studio 2010.
Depth Image Space

- Distance from the Kinect for every pixel in millimeters
- Optionally includes Player Index in low-order 3 bits
- Pixel coordinates do not necessarily align with RGB
Skeleton Space
Vision Algorithm

- Quickly and accurately predict 3D positions of body joints
- From a single depth image, using no temporal information

- **Object recognition approach**
- Intermediate body parts representation that maps the difficult pose estimation problem into a simpler **per-pixel classification problem**
- Large and highly varied training dataset allows the classifier to estimate body parts invariant to pose, body shape, clothing, etc.
- Generate confidence-scored 3D proposals of several body joints by re-projecting the classification result and finding local modes

- System runs at 200 frames per second on consumer hardware
- Evaluation shows high accuracy on both synthetic and real test sets
- State of the art accuracy in comparison with related work and improved generalization over exact whole-skeleton nearest neighbor matching
Implementation

- Collect training data – thousands of visits to global households, filming real users, the Hollywood motion capture studio generated billions of images

- Apply state-of-the-art object recognition research
- Apply state-of-the-art real-time semantic segmentation

- Build a training set – classify each pixel’s probability of being in any of 32 body segments, determine probabilistic cluster of body configurations consistent with those, present the most probable

- Millions of training images → Millions of classifier parameters
- Hard to parallelize → New algorithm for distributed decision-tree training
- Major use of DryadLINQ (large-scale distributed cluster computing)
Depth Reference

- 16 bits per pixel (but not all used)
- Distance Range: 800 mm to 4000 mm range
- Values are not linearly distributed across the range
- Depth value 0 means unknown
 - Shadows, low reflectivity, and high reflectivity among the few reasons
- Player Index
 - 0 – No player
 - 1 – Skeleton 0
 - 2 – Skeleton 1
 - ... (Not yet implemented)
Kinect Frames

- RDS: QueryRawFrameRequest returns a RawKinectFrames object:

  ```csharp
class RawKinectFrames
{
    public ImageFrame RawDepthFrameData { get; set; }
    public ImageFrame RawImageFrameData { get; set; }
    public SkeletonFrame RawSkeletonFrameData { get; set; }
}
```

- Depth Frame is 16-bit depth values (more info later)
- Image Frame is 24-bit RGB
- Skeleton Frame contains an array of Joints
Understanding Depth Data

- ImageFrame.Image.Bits

```csharp
public struct PlanarImage
{
    public byte[] Bits;
    public int BytesPerPixel;
    public int Height;
    public int Width;
}
```

- Depth data is an array of bytes
- Array details:
 - Starts at top left of image
 - Moves left to right, then top to bottom
 - Represents distance for pixel
Calculating Distance

- 2 bytes per pixel (16 bits)
- Depth – Distance per pixel
 - Bitshift second byte by 8
 - Distance \((0,0) = (\text{int})(\text{Bits}[i] \mid \text{Bits}[i+1] \ll 8) \);
- DepthAndPlayer Index – Includes Player index
 - Bitshift by 3 first byte (player index), 5 second byte
 - Distance \((0,0) = (\text{int})(\text{Bits}[i] \gg 3 \mid \text{Bits}[i+1] \ll 5) \);
Joint Information

- Maximum two players tracked at once
- Each player has a set of \(<x, y, z>\) joints in meters
- Each joint has associated state
 - Tracked, Not tracked, or Inferred
- Inferred - Occluded, clipped, or low confidence joints
- Not Tracked - Rare, but your code must check for this
- RDS: Can convert joints from Skeleton Space back to Depth Image Space using a QueryPixelMappingRequest (one pixel at a time)
Joint Smoothing

- Use to remove joint “noise”
 - Small, high frequency jitter
 - Temporary Spikes
- `nui.SkeletonEngine.TransformSmooth = true;`
- Fine tune using `TransformSmoothParameters`
 - Correction, JitterRadius, MaxDeviationRadius, Prediction, Smoothing
- RDS: Set using `UpdateSkeletalSmoothingRequest`
Kinect Body Tilt

- ± 27 degrees
- Servo is not very strong and body might tilt if the robot makes sudden movements
- Maximum of 15 requests per 2 minutes
- Tilt angle accounts for direction of gravity using the Accelerometer so that Zero is Horizontal regardless of any tilt of the Kinect base
- RDS: Set tilt angle using UpdateTiltRequest
- RDS: Issue a Get request to find current tilt angle (measured by the Accelerometer)
Audio Processing

- Operates independently of Depth/RGB
- Kinect supports:
 - Multichannel Echo Cancellation
 - Audio Beam Forming (Sound Source Localization)
- Appears as a Windows Audio Device
- RDS: Speech Recognition service can process speech based on a Grammar. Does not provide general recording capability.
Speech Recognition

- Grammar – What to listen for
 - Code – GrammarBuilder, Choices
 - Speech Recognition Grammar Specification (SRGS)
 - C:\Program Files (x86)\Microsoft Speech Platform SDK\Samples\Sample Grammars\n
- Note: AutomaticGainControl must be off

- RDS: SpeechRecognizedNotification sent to subscribers contains the Confidence, Text and Semantics

- RDS: BeamDirectionChangedNotification sent to subscribers contains StartTime, Angle and Confidence
Grammar Examples

<!-- Confirmation_YesNo._value: string ["Yes", "No"] -->
<rule id="Confirmation_YesNo" scope="public">
 <example> yes </example>
 <example> no </example>
 <one-of>
 <item>
 <ruleref uri="#Confirmation_Yes" />
 </item>
 <item>
 <ruleref uri="#Confirmation_No" />
 </item>
 </one-of>
 <tag> out = rules.latest() </tag>
</rule>

<!-- Confirmation_Yes._value: string ["Yes"] -->
<rule id="Confirmation_Yes" scope="public">
 <example> yes </example>
 <example> yes please </example>
 <one-of>
 <item> yes </item>
 <item> yeah </item>
 <item> yep </item>
 <item> ok </item>
 </one-of>
 <item repeat="0-1"> please </item>
 <tag> out._value = "Yes";</tag>
</rule>
Further Information - RDS

• Download Microsoft Robotics Developer Studio 4 Beta
 • http://www.microsoft.com/robotics

• Join the RDS Community

• Watch the Overview Video on Channel 9

• RDS Reference Platform Specification
 • http://go.microsoft.com/fwlink/?LinkId=228540

• Take part in the Robotics @ Home Contest
 • http://www.roboticsathome.com
Further Information - Kinect

- Download Kinect for Windows SDK Beta
 - http://research.microsoft.com/kinectsdk/
- Join the Kinect Community
- Quick Starts on Channel 9
- Launch Events
 - http://channel9.msdn.com/Events/KinectSDK/BetaLaunch
- Gallery