
1

CSE 481C

A Primer on Machine Learning

2

Why Machine Learning for Robotics?

• Learning is essential for unknown environments
 e.g., robot designer lacks omniscience

• Learning is necessary in dynamic environments
 Robot can adapt to changes in environment not

foreseen at design time

• Learning is essential for robot programming by
demonstration

Say adios to traditional robot programming based on
physics equations which require lots of assumptions
and seldom work well in noisy real-world environments

2

© CSE AI Faculty 3

Types of Learning

• Unsupervised learning: discover patterns
in input data (no outputs or labels given)
 E.g., principal component analysis (PCA), clustering

• Supervised learning: correct

answers/outputs for each input provided
 E.g., linear regression, backprop neural networks

• Reinforcement learning and Markov

Decision Process (MDPs): occasional
rewards (or punishments) given
 E.g., Q learning (for details, see: Russell & Norvig, Artificial

Intelligence: A Modern Approach, 3rd ed.)

Unsupervised Learning Example 1

Principal Component Analysis (PCA)

joint 1

joint 2

Av = v v1 is eigenvector of A with largest eigenvalue 1
v2 is eigenvector of A with smaller eigenvalue 2

Data
covariance
matrix

3

Unsupervised Learning Example 2

K-Means Clustering and Probability Density Estimation

];[];|[];[GvpGvpGp
v

 uu

(v, v)

Learn parameters G = (v, v, v)

Data Mixture of Gaussians Model

(for details, see: Russell & Norvig, Artificial Intelligence: A Modern Approach, 3rd ed.)

© CSE AI Faculty 6

Supervised learning

Goal: Learn a function from examples

f is the target function. Input data are pairs (x, f(x))

Problem: learn a function (“hypothesis”) h
such that h ≈ f (h approximates f as best as possible)
given a training set of (input,output) pairs

4

© CSE AI Faculty 7

Supervised learning example

• Construct h to agree with f on training set
 h is consistent if it agrees with f on all training

examples

• E.g., regression (curve fitting):

x = Input data
point (x,(f(x))

© CSE AI Faculty 8

Supervised learning example

h = Straight line?

5

© CSE AI Faculty 9

Supervised learning example

What about a quadratic function?

What about
this point?

© CSE AI Faculty 10

Supervised learning example

Finally, a function that satisfies all!

6

© CSE AI Faculty 11

But so does this one…

Supervised learning example

© CSE AI Faculty 12

Ockham’s razor principle

• Ockham’s razor: prefer the simplest hypothesis
consistent with data
Related to KISS principle (“keep it simple stupid”)
Smooth blue function preferable over wiggly yellow one
If noise known to exist in this data, even linear might be
 better (the lowest x might be due to noise)

7

13

Performance Evaluation

• How do we know that the learned h ≈ f ?
• Answer: Try h on a new test set of examples

Learning curve = % correct on test set as a function of
training set size

14

Generalization

• How do we know the classifier function
we have learned is good?
 Look at generalization error on test data

• Method 1: Split available data into training vs
test sets (the “hold out” method)

• Method 2: Cross-Validation

8

15

Cross-validation

• K-fold cross-validation:
 Divide data into k subsets of equal size
 Train learning algorithm K times, leaving out

one of the subsets. Compute error on
left-out subset

 Report average error over all subsets

• Leave-1-out cross-validation:
 Train on all but 1 data point, test on that

data point; repeat for each point
 Report average error over all points

16

Example Problem: Action Classification
 How do we build a classifier to distinguish

between walking and jumping?

9

Supervised Learning as Classification
•denotes output of +1
(for Walking)

•denotes output of -1 (or
0) (for Jumping)

Walking

Jumping

Goal: Find a separating boundary (line in this case)

© CSE AI Faculty 18

Example 2: Learning to Drive

Can a human train a robot to drive?

10

© CSE AI Faculty 19

Supervised Learning as Regression

Training Input u = (u1 u2 … u960) = image pixels

 Get steering angle
from a human driver

 Get current
 camera image

Training Output:

 d = (d1 d2 … d30)

Supervised Learning

• Two Primary Tasks
1. Classification

• Inputs u1, u2, … and discrete classes C1, C2, …, Ck

• Training examples: (u1, C2), (u2, C7), etc.
• Learn the mapping from an arbitrary input to its class
• Example: Inputs = video or joint angle data, output

classes = walking or jumping

2. Regression
• Inputs u1, u2, … and continuous outputs v1, v2, …

• Training examples: (input, desired output) pairs
• Learn to map an arbitrary input to its corresponding

output
• Example: Teaching a robot how to drive

Input = road image, output = steering angle

11

© CSE AI Faculty 21

Classification Techniques

Decision Trees

3

4

Decision Tree

x1

x2

(for details, see: Russell &
Norvig, Artificial Intelligence:
A Modern Approach, 3rd ed.)

22

Classification using Neurons
• Artificial neuron or “Perceptron”:

 m binary inputs (-1 or 1), 1 output (-1 or 1)
 Connection weights wji

 Threshold i

Inputs uj

(-1 or +1)
Output vi

(-1 or +1)

Weighted Sum Threshold
w1i

w2i

w3i

sign(x) = 1 if x > 0 and -1 if x  0

)(ij

j

jii uwsignv  

12

23

Perceptrons and Classification

• Consider a single-layer perceptron
 Weighted sum forms a linear hyperplane

 Everything on one side of this hyperplane is
in class 1 (output = +1) and everything on
other side is class 2 (output = -1)

• Any function that is linearly separable
can be computed by a perceptron

0 ij

j

jiuw 

24

Linear Separability

Example: AND is linearly separable
 Linear hyperplane

v

u1 u2

 = 1.5
(1,1)

1

-1

•1

-1
u1

u2 -1 -1 -1

1 -1 -1

-1 1 -1

1 1 1

u1 u2 AND

v = 1 iff u1 + u2 – 1.5 > 0

Similarly for OR and NOT

13

25

What about the XOR function?

(1,1)

•1

-1

•1

-1
u1

u2
-1 -1 1

1 -1 -1

-1 1 -1

1 1 1

u1 u2 XOR

Can a perceptron separate the +1
outputs from the -1 outputs?

?

How do we deal with linear
inseparability?

14

27

Multilayer Perceptrons

• Removes limitations of single-layer
networks
 Can solve XOR

• Example: Two-layer perceptron that
computes XOR

x y

Backpropagation learning algorithm (to
be discussed later) can be used to train
multi-layered networks given (input,
output) pairs

28

Back to Linear Separability

 Recall: Weighted sum in perceptron forms a
linear hyperplane

 Due to threshold function, everything on one
side of this hyperplane is labeled as class 1
(output = +1) and everything on other side is
labeled as class 2 (output = -1)

0 bxw i

i

i

15

29

Separating Hyperplane

• denotes +1
output
• denotes -1
output

•Class 2

Need to choose w and b based on training data

0 bxw i

i

i

•Class 1

30

Separating Hyperplanes
Different choices of w and b give different hyperplanes

(This and next few slides adapted from Andrew Moore’s)

 denotes +1 output

 denotes -1 output

Class 1

Class 2

http://www.cs.cmu.edu/~awm/tutorials

16

31

Which hyperplane is best?

 denotes +1 output

 denotes -1 output

Class 1

Class 2

32

How about the one right in the middle?

Intuitively, this boundary

seems good

Avoids misclassification of

new test points if they are

generated from the same

distribution as training points

17

33

Margin

Define the margin
of a linear
classifier as the
width that the
boundary could be
increased by
before hitting a
datapoint.

34

Maximum Margin and Support Vector Machine

The maximum
margin classifier is
called a Support
Vector Machine (in
this case, a Linear
SVM or LSVM)

Support Vectors
are those
datapoints that
the margin
pushes up
against

18

35

Why Maximum Margin?

• Robust to small
perturbations of data
points near boundary

• There exists theory
showing this is best for
generalization to new
points

• Empirically works great

36

What if data is not linearly separable?

Outliers (due to noise)

19

37

Approach 1: Soft Margin
SVMs

• Allow errors ξ i (deviations
from margin)

• Trade off margin with errors.

•ξ

38

Can we do something to the inputs?

What if data is not linearly
separable: Other ideas?

20

39

Approach 2: Map original input space to higher-
dimensional feature space; use linear classifier in
higher-dim. space

x → φ(x)

What if data is not linearly separable?

40

x → φ(x)

Problem: High dimensional space

• Computation in high-dimensional feature space can be
costly

• The high dimensional projection function φ(x) may be
too complicated to compute

• Kernel trick to the rescue!

21

41

The Kernel Trick

SVM maximizes a quadratic function:

Insight:
The data points only appear as inner product

 No need to compute high-dimensional φ(x)
explicitly! Just replace inner product xixj with a
kernel function K(xi,xj) = φ(xi)  φ(xj)

 E.g., Gaussian kernel
 K(xi,xj) = exp(-||xi-xj||2/22)
 E.g., Polynomial kernel
 K(xi,xj) = (xixj+1)d









i

iii

ji

jijiji

i

i

y

yy

0 and 0 subject to

)(
2

1

,



 xx

42

An Example for f(.) and K(.,.)
• Suppose f(.) is given as follows

• An inner product in the feature space is

• If we define the kernel function as follows,
there is no need to compute f(.) explicitly

• This use of kernel function to avoid

computing f(.) explicitly is known as the
kernel trick

22

43

Summary: Steps for Classification using SVMs

• Prepare the data matrix
• Select the kernel function to use
• Select parameters of the kernel

function
 You can use the values suggested by

the SVM software, or use cross-
validation

• Execute the training algorithm and
obtain the parameters i

• Classify new data using the learned
parameters

44

Face Detection using SVMs

Kernel used: Polynomial of degree 2

(Osuna, Freund, Girosi, 1998)

http://cbcl.mit.edu/projects/cbcl/publications/ps/cvpr97-face.ps.gz
http://cbcl.mit.edu/projects/cbcl/publications/ps/cvpr97-face.ps.gz
http://cbcl.mit.edu/projects/cbcl/publications/ps/cvpr97-face.ps.gz
http://cbcl.mit.edu/projects/cbcl/publications/ps/cvpr97-face.ps.gz

23

45

Support Vectors

46

K-Nearest Neighbors
• A simple non-parametric non-linear

classification algorithm
• Idea:

 Look around you to see how your neighbors
classify data

 Classify a new data-point according to a
majority vote of your k nearest neighbors

24

47

Distance Metric
• How do we measure what it means to be a neighbor

(what is “close”)?

• Appropriate distance metric depends on the problem

• Examples:
discrete (e.g., strings): Hamming distance
 d(x1,x2) = # features on which x1 and x2 differ

continuous (e.g., vectors over reals): Euclidean
distance

 d(x1,x2) = || x1-x2 || = square root of sum of squared
differences between corresponding elements of data vectors

48

Example
Input Data: 2-D points (x1,x2)

Two classes: C1 and C2. New Data Point +

K = 4: Look at 4 nearest neighbors of +
3 are in C1, so classify + as C1

25

49

Decision Boundary using K-NN

Some points
near the
boundary may
be misclassified
(but maybe
noise)

What if we want to learn
continuous-valued functions?

Input

Output

26

51

Example: Learning to Drive

Need to map sensor readings to continuous motor
commands (this is the problem of regression)

52

Regression using Networks
• We want networks that can learn a function

 Network maps real-valued inputs to real-valued
output

 Idea: Given data, minimize errors between
network’s output and desired output by changing
weights

Continuous output values  Can’t

use binary threshold units anymore

To minimize errors, a differentiable

output function is desirable

27

53

Sigmoidal Networks

Input nodes ae
ag




1

1
)(

a

(a)
1

The most common

activation function:

Sigmoid function:

Non-linear “squashing” function: Squashes input to be between 0

and 1. The parameter  controls the slope.

g(a)

)(uw
Tg

u = (u1 u2 u3)
T

w

Output v =

54

Gradient-Descent Learning
(“Hill-Climbing”)

Given training examples (um,dm) (m = 1, …, N),
define an error function (cost function or
“energy” function)

2)(
2

1
)(m

m

m vdE  w

)(mTm gv uwwhere

28

55

Gradient-Descent Learning
(“Hill-Climbing”)

Would like to change w so that E(w) is minimized

Gradient Descent: Change w in proportion to –dE/dw
(why?)

mmTmm

m

m
mm

m

gvd
d

dv
vd

d

dE

d

dE

uuw
ww

w
ww

)()()(







Derivative of sigmoid

56

But wait….
• Delta rule tells us how to modify the connections

from input to output (one layer network)
 One layer networks are not that interesting
 (remember XOR?)

• What if we have multiple layers?

29

57

Learning Multilayer Networks

2)(
2

1
),(i

i

i vdE  wW

• Start with random weights W, w

• Given input u, network produces

output v

• Find W and w that minimize total

squared output error over all output

units (labeled i):

))((k

k

kj

j

jii uwgWgv 

ku

58

Backpropagation Learning : Output Weights

j

j

jjiii

ji

ji

jiji

xxWgvd
dW

dE

dW

dE
WW

)()(

 

{delta rule}

)(j

j

jii xWgv 

ku

jx

Learning rule for hidden-output weights W:

2)(
2

1
),(i

i

i vdE  wW

{gradient descent}

30

59

Backpropagation: Hidden Weights
)(j

j

ji

m

i xWgv 

m

ku






















 m

k

m

k

k

kjji

j

m

jji

m

i

m

i

imkj

kj

j

jkjkj

kjkj

uuwgWxWgvd
dw

dE

dw

dx

dx

dE

dw

dE

dw

dE
ww

)()()(

 :But

,

 {chain rule}

)(m

k

k

kj

m

j uwgx 

Learning rule for input-hidden weights w:

2)(
2

1
),(i

i

i vdE  wW

60

Teaching a robotic vehicle to drive

One of the learned
“road features” wi

31

61

ALVINN (Autonomous Land Vehicle in a
Neural Network)

(Pomerleau, 1992)

• Trained using human
driver + camera images

• After learning:
•Drove up to 70 mph
on highway
•Up to 22 miles
without intervention
•Drove cross-country
largely autonomously

62

Demos: Learning Pole Balancing and Backing up a Truck

from a Human Teacher
(courtesy of Keith Grochow, CSE 599)

• Neural network learns to balance a pole on a cart

• System:
• 4 state variables: xcart, vcart, θpole, vpole

• 1 input: Force on cart

• Backprop Network:
• Input: State variables

• Output: New force on cart

• NN learns to back a truck into a loading dock
• System (Nyugen and Widrow, 1989):

• State variables: xcab, ycab, θcab

• 1 input: new θsteering

• Backprop Network:
• Input: State variables

• Output: Steering angle θsteering

xcart

vcart

vpole

θpole

../473/NN demo.exe

