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CSE 481C 
 

A Primer on Machine Learning 
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Why Machine Learning for Robotics? 

• Learning is essential for unknown environments 
 e.g., robot designer lacks omniscience 

 

• Learning is necessary in dynamic environments 
 Robot can adapt to changes in environment not 

foreseen at design time  
 

• Learning is essential for robot programming by 
demonstration 

Say adios to traditional robot programming based on 
physics equations which require lots of assumptions 
and seldom work well in noisy real-world environments 
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Types of Learning  

• Unsupervised learning: discover patterns 
in input data (no outputs or labels given) 
 E.g., principal component analysis (PCA), clustering 

 
• Supervised learning: correct 

answers/outputs for each input provided 
 E.g., linear regression, backprop neural networks 

 
• Reinforcement learning and Markov 

Decision Process (MDPs): occasional 
rewards (or punishments) given 
 E.g., Q learning (for details, see: Russell & Norvig, Artificial 

Intelligence: A Modern Approach, 3rd ed.) 

Unsupervised Learning Example 1 
 

Principal Component Analysis (PCA) 

joint 1 

joint 2 

Av = v  v1 is eigenvector of A with largest eigenvalue 1 
v2 is eigenvector of A with smaller eigenvalue 2 

Data 
covariance 
matrix 
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Unsupervised Learning Example 2 
 

K-Means Clustering and Probability Density Estimation 

];[];|[];[ GvpGvpGp
v

 uu

(v, v) 

Learn parameters G = (v, v, v) 
 

Data Mixture of Gaussians Model 

(for details, see: Russell & Norvig, Artificial Intelligence: A Modern Approach, 3rd ed.) 
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Supervised learning 

Goal: Learn a function from examples 
 

f is the target function. Input data are pairs (x, f(x)) 
 

Problem: learn a function (“hypothesis”) h 
such that h ≈ f  (h approximates f as best as possible) 
given a training set of (input,output) pairs 
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Supervised learning example 

• Construct h to agree with f on training set 
 h is consistent if it agrees with f on all training 

examples 

• E.g., regression (curve fitting): 
 

x = Input data 
point (x,(f(x)) 
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Supervised learning example 

h = Straight line? 
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Supervised learning example 

What about a quadratic function? 
 

What about 
this point? 

© CSE AI Faculty 10 

Supervised learning example 

 
 

Finally, a function that satisfies all! 
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But so does this one… 
 

Supervised learning example 
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Ockham’s razor principle 

• Ockham’s razor: prefer the simplest hypothesis 
consistent with data 
Related to KISS principle (“keep it simple stupid”) 
Smooth blue function preferable over wiggly yellow one 
If noise known to exist in this data, even linear might be 
 better (the lowest x might be due to noise) 
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Performance Evaluation 

• How do we know that the learned h ≈ f ? 
• Answer: Try h on a new test set of examples 

 
Learning curve = % correct on test set as a function of 
training set size 
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Generalization 

• How do we know the classifier function 
we have learned is good? 
 Look at generalization error on test data 

• Method 1: Split available data into training vs 
test sets (the “hold out” method) 

• Method 2: Cross-Validation 
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Cross-validation 

• K-fold cross-validation:  
 Divide data into k subsets of equal size 
 Train learning algorithm K times, leaving out 

one of the subsets. Compute error on       
left-out subset 

 Report average error over all subsets 

• Leave-1-out cross-validation:  
 Train on all but 1 data point, test on that 

data point; repeat for each point 
 Report average error over all points 

16 

Example Problem: Action Classification 
 How do we build a classifier to distinguish 

between walking and jumping? 
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Supervised Learning as Classification 
•denotes output of +1 
(for Walking) 

•denotes output of -1  (or 
0) (for Jumping) 

Walking 

Jumping 

Goal: Find a separating boundary (line in this case) 
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Example 2: Learning to Drive 

Can a human train a robot to drive? 
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Supervised Learning as Regression 

Training Input u = (u1  u2 … u960)  = image pixels 

 Get steering angle 
from a human driver 

 Get current  
 camera image 

Training Output: 

 d = (d1  d2 … d30) 

Supervised Learning 

• Two Primary Tasks 
1. Classification 

• Inputs u1, u2, … and discrete classes C1, C2, …, Ck 

• Training examples: (u1, C2), (u2, C7), etc. 
• Learn the mapping from an arbitrary input to its class 
• Example: Inputs = video or joint angle data, output 

classes = walking or jumping 
 

2. Regression 
• Inputs u1, u2, … and continuous outputs v1, v2, … 

• Training examples: (input, desired output) pairs 
• Learn to map an arbitrary input to its corresponding 

output 
• Example: Teaching a robot how to drive 

Input = road image, output = steering angle 
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Classification Techniques 
 

Decision Trees 

3 

4 

Decision Tree 

x1 

x2 

(for details, see: Russell & 
Norvig, Artificial Intelligence: 
A Modern Approach, 3rd ed.) 
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Classification using Neurons 
• Artificial neuron or “Perceptron”: 

 m binary inputs (-1 or 1), 1 output (-1 or 1) 
 Connection weights wji  

 Threshold i 

Inputs uj 

(-1 or +1) 
Output vi 

(-1 or +1) 

Weighted Sum Threshold 
w1i 

w2i 

w3i 

sign(x) = 1 if x > 0 and -1 if x  0 

)( ij

j

jii uwsignv  
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Perceptrons and Classification 

• Consider a single-layer perceptron 
 Weighted sum forms a linear hyperplane 

 
 
 

 Everything on one side of this hyperplane is 
in class 1 (output = +1) and everything on 
other side is class 2 (output = -1) 

• Any function that is linearly separable 
can be computed by a perceptron 

0 ij

j

jiuw 

24 

Linear Separability 

Example: AND is linearly separable 
 Linear hyperplane 

v 

u1 u2 

 = 1.5 
(1,1) 

1 

-1 

•1 

-1 
u1 

u2 -1 -1 -1 

1 -1 -1 

-1 1 -1 

1 1 1 

u1 u2 AND 

v = 1 iff u1 + u2 – 1.5 > 0 

Similarly for OR and NOT 
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What about the XOR function? 

(1,1) 

•1 

-1 

•1 

-1 
u1 

u2 
-1 -1 1 

1 -1 -1 

-1 1 -1 

1 1 1 

u1 u2 XOR 

Can a perceptron separate the +1 
outputs from the -1 outputs? 

? 

How do we deal with linear 
inseparability? 
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Multilayer Perceptrons 

• Removes limitations of single-layer 
networks 
 Can solve XOR 

• Example: Two-layer perceptron that 
computes XOR 
 
 
 
 
 

x y 

Backpropagation learning algorithm (to 
be discussed later) can be used to train 
multi-layered networks given (input, 
output) pairs 
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Back to Linear Separability 
 

 Recall: Weighted sum in perceptron forms a 
linear hyperplane 
 
 
 

 Due to threshold function, everything on one 
side of this hyperplane is labeled as class 1 
(output = +1) and everything on other side is 
labeled as class 2 (output = -1) 

 

0 bxw i

i

i
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Separating Hyperplane 

•   denotes +1 
output  
•   denotes -1 
output 

•Class 2 

Need to choose w and b based on training data 

0 bxw i

i

i

•Class 1 
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Separating Hyperplanes 
Different choices of w and b give different hyperplanes 

(This and next few slides adapted from Andrew Moore’s) 

   denotes +1 output  

   denotes -1 output 

Class 1 

Class 2 

http://www.cs.cmu.edu/~awm/tutorials
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Which hyperplane is best? 

   denotes +1 output  

   denotes -1 output 

Class 1 

Class 2 
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How about the one right in the middle? 

Intuitively, this boundary 

seems good  
 

Avoids misclassification of 

new test points if they are 

generated from the same 

distribution as training points 
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Margin 

 

Define the margin 
of a linear 
classifier as the 
width that the 
boundary could be 
increased by 
before hitting a 
datapoint. 
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Maximum Margin and Support Vector Machine 

 

The maximum 
margin classifier is 
called a Support 
Vector Machine (in 
this case, a Linear 
SVM or LSVM) 

Support Vectors 
are those 
datapoints that 
the margin 
pushes up 
against 
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Why Maximum Margin? 

 

• Robust to small 
perturbations of data 
points near boundary 

• There exists theory 
showing this is best for 
generalization to new 
points  

• Empirically works great 
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What if data is not linearly separable? 

Outliers (due to noise) 
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Approach 1: Soft Margin 
SVMs 

• Allow errors  ξ i (deviations 
from margin) 

 
• Trade off margin with errors. 

•ξ 
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Can we do something to the inputs? 

What if data is not linearly 
separable: Other ideas? 
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Approach 2:   Map original input space to higher-
dimensional feature space; use linear classifier in 
higher-dim. space 

x → φ(x) 

What if data is not linearly separable? 
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x → φ(x) 

Problem: High dimensional space 

• Computation in high-dimensional feature space can be 
costly 

• The high dimensional projection function φ(x) may be 
too complicated to compute  

• Kernel trick to the rescue! 



21 

41 

The Kernel Trick 

SVM maximizes a quadratic function: 
 
 
 

 
Insight:  
The data points only appear as inner product 

 No need to compute high-dimensional φ(x) 
explicitly!  Just replace inner product xixj with a 
kernel function K(xi,xj) = φ(xi)  φ(xj) 

 E.g., Gaussian kernel  
  K(xi,xj) =  exp(-||xi-xj||2/22) 
 E.g., Polynomial kernel  
  K(xi,xj) = (xixj+1)d 

 









i

iii
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jijiji

i

i

y

yy

0 and 0 subject to
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2

1

,



 xx
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An Example for f(.) and K(.,.) 
• Suppose f(.) is given as follows 

 
 

• An inner product in the feature space is 
 
 

• If we define the kernel function as follows, 
there is no need to compute f(.) explicitly 

 
• This use of kernel function to avoid 

computing f(.) explicitly is known as the 
kernel trick 
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Summary: Steps for Classification using SVMs 

• Prepare the data matrix 
• Select the kernel function to use 
• Select parameters of the kernel 

function 
 You can use the values suggested by 

the SVM software, or use cross-
validation 

• Execute the training algorithm and 
obtain the parameters i 

• Classify new data using the learned 
parameters 
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Face Detection using SVMs 

Kernel used: Polynomial of degree 2 

(Osuna, Freund, Girosi, 1998) 

http://cbcl.mit.edu/projects/cbcl/publications/ps/cvpr97-face.ps.gz
http://cbcl.mit.edu/projects/cbcl/publications/ps/cvpr97-face.ps.gz
http://cbcl.mit.edu/projects/cbcl/publications/ps/cvpr97-face.ps.gz
http://cbcl.mit.edu/projects/cbcl/publications/ps/cvpr97-face.ps.gz
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Support Vectors 
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K-Nearest Neighbors  
• A simple non-parametric non-linear 

classification algorithm 
• Idea:  

 Look around you to see how your neighbors 
classify data 

 Classify a new data-point according to a 
majority vote of your k nearest neighbors 
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Distance Metric 
• How do we measure what it means to be a neighbor 

(what is “close”)? 

• Appropriate distance metric depends on the problem 

• Examples: 
discrete (e.g., strings): Hamming distance 
 d(x1,x2) = # features on which x1 and x2 differ 

continuous (e.g., vectors over reals): Euclidean 
distance  

 d(x1,x2) = || x1-x2 || = square root of sum of squared 
differences between corresponding elements of data vectors 
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Example 
Input Data: 2-D points (x1,x2) 

Two classes: C1 and C2.     New Data Point + 

K = 4: Look at 4 nearest neighbors of +  
3 are in C1, so classify + as C1 
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Decision Boundary using K-NN 

Some points 
near the 
boundary may 
be misclassified 
(but maybe 
noise) 

What if we want to learn 
continuous-valued functions? 

Input 

Output 
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Example: Learning to Drive 

Need to map sensor readings to continuous motor 
commands (this is the problem of regression) 
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Regression using Networks 
• We want networks that can learn a function 

 Network maps real-valued inputs to real-valued 
output 

 Idea: Given data, minimize errors between 
network’s output and desired output by changing 
weights  

Continuous output values  Can’t 

use binary threshold units anymore 

 

To minimize errors, a differentiable 

output function is desirable 
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Sigmoidal Networks 

Input nodes ae
ag




1

1
)(

a 

(a) 
1 

The most common 

activation function: 

 

Sigmoid function: 

Non-linear “squashing” function: Squashes input to be between 0 

and 1. The parameter  controls the slope. 

g(a) 

)( uw
Tg

u = (u1     u2     u3)
T 

w 

Output v = 
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Gradient-Descent Learning  
(“Hill-Climbing”) 

Given training examples (um,dm) (m = 1, …, N), 
define an error function (cost function or 
“energy” function) 

 
 

2)(
2

1
)( m

m

m vdE  w

)( mTm gv uwwhere 
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Gradient-Descent Learning  
(“Hill-Climbing”) 

 
Would like to change w so that E(w) is minimized 
 
Gradient Descent: Change w in proportion to –dE/dw  
(why?) 

mmTmm

m

m
mm

m

gvd
d

dv
vd

d

dE

d
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uuw
ww

w
ww

)()()( 







Derivative of sigmoid 
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But wait…. 
• Delta rule tells us how to modify the connections 

from input to output (one layer network) 
 One layer networks are not that interesting  
 (remember XOR?) 
 

• What if we have multiple layers? 
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Learning Multilayer Networks 

2)(
2

1
),( i

i

i vdE  wW

• Start with random weights W, w 

 

• Given input u, network produces   

output v 

 

• Find W and w that minimize total 

squared output error over all output 

units (labeled i):  

))(( k

k

kj

j

jii uwgWgv 

ku
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Backpropagation Learning : Output Weights 
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Learning rule for hidden-output weights W: 
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{gradient descent} 
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Backpropagation: Hidden Weights 
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Teaching a robotic vehicle to drive 

One of the learned  
“road features” wi 
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ALVINN (Autonomous Land Vehicle in a 
Neural Network)  

(Pomerleau, 1992)  

• Trained using human 
driver + camera images 

• After learning: 
•Drove up to 70 mph 
on highway 
•Up to 22 miles 
without intervention 
•Drove cross-country 
largely autonomously 
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Demos: Learning Pole Balancing and Backing up a Truck 

from a Human Teacher 
(courtesy of Keith Grochow, CSE 599) 

• Neural network learns to balance a pole on a cart 

• System: 
• 4 state variables: xcart, vcart, θpole, vpole 

• 1 input: Force on cart 

• Backprop Network: 
• Input: State variables 

• Output: New force on cart 

• NN learns to back a truck into a loading dock 
• System (Nyugen and Widrow, 1989): 

• State variables: xcab, ycab, θcab 

• 1 input: new θsteering  

• Backprop Network: 
• Input: State variables 

• Output: Steering angle θsteering 

 

 

xcart 

vcart 

vpole 

θpole 

../473/NN demo.exe

