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CSE 481C 

Imitation Learning in Humanoid Robots 

 

Motion capture,  

inverse kinematics, and 

 dimensionality reduction 

 

Robotic Imitation of Human Actions 
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The inverse kinematics problem 

3 

Joint angles 

Robot joint angles 

Human-robot 

skeleton mapping 

Robot arm example:  
Forward Kinematics 
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Given joint 

angles q1, 

q2, q3, and 

lengths B & 

C, compute 

end position 

(X,Y). 

Dat’s 
trivi y’all! 
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Robot arm example: 
Inverse Kinematics 
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How do you 

compute 

joint angles 

q1, q2, q3? 

Assume you 

know (X,Y) 

and the 

lengths B & C  

𝐷2 = 𝐵2 + 𝐶2 − 2𝐵𝐶 cos 𝑞3 

𝐶2 = 𝐵2 + 𝐷2 − 2𝐵𝐷 cos 𝑞2 

Use basic 

trigonometry 

Law of cosines 

𝑞1 = tan−1
𝑌

𝑋
 

 

𝐷2 = 𝑋2 + 𝑌2 

Robot arm: Inverse kinematics 
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Robot arm: Direct method 
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See http://www.seethroughskin.com/blog/?p=1186 for an example 

𝑞3 = 𝑐𝑜𝑠−1
𝐵 ∙ 𝐶 

𝐵 𝐶 
 

If you know all 

joint positions, 

can estimate 

joint angles 

directly using the 

“bone” vectors 

for B and C  

Problem 2: High dimensionality 

25-dimensional 

joint angle vector 

Makes learning 

and optimization 

intractable 

But…many angles 

are correlated 

Can we reduce the representation to 

a more tractable dimensionality? 

http://www.seethroughskin.com/blog/?p=1186


5 

9 

A Simple 2D Example 

• What does the plot above suggest? 

• The two joints are highly correlated for this dataset of 

robotic motions 

(Adapted from Steve Seitz, Linda Shapiro) 

joint 1 

joint 2 
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Linear subspaces 

Suppose we fit a line v1  

Let v2 be orthogonal to v1 

 

Convert an input x into v1, v2 

coordinates 

What does the v2 coordinate measure? 

- distance to line (position along v2 axis) 

- near 0 for these pts 

What does the v1 coordinate measure? 
- position along v1 axis 

- use it to specify which point it is 

joint 1 

joint 2 
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Dimensionality reduction: 2D to 1D 

• We can represent the points with only their v1 coordinates 

– since v2 coordinates are all essentially 0 

– Reduce dimensionality of data from 2D to 1D 

• This makes it cheaper to perform computations on the points 

• Bigger deal for higher dimensional inputs (like robot joint space!) 

joint 1 

joint 2 
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How do we find v1, v2, … ? 

Consider the variation along some direction v for all of the N points: 

Find unit vector v maximizing var: 

joint 1 

joint 2 

v2 is then the unit vector orthogonal to v1 

arg 

1/N 
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How do we find v1, v2, … ? 

We want to find a unit vector v that maximizes vTA v 

A = Covariance 

matrix of data points 

2 

Pixel 1 

Pixel 2 

/N 

/N 

/N 

/N 
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Finding v1 and v2: The Math 

v1 = argmaxv (v
TA v) subject to vTv = 1 

Using Lagrange multiplier method, 

v1 = argmaxv [v
TA v – (vTv – 1)] 

Setting derivative wrt v to 0, we get: 

Av = v  
 

Pixel 1 

Pixel 2 

Thus, v1 is eigenvector of A with largest eigenvalue 1 

          v2 is eigenvector of A with smaller eigenvalue 2 
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Principal Component Analysis (PCA) 

Suppose each of the N data points is L-dimensional 

• Form L x L data covariance matrix A 

 

 

• Compute eigenvectors of A 
– Eigenvectors of A define a new coordinate system 

that is a rotation of the original coordinate system 

– Eigenvector with largest eigenvalue captures the most 
variation among training vectors x 

– Eigenvector with smallest eigenvalue has least 
variation 
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Dimensionality Reduction using PCA 

We can reduce dimensionality by only using the 
top few eigenvectors with largest eigenvalues 

– corresponds to choosing a “linear subspace” 
of the original data space 

– represent points on a line, plane, “hyper-
plane” 

– these eigenvectors are known as principal 
component vectors 

– procedure is known as Principal Component 
Analysis (PCA) 
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Applying PCA to Human 
Motion Capture Data 

Human Motion Capture Sequence 

Reduced-Dimension Representation 
using Eigenposes 
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Eigenposes for Walking 

Learning to Walk 

Human motion capture data Unoptimized (kinematic) imitation 
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Learning to Walk 

Motion scaling 

(Take baby steps first) 

Final Result 

(Chalodhorn et al., IJCAI 2007) 

Result: Learning to Walk 

Optimized Stable Walk Human Motion Capture 

(Chalodhorn et al., IJCAI 2007) 
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Next class: Machine learning and 

probabilistic reasoning 

Begin Warm-Up Project #1 

(details on the course website) 

Today’s Goal:  

Finish SDK installation and test Kinect, NAO 

simulator, and NAO robot (with Mike’s help) 


