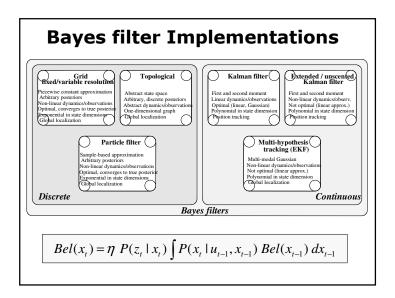

CSE-481 Robotics Capstone

Discussion


Topics in Robotics

- Low-level control / collision avoidance
- Localization
- Map building
- Control / planning / active sensing

Bayes filters

- Bayes rule allows us to compute probabilities that are hard to assess otherwise.
- Under the Markov assumption, recursive Bayesian updating can be used to efficiently combine evidence.
- Bayes filters are a probabilistic tool for estimating the state of dynamic systems.

Mapping

- Hard estimation problem (still just a Bayes filter!)
- Once positions are known, building metric, subsymbolic maps is not too hard (occupancy grids).
- Most active research in concurrent mapping and localization.
- SLAM estimates full posterior using EKF.
- FastSLAM uses particles for robot poses.
- Data association problem!

Sensor Models

- Explicitly modeling uncertainty in sensing is key to robustness.
- Models should be adjusted using real data.
- It is extremely important to be aware of the underlying assumptions!
- Probabilistic approach forces us to do this.

Markov Decision Processes

- Assumption:
 - Fully observable state
- Given:
 - States *x*, actions *u*
 - Transition probabilities p(x'|u,x)
 - Reward / payoff function r(x,u)
- Find:
 - Policy π(x) that maximizes the future expected reward

Paper Discussion (Due June 7)

- Which problem are you solving?
 - Why is it important?
 - Why is it hard?
- How did you solve the problem?
 - Why is this a good way of solving it?
 - What are alternatives?
- Which results did you get?
 - Illustrate strengths
 - Illustrate limitations and weaknesses!
- What did you learn?
 - What was harder / easier than you throught?

Paper Discussion (Due June 7)

