CSE-490DF Robotics Capstone

Mobile Robot Localization

Localization

"Using sensory information to locate the robot in its environment is the most fundamental problem to providing a mobile robot with autonomous capabilities." [Cox '91]

- Given
- · Map of the environment.
- · Sequence of sensor measurements.
- Wanted
 - · Estimate of the robot's position.
- Problem classes
 - Position tracking
 - Global localization
 - Kidnapped robot problem (recovery)

Bayes Filter Algorithm

1. Algorithm Bayes_filter(Bel(x),d):
2. $\eta=0$ 3. If d is a perceptual data item z then
4. For all x do
5. $Bel'(x) = P(z \mid x)Bel(x)$ 6. $\eta = \eta + Bel'(x)$ 7. For all x do
8. $Bel'(x) = \eta^{-1}Bel'(x)$ 9. Else if d is an action data item u then
10. For all x do
11. $Bel'(x) = \int P(x \mid u, x') Bel(x') dx'$ 12. Return Bel'(x)

Probabilistic Kinematics

• Odometry information is inherently noisy.

Proximity Measurement

- Measurement can be caused by ...
 - a known obstacle.
 - cross-talk.
 - an unexpected obstacle (people, furniture, ...).
 - missing all obstacles (total reflection, glass, ...).
- Noise is due to uncertainty ...
- in measuring distance to known obstacle.
- in position of known obstacles.
- in position of additional obstacles.
- whether obstacle is missed.

Landmarks

- Active beacons (e.g. radio, GPS)
- Passive (e.g. visual, retro-reflective)
- Standard approach is triangulation
- Sensor provides
 - distance, or
 - bearing, or
 - distance and bearing.

transformations.

Localization With MHT

- Belief is represented by multiple hypotheses
- Each hypothesis is tracked by a Kalman filter
- Additional problems:
 - Data association: Which observation corresponds to which hypothesis?
 - Hypothesis management: When to add / delete hypotheses?
- Huge body of literature on target tracking, motion correspondence etc.

	Kalman filter	Multi- hypothesis tracking		
Sensors	Gaussian	Gaussian		
Posterior	Gaussian	Multi-modal		
Efficiency (memory)	++	++		
Efficiency (time)	++	++		
Implementation	+	0		
Accuracy	++	++		
Robustness	-	+		
Global localization	No	Yes		

Grid-based Approaches

	Kalman filter	Multi- hypothesis tracking	Grid-based (fixed/variable)	Topological maps
ensors	Gaussian	Gaussian	Non-Gaussian	Piecewise constant
osterior	Gaussian	Multi-modal	Piecewise constant	
fficiency (memory)	++	++	-/+	
fficiency (time)	++	++	0/+	++
mplementation	+	0	+/0	+/0
ccuracy	++	++	+/++	-
obustness	-	+	++	+
lobal calization	No	Yes	Yes	Yes