SONY.

OPEN-R SDK

OPEN-R Internet Protocol Version4

OPEN-R

20020603-E-001
© 2003 by Sony Corporation

Notes on This Document

Notes on Using This Document

O The contents provided by this document (PDF files) are intended only for
supplying information.

O The contents provided by this document (PDF files) are subject to change
without notice.

O We are not responsible for errors or omissions in technical or editorial aspects
concerning the contents described in this document. We also are not responsible
for technical measures, correspondence, execution according to this document,
as well as for the results occurred by them such as inevitable, indirect or
incidental damages.

Notes on Copyright
Q Sony Corporation is the copyright holder of this document.

0 Noinformation in this document may be duplicated, reproduced or modified. It
is aso prohibited to publish the contents of this document on the Internet
Website or other public media without the express written permission of Sony
Corporation.

About Trademarks

O Aperios and OPEN-R are trademarks or registered trademarks of Sony
Corporation.

O UNIX isaregistered trademark of The Open Group in the United States and/or
other countries.

O Acrobat and Adobe is a registered trademark of Adobe Systems Incorporated.
O Other system names, product names, service names and firm names contained

in this document are generally trademarks or registered trademarks of respective
makers.

1 OPEN-R Internet Protocol Version4

| ndex

ADOUL thiS DOOK ... 4
Partl IPv4 Programmer’S GUIE........coveeienieneenieeee e 5

1 Introduction to the IPv4 protocol StaCK..........cuevverereeieereieseseeeese e
1.1 Protocols in the IPv4 protocol Stackc.eeeevieiiiiiiiiiiieee e
1.2 The IPv4 protocol Stackcooooueeeiiiieeiiiiiiiieiee e
1.3 How your object communicates with the protocol stack

Creating new endpointSccccevvveeeennneeennns
Creating shared memory buffers
Requesting NEtWOrK SEIVICESccceiiiiiiiiiiie et e e

FZ I o 1o [S
2L TCP bbb
TCP network operations
TCP endpoint [ife CYCIEuvviiiiiiiei e

2.2 Creating @ TCP eNdpPOiNtcuveiiiiiiieiiieeeiiee et
2.3 Establishing a connection (client side)
2.4 Listening for connection requests (server side)ccccceeeeeiiiiiivieeeeeenn.
2.5 SeNAING ALAeeveiiiie e
2.6 Receiving data...............occuvvneeee.
2.7 Closing a connection.................
Active close

SUDP QUITE. ..ottt
3.1 Introduction to UDP 0N OPEN-Rccoiiiiiiiiiiiie e
UDP NetWOrk OPEratioNSc.uueieiiee et e ettt e e eieeeee e
UDP endpoint life CYCIe......ooi e
3.2 Creating a UDP endpoint
3.3 Binding an endpoint...........ococueieiiiiieeiii e
3.4 Setting foreign connection parameters (Optional)
3.5Sending datacveeiiieiiiii e
3.6 Receiving data..............coceuueneeee.
3.7 Closing an endpoint...................
3.8 UDP echo server example

A DNS QUITE.....ceieeieeee ettt ne e e saesneeneenean
4.2 Introduction t0 DNScoiiiiiiiieiiee et
DNS network operations
DNS endpoint life cycle.............
4.2 Creating a DNS endpoint
4.3 Setting and getting an object’s DNS Serverscccccouvuiieeieeeniniinneenn.
4.4 Setting and getting an object’s default domain name
4.5 Getting @ hOSt @NEIYooiiiiiiiieie e
Getting an entry by domain name...................
Getting an entry by IP addressc.........
4.6 Getting a host's IP addressccoecvvveenennn.
4.7 Getting a host’'s domain name alias
4.8 Closing an endpoint...........occueveeieeeriiiiiieeneennn
4.9 DNS client @XamPle.......ccoiiiiiiiiiiieei e

BIP GUIGE.....c e e e ens
5.1 INtrodUCHION O 1P ..eeiiiiieiieee e
IP network operations................
IP endpoint life cycle.................
5.2 Creating an IP endpoint
5.3 Binding an endpoint...................
5.4 SendiNg dataceiiiiiiiiiiiiiiii e

OPEN-R Internet Protocol Version4 2

5.5 RECEIVING TALA......ciiieieiiiiieeiiieee e 45
5.6 CloSing an €NAPOiNt..........eeeeiiiiieiiiiie e 45
5.7 IP PING EXAMPIE...iiiiiii ittt a e 46
Part2 IPVA REFEIENCE ..o 50
6 ANT environment rEfErenCecooeoriiereeeeere s 50
antENvCreateENdpPOiNtMSQccoiiiiiiiiiiiiiee e 50
antEnvCreateEndpointMsg::antEnvCreateEndpointMsg()c.ccueiee 51
antEnvCreateSharedBUufferMSQ.........cccuvviiirieeiiiiiiiecce e 52
antEnvCreateSharedBufferMsg::antEnvCreateSharedBufferMsg() 52
ANEShAredBUTTEE ... 53
antSharedBUfer::Map()oooioieeeieeeeeraiee e 53
antSharedBuUffer::UNMap().......cc.ueeeereeariiieiee e 53
antSharedBuffer::GetAddreSS()vvvvrrrieiiiiieeriie e 54
antSharedBUfer::GetSIZe()uvveivrrriiriiei e 54

T TCP FEfOIBNCE ...t e e 55
B IO S =T £ (0] £ T PP P PP P PP PPPPPPPPPPPPPPPPPPPR 55
TCPENAPOINIBASEMSQceeiiiiiiiiiiiiee ettt 56
TCPENAPOINtCONNECIMSG ... ieieiiee ettt e et 57
TCPENAPOINILISIENMSQ. ...ceiieeiiiiiiiiee ettt e e 58
TCPENAPOINTSENUMSTvviiiiiiieeiiiee ettt 59
TCPENAPOINtRECEIVEMS(...ttt 60
TCPENAPOINICIOSEMSQ ...eviiieeiiiiiiiiee ettt a e e 61

B UDP FEf@IENCE. ...ttt s 62
UDP BITOIS . s 62
UDPENAPOINtBASEMSQ.eeeiiieeeeiiiiiiei e e ettt e et a e e et eeaa e e enees 64
UDPENAPOINTBINAMSQ........eeieiiieeeeeiiiiee ettt a et e e e e e 65
UDPENAPOINICONNECIMSY ...eeeeiiiiieiiiiiesiiieee ettt 66
UDPENAPOINISENAMSQ ...ttt 67
UDPENAPOINTRECEIVEMSTeviieeiiiiiiiiiieee ettt e et e e e e e e e saees 69
UDPENAPOINtCIOSEMSQ.ccveiiiiiiiiiii i 70

O DINS FEFEIEINCE.c.veneeieieiiteeee ettt 71
DINS BITOIS .. s 71
DNSENAPOINIBASEMSQ.......eieiiieeieiiiiiiii ettt et a e e e e e e e e 72
DNSENdpointSetServerAddreSSESMSTccoiiriiiiiiieeiiiiee e 73
DNSENdpointGetServerAddreSSESMSQ.......ccoiiiiiiiiieeeiiiiee e 74
DNSEndpointSetDefaultDomainNameMSQgcccooiiiiiiiiieeeiiiiiiiieee e 75
DNSEndpointGetDefaultDomainNameMSQgccccooiviiiiiieeeiiiiiiiieee e 76
DNSENdpointGetHOSIBYNAMEMSQccoeiiiiiiiiiiiieeeiiiieie et 77
DNSENdpointGetHOSIBYAAAIMSJcuviiiiiiiiiiiiieee ettt 78
DNSENdpointGetAddreSSIMSQuuviiiiieeeeiiiiieie e e e e 79
DNSENAPOINtGELANTASIMSQeeeeeeiiiiiiieieae e ee et e e e e e e e 80
DNSENAPOINTCIOSEMST......eveeeeiiiiie ittt 81

LO TP FEfEIENCE ...ttt e 82
[P BITOIS it 82

[P PACKET LYPES ...ttt 83
IPENPOINIBASEMSQ ...ttt ettt e e e 84
IPENAPOINIBINAMSQ ...ttt e e e e e 85
IPENAPOINISENAMSQ.....iiiiiiiiee et e et e e e e e e 86
IPENAPOINIRECEIVEMSToeeiiiiiiieiiiee st 87
IPENAPOINICIOSEMSQ ...ceeiiiiieiiiiie ettt 88
GlOSSANY ...ttt sttt sttt st eennens 89

3 OPEN-R Internet Protocol Version4

About this book

This book describes the Internet Protocol version 4 (IPv4) implemented on OPEN-R
working on OPEN-R1.1.3. This release of IPv4 includes four network protocols:
TCP, UDP, IP and the client side of DHCP.

This book has two parts:

Q IPv4 Programmer’s Guide — An introduction to networking on OPEN-R and to
the IPv4 protocol stack. Detailed instructions are given for how OPEN-R
objects can use the TCP, UDPR, DNS, and IP services in the stack.

O IPv4 Reference — Detailed descriptions of al classes, messages, errors, and
operations that you will encounter when writing OPEN-R objects that
communicate with the |Pv4 protocol stack.

OPEN-R objects are described as “objects’ in this manual. In case aremote sideis
not an OPEN-R host(e.g. UNIX), it is more appropriate to call it a process instead of
object, but we use “object” as ageneric term in this manual.

|
OPEN-R Internet Protocol Version4 4

Partl IPv4 Programmer’s Guide

1 Introduction to the IPv4 protocol stack

This chapter describes the protocols in the current version of the IPv4 protocol stack,
introduces this implementation of that IPStack on OPEN-R, and explains how
objects communicate with the stack.

1.1 Protocols in the IPv4 protocol stack

The Internet Protocol (IP) is a protocol for sending data between hosts on the
Internet. IP version 4 (IPv4) is currently the most widely used version of this
protocol, and is the version available on OPEN-R. The IPv4 protocol stack on
OPEN-R includes several protocols that supplement the basic I P protocol.

This release of the IPv4 protocol stack contains the following protocols:

a

IP (Internet Protocol) — The base protocol, responsible for delivering datagrams
over the Internet. This is a packet-oriented, connectionless protocol, offering
unreliable transfer of P datagrams.

TCP (Transmission Control Protocol) — Runs on top of the IP protocal. It
provides objects with a connection-oriented, reliable, byte stream service.

UDP (User Datagram Protocol) — Runs on top of the IP protocol. It provides
objects with an unreliable datagram delivery service.

DNS (Domain Name System) — A service for mapping domain names to IP
addresses and vice-versa

DHCP (Dynamic Host Configuration Protocol) — A service for alocating
reusable network addresses and additional configuration options.

5 OPEN-R Internet Protocol Version4

1.2 The IPv4 protocol stack

On OPEN-R, the IPv4 protocol stack isimplemented using the OPEN-R Networking
Toolkit (ANT). The stack exists at runtime in the IPStack, which also includes the
ANT runtime environment. The IPStack is an OPEN-R system layer object.

IPv4 stack
object +“—»

ANT
environment

Physical
network

Figure 1 The IPStack provides networking services on OPEN-R.

The IPStack communicates through message passing with objects and with device
drivers.

1.3 How your object communicates with the protocol stack

Objects can use the network services offered by the IPv4 protocol stack. Objects
communicate with the protocol stack through normal message passing, by sending
specia messages to and receiving special messages from the |PStack.

The first thing that an object must do is ask the IPStack to create an endpoint. An
endpoint is a special ANT construct that is located at the top of the protocol stack
and is responsible for communication between the object and the stack. Typically, an
object requires one endpoint per network connection. For example, an object that
needs to send data through a TCP connection and a UDP connection would require
two endpoints. So would an object with two TCP connections. Instructions on how
to create new endpoints are described later.

|
OPEN-R Internet Protocol Version4 6

object

Message passing
L

I Pv4 stack
object

v

\4

TCP endpoint UDP endpoint

L

IPv4
protocol stack

Figure 2 Objects send requests for network services to endpoints in the 1PStack.
These endpoints provide access to the IPv4 protocol stack.

In addition to its endpoints, an object must also create one or more shared memory
buffers. Shared memory buffers are required for exchanging data between objects
and the 1Pv4 protocol stack. Objects and the protocol stack do not necessarily share
the same address space, so they cannot exchange pointers to the data being
transferred. Shared memory buffers, implemented by the antSharedBuffer structure,
map a common memory area into the address space of both objects. Instructions on
how to create shared memory buffers are described later.

All messages sent to the IPStack are inherited from the antEnvMsg structure. This
structure provides the basic message handling constructs such as Send() and Call().
Each service offered by a protocol has a specific inherited message type: for
example, a request to send data by TCP is made with a TCPEndPointSendM sg, and
arequest to bind a UDP connection is made with a UDPEndPointBindM sg.

|
7 OPEN-R Internet Protocol Version4

___|
Creating new endpoints

To create a new endpoint for any protocol in the IP stack, your object sends an
antEnvCreateEndpointMsg to the IPStack. In the antEnvCreateEndpointMsg, your
object specifies which protocol the endpoint is required to implement, and how
much memory should be allocated to the endpoint's SDU pool. The IPStack creates
a new endpoint for the specified protocol and replies to the
antEnvCreateEndpointMsg. The ModuleRef parameter in this message now stores a
reference to the new endpoint.

Example

In this example, an object creates a new TCP endpoint. This process is exactly the
same for other protocols in the IPStack, except the object would specify a different
type of endpoint. See the $IPv4_ROOT/Examples/TCP directory for the complete
TCP example.

To begin, the object creates a message that requests a new TCP endpoint:

antEnvCreateEndpointMsg createMsg(
EndpointType_TCP,

4 * PACKETSIZE

)

The following endpoint types are available;

EndpointType TCP
EndpointType UDP
EndpointType DNS
EndpointType IP

[y Wy

Notice that the object requests an SDU pool that is four times greater than the packet
size (4* PACKETSIZE). An SDU pool is an internal ANT construct that stores data
in the protocol stack. As a guideline, aways create an SDU pool that is dightly
larger than the largest packet that you expect to send. For example, 8-KB packets
would require an SDU pool of approximately 10 KB.

The object now sends the message to the I1PStack:

createMsg.Call(
I1PStackRef,
sizeof(antEnvCreateEndpointMsg)

);

The Cal() method is inherited from antEnvMsg. It specifies an antStackRef to the
IPStack (IPStackRef), and the size of the message. The Call() method sends the
message synchronously, which means that the object will continue only when it
receives areply.

When the object receives areply, it gets areference to the new endpoint:

endpoint = createMsg.moduleRef;

This reference enables the object to communicate with the new endpoint. For the
TCP protocol, the object can send messages that request services such as connecting,

listening, sending, receiving, and closing. Other protocols may offer different
services.

|
OPEN-R Internet Protocol Version4 8

___|
Creating shared memory buffers

Shared memory buffers are implemented by the antSharedBuffer structure. They
map a shared memory area to the address spaces of your object and the protocol
stack. When your object exchanges data with the protocol stack, the data is
identified by a pointer to the shared buffer and an offset in the buffer.
antSharedBuffer automatically converts this offset to a location in the object’s
address space, as shown in Figure 3.

Application memory Shared memory Protocol stack memory
address space buffer address space
i > l
Pointer = x Pointer =x | Address=z

Address=y | Pointer =x

Figure 3 Shared memory buffers map memory areas to the address spaces of
objects and the protocol stack, enabling them to exchange pointers to data.

Your object can create a single shared buffer, or it can create several buffers for
specific operations such as send and receive.

Shared buffers are allocated and deallocated by the OPEN-R shared memory
management routines. These routines can take a long time to execute, so you should
create and delete shared buffers only when necessary. Try to reuse existing buffers
whenever possible. Typically, you would create a send buffer and a receive buffer
for every new endpoint, and then reuse these buffers for all subsequent send and
receive operations on that endpoint.

There are also some restrictions on the size of shared buffers. Normally, the size that
you request will be rounded up to the nearest multiple of the page size on OPEN-R.
The page size of OPEN-R in memory protection mode is 4096 bytes. Therefore,
using this mode, if you request a 7000-byte shared buffer, the buffer will be 8192
bytes (4096* 2).

You can use shared buffers in many ways, but the needs of your particular object
will help you to decide which approach to follow.

To create a shared buffer, your object sends an antEnvCreateSharedBufferMsg to the
IPStack, specifying the size of the buffer. The IPStack creates the shared buffer and
replies to the antEnvCreateSharedBufferMsg. The buffer parameter in this message
now stores a reference to the new antSharedBuffer. Your object then maps the buffer
to its address space, by invoking the antSharedBuffer::Map() method.

9 OPEN-R Internet Protocol Version4

For descriptions of antEnvCreateSharedBufferMsg and antSharedBuffer, see the
“ANT environment reference”.

Example

In this example, a TCP client object creates two shared buffers: one for data being
sent, and one for data being received.

To begin, the object creates a message that requests a new shared buffer:

antEnvCreateSharedBufferMsg bufferMsg(PACKETSIZE);

The specified buffer size is the same as the packet size, because the object will
exchange data with the protocol stack only one packet at a time. As a genera
guideline, a shared memory buffer should be able to hold the largest packet that will
be sent or received by the object.

The object now sends the message to the I1PStack:

bufferMsg.Call(
IPStackRef,
sizeof(antEnvCreateSharedBufferMsg)

);

The Cal() method is inherited from antEnvMsg. It specifies an antStackRef to the
IPStack (IPStackRef), and the size of the message. The Call() method sends the
message synchronously, which means the object will continue only when it receives

areply.

When the object receives a reply, it gets a reference to the new shared buffer and
defines it as a send buffer:

sendBuffer = bufferMsg.buffer;

Finally, the object maps the shared buffer to its address space:

sendBuffer.Map()

To create a receive buffer, the object repeats the above process by once again
sending the antEnvCreateSharedBufferMsg to the 1PStack:

bufferMsg.Call(
IPStackRef,
sizeof(antEnvCreateSharedBufferMsg)

);

receiveBuffer = bufferMsg.buffer;
receiveBuffer_Map()

When the object sends data to the protocol stack, it sends a pointer to the datainside
the send buffer. When it receives data from the protocol stack, it will receive a
pointer to data in the receive buffer. The antSharedBuffer structure automatically
converts these pointers to locations in the address space of the object or protocol
stack.

|
OPEN-R Internet Protocol Version4 10

___|
Requesting network services

To request a service from a protocol in the IP protocol stack, an object creates a
message and sends it to the appropriate endpoint in the IPStack. The message type
identifies which service is required, and the message contents include the
information needed to perform the service (such as IP addresses, port numbers,
pointers to data in shared buffers, and so on).

Each protocol offers a unique set of messages that have been inherited from
antEnvMsg. For descriptions of these messages, see the TCP, UDP, DNS, and IP
sections of the IPv4 Reference.

Example
In this example, an object opens a TCP connection to another host.
To begin, it creates a message that requests the connection:

TCPEndpointConnectMsg connectMsg(
endpoint,
0,
0,
"193.74.243.95",
7

);

The first parameter, endpoint, identifies the TCP endpoint to which the message will
be sent. The next two parameters, both 0, will return the local IP address and port
number when the connection is established. The last two parameters specify the IP
address and port number of the host to which the connection should be established.

The object now sends the message to the TCP endpoint in the | PStack:

connectMsg.Call(
I1PStackRef,
sizeof(TCPEndpointConnectMsg)

);

The Call() method is inherited from antEnvMsg. It specifies an antStackRef to the
IPStack (IPStackRef), and the size of the message. The Cal() method sends the
message synchronously, which means the object will continue only when it receives

areply.

|
11 OPEN-R Internet Protocol Version4

2 TCP guide

21 TCP

This chapter introduces the TCP protocol on OPEN-R, and explains how your object
can use the TCP services offered by the I1Pv4 protocol stack.

TCP (Transmission Control Protocol) runs on top of the IPlayer in the |Pv4 protocol
stack. TCP provides objects with a reliable, byte stream service. TCP is a
connection-oriented protocol, so the sending and receiving objects need to establish
a connection before any data transfer can take place.

TCP network operations

On OPEN-R, the IPv4 protocol stack offers the following TCP operations to objects:
O Connect — Open a TCP connection to an object on another host.
O Listen — Start listening for connection requests. This operation is typicaly
performed by server objects instead of a connect operation. Server objects
normally accept incoming TCP connections from client objects.
o Send - Send data over an open connection.
O Receive - Receive data from an open connection.
O Close—CloseaTCP connection.
Your object performs these operations by sending specia messages to a TCP
endpoint in the [IPStack. These messages are inherited from
TCPEndpointBaseMessage, which is itself inherited from antEnvMsg. For
descriptions of these messages, see “ Chapter7 TCP reference.”

For an overview of how objects create endpoints and request network services, see
“1.3 How your object communicates with the protocol stack.”

TCPendpoint life cycle

Figure 4 shows the state transitions of a TCP endpoint during its life cycle. These
transitions illustrate the possible sequence of events and operations in a TCP
connection. The message types shown in Figure 4 are described fully in the IPv4
Reference.

Your object requires one endpoint for each open network connection. You cannot
request a new connection if a connection has already been established—your object
must create a new endpoint first.

An endpoint can perform only one similar operation at a time. For example, if you
send a TCPEndpointListenMsg to an endpoint that is already listening, the endpoint
will return a TCP_CONNECTION_BUSY or TCP_OPERATION_INVALID error.
However, it is possible to perform a send and receive operation at the sametime.

|
OPEN-R Internet Protocol Version4 12

2.2 Creating a TCP endpoint

Before your object can open a TCP connection, it must create a new TCP endpoint.
Your object requires a new endpoint for each TCP connection that it opens. The
process for creating an endpoint is the same for each protocol in the IPStack, and is
described in detail in “How your object communicates with the protocol stack.”

See the /$IPv4_ROOT/Examples/TCP directory for afull working TCP example.

Client or Server Object: antEnvCreateEndpointMsg.send

NEW
Client Object: Server Object:
TCPENdpoi ntConnectMsg Send TCPEndpointListenMsg.Send
Endpomt Endpoint:
TCPENdpointConnectMsg.Reply TCPENdpointListenMsg.Reply

(After aconnection request)

Possible operation in Active state
TCPENdpointSendMsg
TCPENdpointReceiveM sg

TCPENdpointCloseM sy
Client Object:
TCPENdpointCloseMsg.Send TCPon other side of connection:
]] Sends disconnect indication
CLOSING_PASSIVE
any.Reply(error)
TCPon other
side of connection:
TCPENdpointCloseMsg.Send ABORTING
v
CHATTOLOSENSE >4
Endpoint: || || Endpoint:
TCPENdpointCloseMsg.Reply TCPENdpointCloseM sg.Reply

Figure 4 The state transitions of a TCP endpoint

13 OPEN-R Internet Protocol Version4

2.3 Establishing a connection (client side)
When a client object needs to establish a TCP connection with a server, it sends a
TCPENdpointConnectMsg to its endpoint in the IPStack. Table 1 shows the
parameters in this message.

Table1l Parametersin TCPEndpointConnectMsg

Parameter Description

|PAddressiAddress (out) Returns the local |P address, when the connection has
been established.

Portl Port (out) Returns an ephemeral port number assigned to the
client object, when the connection has been established.

IPAddressfAddress (in) The IP address of the host that you need to connect to.

PortfPort (in) The port number of the object that you need to connect
to.

When a connection is established, the TCP endpoint returns the fully specified IP
addresses and port numbers. The objects on the two hosts can now send and receive
data over the connection.

2.4 Listening for connection requests (server side)

A server object accepts connection requests from client objects. This means that the
server object must listen for requests, and establish a connection only when it
receives a request. Normally, it will accept requests only for connections to a
specific port number. For example, an FTP server accepts connections only on the
FTP port, equal to 21.

For a server object to handle multiple clients concurrently, it must perform more
than one listen operation. Each listen operation waits for connection requests on the
same port number. The server object requires a separate endpoint for each listen
operation.

To dtart listening for connection requests, your server object sends a
TCPENdpointListenMsg to its endpoint in the IPStack. Table 2 shows the parameters
in this message.

OPEN-R Internet Protocol Version4 14

Table2 Parametersin TCPEndpointListenMsg

Parameter Description

|PAddressiAddress (out) Returns the local |P address when a connection has
been established.

PortlPort (in) The port number for which you will accept connection
regquests. If you will accept requests for any port, specify a
value of IP_PORT_ANY.

|PAddressfAddress (out) Returns the IP address of the host that requested the
connection.

PortfPort (out) Returns the port number of the object that requested
the connection.

When a connection request is received, the TCP endpoint establishes the connection
and returns the fully specified | P addresses and port numbers.

2.5 Sending data

To send data over an open TCP connection, your object sends a
TCPENdpointSendMsg to its endpoint in the IPStack. Table 3 shows the parameters
in this message.

Table3 Parametersin TCPEndpointSendMsg

Parameter Description

buffer (in) Pointer to the data being sent.
The data must be stored in a shared memory buffer defined by the
antSharedBuffer structure.

size (in) The size, in bytes, of the data being sent.

The TCP endpoint replies to this message when the data has been processed by the
| P stack and the buffer can be reused.

15 OPEN-R Internet Protocol Version4

2.6 Receiving data

To receive data from an open TCP connection, your object sends a
TCPENdpointReceiveMsg to its TCP endpoint in the IPStack. Table 4 shows the
parameters in this message.

Table4 Parametersin TCPEndpointReceiveMsg

Parameter Description

buffer (in) Pointer to amemory area where the incoming data should be
written. This area must be in a shared memory buffer defined by
the antSharedBuffer structure.

sizeMin (infout) Specifies the minimum number of bytes to receive. When

the receive operation has completed and the endpoint has replied to
the object, this parameter returns the actual number of bytes that
were received.

sizeMax (infout) Specifies the maximum number of bytes to receive. When
the receive operation has completed and the endpoint has replied to
the object, this parameter returns the actua number of bytes that
were received.

The TCP endpoint replies to this message when the data has been copied into the
receive buffer. Note that when all data in the transmission has been received and the
TCP connection is closed, the last receive request may hold a smaller number of
bytes than what is specified in sizeMin.

2.7 Closing a connection

Active close

A TCP connection can be closed three different ways:
O Activeclose—The closerequest is sent directly by your object.

O Passive close — The close reguest is sent by the object on the other side of the
connection.

O Abort —An error occurs, which closes the connection unexpectedly.

The following sections provide details on each of these methods of closing a
connection.

An active close occurs when your object initiates the closing of the TCP connection.
To perform an active close, your object sends a TCPEndpointCloseMsg to its
endpoint in the IPStack.

When your object performs an active close, it can no longer send or receive data.
The object on the other side of the connection will receive the rest of the
transmission, and then it will receive an indication that the connection has been
closed. From the perspective of the other object, a passive close has occurred.

|
OPEN-R Internet Protocol Version4 16

Passive close
A passive close occurs when the object on the other side of the network closes the
TCP connection (by performing an active close). After your object has received the
entire data transmission, a TCP_CONNECTION_CLOSED error will occur. Your
object must then complete the passive close by sending a TCPEndpointCloseM sg to
its endpoint in the | PStack.

Abort

An abort occurs when something unexpected happens to the TCP connection. For
example:

Q The connection has been lost and it times out.

O A connection request takes too much time and is aborted by the requesting
object.

O A norma active or passive close takes too much time and is aborted by one of
the objects.

O Anobject decides to abort the connection.

An abort purges al data from the shared buffers and immediately closes the
connection.

To abort a connection, your object sends a TCPEndpointCloseM sg to its endpoint in
the IPStack. This message has one parameter, a boolean called abort. If TRUE, the
TCP connection is aborted, instead of being shut down in an orderly fashion.

2.8 TCP echo client example

This section provides an example of a TCP echo client program, which illustrates
how to use the TCP messages.

The TCP echo client establishes a connection to a TCP echo server, transfers some
data, and closes the connection when it receives its data back from the server.

In this example, it should be possible to send and receive data at the same time.
Therefore, the asynchronous version of antEnvMsg method is used in certain cases.
This means that the number of entrypoints and the stubs to process these messages
must be defined. See “ Entry point definition” for numbering the entry points.

Variable definitions

#include <ant._h>
#include <EndpointTypes.h>
#include <TCPEndpointMsg.h>

The entrypoints:

enum

{
Entry_Initialize = 0,
Entry ReceiveCont = 1,
Entry_SendCont = 2,
Echo_NumEntries = 3

OPEN-R OID and antStackRef are necessary for the message
passing:
OID myOID;

17 OPEN-R Internet Protocol Version4

|
antStackRef IPStackRef;

Predefined values used by the client:
#define ECHOSERVER_IP "168.1.2.3"
#define ECHOSERVER_PORT 7

#define PACKETSIZE 1024
#define ECHOSIZE PACKETSIZE * 100
#define POOLSIZE 4096

The shared buffers used to transfer data:
antSharedBuffer sendBuffer;

byte* sendData;

antSharedBuffer receiveBuffer;

byte* receiveData;

The TCP connection:
antModuleRef connection;
uint32 bytesSent;

uint32 bytesReceived;

Entry point definition
Entry points are defined for the following processes.
O Objectinitialization
O Send regquest has been processed
O Receive reguest has been completed

The following description is needed for stub.cfg. See “Extra entry, 2.3 Stub in
Programmer’s Guide” for the details of the definition of entry points.

Extra: InitializeQ)
Extra: ReceiveCont()
Extra: SendCont()

Executing a stubgen2 command generates xxxStub.cc where the following are

described.

GEN_ENTRY(Initializestub, _Initialize);
GEN_ENTRY(_ReceiveContstub, _ReceiveCont);
GEN_ENTRY(_SendContstub, _SendCont);

ObjectEntry ObjectEntryTable[]= {

{Extra_Entry[0], (Entry)_Initializestub},
{Extra_Entry[1], (Entry)_ReceiveCont},
{Extra_Entry[2], (Entry)_SendCont},
{UNIDEF, (Entry)_ENTRY_UNDEF}

The number of Entry points is determined by the order of the elements in
ObjectEntryTabl€]].

|
OPEN-R Internet Protocol Version4 18

___|
Initialize the object

This function is invoked when the client object starts up. It performs the following
operations;

Q Create the shared buffers
Q Create the TCP endpoint

QO Connect to the TCP echo server

void Initialize(void)
{
Get some OIDs for the OPEN-R message passing:
WhoAmI (&myOID) ;
IPStackRef = antStackRef('IPStack'™);
Initialize counters:
bytesSent = 0;
bytesReceived = 0;

Allocate a shared buffer for receiving data:
antEnvCreateSharedBufferMsg receiveBufferMsg(PACKETSIZE);
receiveBufferMsg.Call(

1PStackRef,
sizeof(antEnvCreateSharedBufferMsg)

);
iT (ANT_SUCCESS != receiveBufferMsg.error)
EXITO;

receiveBuffer = receiveBufferMsg.buffer;
receiveBuffer_Map();

Store the base address of the receive buffer:
receiveData = (byte*)receiveBuffer.GetAddress();
Do the same steps to get the send buffer:
sendData = (byte*)sendBuffer.GetAddress();
Create a TCP connection:
antEnvCreateEndpointMsg createMsg(EndpointType_TCP,
POOLSIZE);
createMsg.Call(
IPStackRef,
sizeof(antEnvCreateEndpointMsg)
)

if (ANT_SUCCESS != createMsg.error)
EXITQ;

connection = createMsg.moduleRef;
Connect to the echo server:
TCPEndpointConnectMsg connectMsg(
connection,
1P_ADDR_ANY,
IP_PORT_ANY,
ECHOSERVER_IP,
ECHOSERVER_PORT

);
connectMsg.Call(
1PStackRef,
sizeofF(TCPEndpointConnectMsg)
);
if (TCP_SUCCESS != connectMsg.error)
{

19 OPEN-R Internet Protocol Version4

EXITQ

The connection is now established. To get information about
the connection, you examine connectMsg. lAddress,
connectMsg. IPort, connectMsg.fAddress, and connectMsg.fPort.
Start sending and receiving data:

DoSend();

DoReceive();

EXITQO;

Close the TCP connection

This function destroys the shared buffers and closes the connection.

void Close()
{
receiveBuffer._UnMap();
antEnvDestroySharedBufferMsg
receiveBufferMsg(receiveBuffer);
receiveBufferMsg.Call(
I1PStackRef,
sizeof(antEnvDestroySharedBufferMsg)
):

Do same for the send buffer:

Then close the connection:
TCPEndpointCloseMsg closeMsg(connection);
closeMsg.Call(

IPStackRef,

sizeof(TCPEndpointCloseMsg)

)

}

Receive data

These functions receive data until enough data has arrived. Then the TCP connection
is closed. Two functions are used, to introduce asynchronisity.

DoReceive() tries to receive between 1 and PACKETSIZE bytes.

void DoReceive()

TCPEndpointReceiveMsg receiveMsg(
connection,

receiveData,

1,

PACKETSIZE

):
receiveMsg.Send(

IPStackRef,

myOID,

Entry_ReceiveCont,
sizeof(TCPEndpointReceiveMsg)
):
}

ReceiveCont() isinvoked when areceive request has been completed. If al sent data
has been received, the TCP connection is closed—otherwise, a new receive reguest
is posted.

OPEN-R Internet Protocol Version4 20

void ReceiveCont(ANTENVMSG _msQ)

{
TCPEndpointReceiveMsg* msg;
msg = (TCPEndpointReceiveMsg*)antEnvMsg: :Receive(_msg);
ifT (TCP_SUCCESS == msg->error)
bytesReceived += msg->sizeMin;
it (bytesReceived < ECHOSIZE)
DoReceive();
} else {
Close(Q);
}
else
Close();
}
EXITQ;
}
Send data

These functions send data to the echo server. Two functions are used, to introduce
asynchronisity.
DoSend() sends PACKETSIZE bytes to the echo server.

void DoSend()
{

TCPEndpointSendMsg sendMsg(
connection,
sendData, PACKETSIZE
)
sendMsg . Send(
IPStackRef,
myOIlD, Entry_SendCont,
sizeof(TCPEndpointSendMsg)
)

SendCont() is invoked when the send buffer has been processed
by the IP stack and can be reused by the object. If more data
needs to be sent, it will post another send request.

void SendCont(ANTENVMSG _msQg)

{
TCPEndpointSendMsg* msg;
msg = (TCPEndpointSendMsg*)antEnvMsg: :Receive(_msg);
if (TCP_SUCCESS == msg->error)
{
bytesSent += msg->size;
if (bytesSent < ECHOSIZE)
DoSend();
}
}
else
{
Close();
}
EXITQO;
}

21 OPEN-R Internet Protocol Version4

3 UDP guide

This chapter introduces the UDP protocol on OPEN-R, and explains how your
object can use the UDP services offered by the |Pv4 protocol stack.

3.1 Introduction to UDP on OPEN-R

UDP (User Datagram Protocol) is a protocol that runs on top of the IP layer in the
IPv4 protocol stack. It forwards packets of data, or datagrams, to the 1P layer, which
delivers the packets over the network. UDP offers objects a connectionless,
unreliable datagram delivery service. Connectionless means that the sending and
receiving hosts do not establish a connection.

UDPis used by aobject-layer protocols such as TFTP, DNS, NFS, and so on.
UDP network operations

On OPEN-R, the IPv4 protocol stack offers the following UDP operations to
objects:

O Bind — Set the local connection parameters, which identify the object as a
destination for UDP packets. After a bind operation, the object will receive
packets only if their destination address is the same as the IP address and port
number specified by the bind parameters.

O Connect — An optional operation in which the object sets the foreign connection
parameters. Packets will be exchanged only with the host identified by IP
address and port number in the connection parameters.

O Send - Send data
O Receive — Receive data

O Close — Clear the bind and connect parameters, and stop sending and receiving
data

Your object performs these operations by sending special messages to a UDP
endpoint in the IPStack. These messages are inherited from
UDPEndpointBaseMessage, which is itself inherited from antEnvMsg. For
descriptions of these messages, see “ Chapter 8 UDP reference.”

For an overview of how objects create endpoints and request network services, see
“1.3 How your object communicates with the protocol stack.”

UDP endpoint life cycle

Figure 5 shows the state transitions of a UDP endpoint during its life cycle. The
message types shown in Figure 5 are described fully in “Part2 IPv4 Reference.”

Your object requires one endpoint for each UDP connection, and an endpoint can
perform only one similar operation at a time. For example, if you send a
UDPENdpointSendM sg to an endpoint that is already sending data, the endpoint will
return an UDP_CONNECTION_BUSY error. However, you can send a receive
message to this endpoint.

OPEN-R Internet Protocol Version4 22

3.2 Creating a UDP endpoint

Before your object can send or receive data by UDP, it must create a new UDP
endpoint. Your object requires a new endpoint for each UDP connection that it opens.
The process for creating an endpoint is the same for each protocol in the IPStack,
and is described in detail in “How your object communicates with the protocol

stack.”

Object:

antEnvCreateEndpointMsg.Send

Object:
ndpointBindM sg.Send

Endpoint:
dpointCloseM sg.Send

Object:

dpointCloseM sg.Send

Endpoint:
dpointCloseM sg.Reply

BINDING

Object:
UDPENdpointConnectM sg.Send

B

CEoNmECTING

CLOSING

J

Endpoint:
UDPENdpoinConnectM sg.reply

Possible operation in Active state
UDPENdpointBindMsg
UDPENdpointConnectMsg
UDPENdpointSendMsg

UDPENdpointReceiveM sg
UDPENdpointCloseM sg

Figure5 The state transitions of a UDP endpoint.

23

OPEN-R Internet Protocol Version4

3.3 Binding an endpoint
An object must bind an endpoint, after the endpoint has been created. Binding is the
process of setting the local connection parameters, which identifies the port to be
used by the endpoint when sending UDP packets.

To bind an endpoint, your object sends a UDPEndpointBindMsg to the endpoint in
the IPStack. Table 5 shows the parameters in this message.

Table5 Parametersin UDPEndpointBindMsg.

Parameter Description

address (in/out) A valid I P address on the local host.
If you specify IP_ADDR_ANY, the object will receive packets sent
to any IP address on the local host. This is useful for multihomed
hosts, which have several interfaces with different addresses. If the
host is not multihomed, the local |P addressis returned.

On a multihomed host, IP ADDR_ANY will be updated to a
specific IP address if the object performs a connect operation (after
binding the endpoint.

port (in/out) The port number of the object.
If you specify IP_PORT_ANY, an ephemeral port number is

assigned to the object and returned when the endpoint has been
bound. This port number will be greater than or equal to 1024.

After an endpoint is bound, the object can send and receive data. Every packet sent
by the object must specify a destination IP address and port humber, unless the
object performs a connect operation first. In a connect operation, the object specifies
adestination for all of the packets that it sends. See “3.4 Setting foreign connection
parameters (Optional)” for more information.

3.4 Setting foreign connection parameters (Optional)

After binding an endpoint, an object can perform a connect operation. This operation
specifies a destination IP address and port number for every packet sent by the
object on that endpoint. Once connected, the object no longer needs to specify a
destination when it sends a packet.

To perform a connect operation, your object sends a UDPENdpointConnectMsg to
its endpoint in the |PStack. Table 5 shows the parameters in this message.

Table6 Parametersin UDPEndpointConnectMsg.

Parameter Description

address (in) Specifies the IP address of the host to which all packets should
be sent.

port (in) Specifies the port number of the object to which all packets
should be sent.

OPEN-R Internet Protocol Version4 24

3.5 Sending data

To send data by UDP, your object sends a UDPENndpointSendMsg to its endpoint in
the IPStack. If the endpoint is bound but not connected, this message must specify a
destination IP address and port number. If the endpoint is connected, this
information is not required. Table 7 shows the parameters in the
UDPENdpointSendM sg message.

Table7 Parametersin UDPEndpointSendM sg.

Parameter Description
address (in) The IP address of the host to which the data should be sent.

If your object has performed a connect operation, this parameter is
ignored. The IP address specified in the UDPENndpointConnectMsg
is used instead.

port (in) The port number of the object to which the data should be
sent.

If your object has performed a connect operation, this parameter is
ignored. The port number specified in the
UDPEndpointConnectMsg is used instead.

buffer (in) A pointer to the data being sent.
This data must be stored in a shared memory buffer, defined by the
antSharedBuffer structure.

size (in) The size of the data being sent, in bytes.

The UDP endpoint replies to this message when the data has been removed from the
shared buffer and sent.

25 OPEN-R Internet Protocol Version4

3.6 Receiving data

To receive data by UDP, your object sends a UDPENndpointReceiveMsg to its UDP
endpoint in the IPStack. Table 8 shows the parameters in this message.

Table8 Parametersin UDPEndpointReceiveMsg.

Parameter Description

address (out) The IP address of the host that sent the data.

port (out) The port number of the object that sent the data.

buffer (in) Pointer to the buffer where incoming data should be stored.
This data must be stored in a shared memory buffer, defined by the
antSharedBuffer structure.

size (infout) Specifies the maximum number of bytes to receive. When

the receive operation has completed and the endpoint has replied to
the object, this parameter returns the actual number of bytes that
were received.

If the received packet is larger than the specified size, the extra data
is deleted.

The UDP endpoint replies to this message when the data has been copied into the
shared buffer.

3.7 Closing an endpoint

To close a UDP endpoint, your object sends a UDPEndpointCloseMsg to the
endpoint in the IPStack. This message has no parameters. After sending this message,
the abject can no longer send or receive data. The endpoint will reply when the
connection has been fully closed.

OPEN-R Internet Protocol Version4 26

3.8 UDP echo server example

This example of a UDP echo server illustrates how to use the UDP messages. A
more complete version of this example can be found in the Examples directory of
your 1Pv4 distribution.

The UDP echo server opens a UDP connection and binds it to the echo port (7). All
data received on this connection is sent back.
See “Entry point definition” for numbering the entry points.

Variable definitions

#include <ant.h>
#include <EndpointTypes.h>
#include <UDPEndpointMsg.h>

enum
{

Entry_Initialize = 0,

Entry_ReceiveCont = 1,

Entry_SendCont = 2,

NumEntries = 3
}:
OPEN-R OID and antStackRef are necessary for the message
passing:

OID myOID;
antStackRef IPStackRef;

Maximum UDP packet size:
#define PACKETSIZE 65536

The UDP connection:
antModuleRef connection;

Send/receive buffer:
antSharedBuffer dataBuffer;
byte* data;

Entry point definition

The following description is needed for stub.cfg. See “2.5.1 in Programmer’s
Guide’ for the details of entry points.

Extra: Initialize()
Extra: ReceiveCont()
Extra: SendCont()

Executing a stubgen2 command generates xxxStub.cc where the following are

described.

GEN_ENTRY(Initializestub, _Initialize):
GEN_ENTRY(_ReceiveContstub, _ReceiveCont);
GEN_ENTRY(_SendContstub, _SendCont);

ObjectEntry ObjectEntryTable[]= {

{Extra_kntry[O], (Entry)_Initializestub},
{Extra_Entry[1], (Entry)_ReceiveCont},

|
27 OPEN-R Internet Protocol Version4

{Extra_Entry[2], (Entry)_SendCont},
{UNIDEF, (Entry)_ENTRY_UNDEF}

The number of Entry points is determined by the order of the elements in
ObjectEntryTabl€]].

Initialize the object

This function is invoked when the client object starts up. It performs the following
operations:

O Create ashared buffer for send/receive operations
O Create a UDP endpoint
O Bind the endpoint to the echo port (7)

void Initialize(void)

{

Get some OIDs for OPEN-R message passing:
WhoAml (&myOID) ;
IPStackRef = antStackRef(“IPStack™);

Allocate a shared buffer for sending/receiving:

antEnvCreateSharedBufferMsg bufferMsg(PACKETSIZE) ;
bufferMsg.Call(

IPStackRef,

sizeof(antEnvCreateSharedBufferMsg)

);
it (ANT_SUCCESS != bufferMsg.error)

EXITQ;

¥
dataBuffer = bufferMsg.buffer;
dataBuffer _Map();

Store the base address of the buffer:
data = (byte*)dataBuffer.GetAddress();

Create a UDP connection:

antEnvCreateEndpointMsg createMsg(EndpointType_UDP,
PACKETSIZE) ;
createMsg.Call(
IPStackRef,
sizeof(antEnvCreateEndpointMsg)

i% (ANT_SUCCESS != createMsg.error)

EXITQ;
3

connection = createMsg.moduleRef;
Bind to the echo port:

UDPEndpointBindMsg bindMsg(connection, IP_ADDR_ANY, 7);
bindMsg.Call(

IPStackRef,

sizeof(antEnvCreateEndpointMsg)

);

iT (UDP_SUCCESS != bindMsg.error)
{

|
OPEN-R Internet Protocol Version4 28

EXITQ;

Start receiving:
DoReceive();
EXITQO;

}

Echo data

These functions receive a UDP datagram together with the |P address and port of the
sender, and then send the data back.

DoReceive() posts a receive request for a packet containing up to PACKETSIZE
bytes.

void DoReceive()

UDPEndpointReceiveMsg receiveMsg(
connection,

dataBuffer, PACKETSIZE
);
receiveMsg.Send(

IPStackRef,

myOID, Entry_ReceiveCont,
sizeof(UDPEndpointReceiveMsg)
)

EXITQO;

}

ReceiveCont() is invoked when a UDP datagram has been received.
The function sends the datagram back to the sender of the data.

void ReceiveCont(void* _msg)
{
UDPEndpointReceiveMsg* receiveMsg;
receiveMsg =
(UDPENndpointReceiveMsg*)antEnvMsg: :Receive(_msQg);

it (UDP_SUCCESS == receiveMsg->error)

UDPEndpointSendMsg sendMsg(
connection,
receiveMsg->address,
receiveMsg->port,
receiveMsg->buffer,
receiveMsg->size

Back to sender:
sendMsg.Send(
IPStackRef,
myOID, Entry_SendCont,

sizeof(UDPEndpointSendMsg)
)

}

else
Close();

}
EXITQ;

SendCont() is invoked when the data has been processed by the IP stack and the

29 OPEN-R Internet Protocol Version4

___|
buffer can be re-used. It posts a new receive request.

void SendCont(ANTENVMSG _msg)

{
UDPEndpointSendMsg* sendMsg;

sendMsg =(UDPEndpointSendMsg*)antEnvMsg: :Receive(_msg);
if (UDP_SUCCESS == sendMsg->error)

DoReceive();

else
Close();

¥
EXITQ;

Close the UDP connection
The Closg() function:
O Unmaps and destroys the shared buffer

O Closesthe UDP connection

void Close()
{
dataBuffer._UnMap(Q);
antEnvDestroySharedBufferMsg bufferMsg(dataBuffer);
bufferMsg.Call(
IPStackOlID,
sizeof(antEnvDestroySharedBufferMsg)

);

UDPEndpointCloseMsg closeMsg(connection);
closeMsg.Call(

1PStackOlID,
sizeof(UDPEndpointCloseMsg)

);

OPEN-R Internet Protocol Version4 30

4 DNS guide

This chapter introduces the DNS-client support on OPEN-R, and explains how your
object can use the DNS-client services offered by the IPv4 protocol stack.

4.1 Introduction to DNS

DNS (Domain Name System) is a protocol that runs on top of UDP in the IPv4
protocol stack. It offers services for setting, getting, and translating Internet domain
names and | P addresses.

For example, if an object wants to send a file using FTP to a host with a domain
name of ftpserver.yourdomain.com, the object program must know the IP address of
that host. To determine this address, your program sends a request to DNS, which
replies that ftpserver.yourdomain.com has an |P address of 192.168.1.200. With this
information, your object program can open an FTP connection and begin sending the
file to ftpserver.yourdomain.com.

DNS network operations

On OPEN-R, the IPv4 protocol stack offers the following DNS operations to
objects:

Set and get a host’'s DNS servers — Set or get the |P addresses of all DNS servers
used by a host. Note that all objects share the DNS server’s definition. Therefore,
when one object changes the DNS server's definition, al other objects will
automatically use that definition.

O Set and get an object’s default domain name — Set or get the default domain
name of the host.

O Get acomplete host entry by domain name or |P address — Get the full list of IP
addresses and domain name aliases for a specified host.

O Get ahost's P address — Get any valid |P address for a host, when the host has
multiple addresses.

O Get ahost’'s domain name alias — Get any valid alias for a host’s domain name,
when the domain name has multiple aliases.

O Close - Close an object’s DNS endpoint.

Your object performs these operations by sending special messages to a DNS
endpoint in the [IPStack. These messages are inherited from
DNSEndpointBaseMessage, which is itsdf inherited from antEnvMsg. For
descriptions of these messages, see “DNS reference.”

For an overview of how objects create endpoints and regquest network services, see
“1.3 How your object communicates with the protocol stack.”

31 OPEN-R Internet Protocol Version4

DNS endpoint life cycle
Figure 6 shows the state transitions of a DNS endpoint during its life cycle. The
message types shown in Figure 6 are described fully in the IPv4 Reference.

Object
antEnvCreateEndpointM sg.Send

Object:
DNSEndpointCloseM sg.Send

Posible operation in Active state
DNSEndpointSetServerAddressesMsg
DNSEndpointGetServerAddressesMsg

@ DN SEndpointSetDefaultDomainNameM sy
DNSEndpointGetDefaultDomainNameM sg

DNSEndpointGetHostbyNameM sg

Endpoint: DNSEndpointGetHostbyAddrMsg

DNSEndpointCloseM sg.Reply DNSEndpointGetAddressMsg
DNSEndpointGetAliasMsg

Figure 6 The state transitions of a DNS endpoint

Your object requires one endpoint for each DNS connection, and an endpoint can
perform only one operation a a time For example, if you send a
DNSEndpointSetServerAddressesMsg to an endpoint that is already performing that
operation, the endpoint will return aDNS_CONNECTION_BUSY error.

4.2 Creating a DNS endpoint

Before your object can send or receive data by DNS, it must create a new DNS
endpoint. The process for creating an endpoint is the same for each protocol in the
IPStack, and is described in detail in “How your object communicates with the
protocol stack.”

If possible, try to open only one DNS endpoint and reuse it throughout the object’s
lifespan for all DNS operations and queries. Close the endpoint only when no more
DNS queries are expected. Note that it is possible to create multiple DNS endpoints,
if your object requiresit.

OPEN-R Internet Protocol Version4 32

4.3 Setting and getting an object’'s DNS servers
When an object is first initialized, it should register alist of all DNS servers that it
will use for resolving domain names and IP addresses. After this list is registered,
gueries will be sent to the listed serversin the order they appear in thelist.

Setting DNS server IP addresses

To register a list of DNS server IP addresses, your object sends a
DNSEndpointSetServerAddressesM sg to its endpoint in the IPStack.
Table 9 shows the parameters in DN SEndpointSetServerAddressesM sg.

Table9 Parametersin DNSEndpointSetServerAddressesM sg

Parameter Description
nscount (in) The number of 1P addresses to register.

addrListfMAXNS] (in) Thelist of IP addressesto register.

Getting DNS server IP addresses

To get a list of the DNS servers registered for your host, the object sends a
DNSEndpointGetServerAddressesM sg to its endpoint in the |PStack.

Table 9 shows the parameters in DN SEndpointGetServerAddressesM sg.

Table10 Parametersin DNSEndpointGetServerAddressesM sg

Parameter Description
nscount (out) The number of registered |P addresses.
addrListfMAXNS] (out) Thelist of 1P addresses.

4.4 Setting and getting an object’s default domain name

When an object is first initialized, it should register its default domain name. After
this domain name is registered, the name will automatically be added to all host
names that are not fully specified.

Setting the default domain name

To set its default domain name, your object sends a
DNSEndpointSetDefaultDomainNameM sg to its endpoint in the 1PStack.
DNSEndpointSetDefaultDomainNameMsg has one parameter, which specifies the
domain name: namef MAXDNAME]. The domain name must be null-terminated.

Getting the default domain name

To get its default domain name, your object sends a
DNSEndpointGetDefaultDomainNameM sg to its endpoint in the | PStack.
DNSEndpointSetDefaultDomainNameMsg has one parameter, which specifies the
domain name: namef MAXDNAME]. The domain name is null-terminated.

33 OPEN-R Internet Protocol Version4

4.5 Getting a host entry

When you want to determine the |P address, domain name, or domain name aliases
of ahost on the Internet, your object must get an entry for the host from one of its
DNS servers. A host entry typically contains a list of al 1P addresses and domain
name aliases for the host, as shown in Figure 7.

On OPEN-R, when your object requests a host entry from the DNS protocol, the
entry will contain only:

O Theaddressof the DNS server that returned the host entry.

O Thefirst IP address in the list (the officia address), and a count of the total
number of | P addresses for the host.

O Thefirst domain namein thelist (the official domain name), and a count of the
total number of domain name aliases for the host.

If you want to get a different | P address or one of the domain name diases, you must
request them specifically. For details, see “ Getting a host's |P address’ and “ Getting
ahost’'s domain name dlias,” later in this chapter.

Example of a
Host entry

IP address of the DNS server that sent the host
/ entry.
123.45.67.89 -]

123.56.78.2 List of registered | P address for the host.
123.56.78.2 / Thefirst address is the official address.
123.67.89.2 e

123.78.90.2

List of domain name aliases for the host.
foo.mydomain.com / Thefirst name is the official domain name.
bar.mydomain.conr
zot.mydomain.com

Figure7 An example of atypical host entry

OPEN-R Internet Protocol Version4 34

Getting an entry by domain name

To get a host entry when you know only the domain name or a domain name alias of
the host, your object sends a DNSEndpointGetHostByNameMsg to its endpoint in

the |PStack.

Table 9 shows the parameters in DNSEndpointGetHostByNameM sg.

Table11 Parametersin DNSEndpointGetHostByNameMsg

Parameter

namelMAXDNAME]

server_address

host_address

n_address

n_aias

Description

(infout) The domain name of the host for which you want
to get an entry. The domain name must be null-terminated.

If you specify a domain name dias, this parameter will
return the official domain name of the host.

(out) The IP address of the DNS server that sent the host
entry.

(out) The IP address of the host.

If the host has more than one IP address, this parameter
returns the first 1P address.

(out) The number of | P addresses for the host.

(out) The number of domain name aliases for the host.

Getting an entry by | P address

To get ahost entry when you know only the P address of the host, your object sends
a DNSEndpointGetHostByAddrMsg to its endpoint in the |PStack.

Table 9 shows the parameters in DNSEndpointGetHostByAddrM sg.

Table12 Parametersin DNSEndpointGetHostByAddrMsg.

Parameter

host_address

server_address

namelMAXDNAME]

n_address

n_alias

Description
(infout) The IP address of the host.

This parameter returns the first 1P address of the host, even
if you specify adifferent P address in the original message.

(out) The IP address of the DNS server that sent the host
entry.

(out) The official domain name of the host. The domain
name is null-terminated.

(out) The number of | P addresses for the host.

(out) The number of domain name aliases for the host.

35 OPEN-R Internet Protocol Version4

4.6 Getting a host’s IP address

If you want to get only the first registered |P address of a host, see “ Getting a host
entry” earlier in this chapter. If you want to get any other |P addresses registered to
the host, you perform an additional operation, described in this section.

To get one of a host's additiona IP addresses, your object sends a
DNSEndpointGetAddressMsg to its endpoint in the I1PStack.

Notes
Before you perform this operation, you must have already received the host entry,
as described in “ Getting a host entry”.

Table 13 shows the parameters in DNSEndpointGetAddressM sg.

Table 13 Parametersin DNSEndpointGetAddressM sg.

Parameter Description

index (in) The index of the IP address that you want to get.
This index must be less than the value of n_address, returned when
the host entry was received earlier. A value of O returns the first IP
addressin the host entry list.

address (out) The IP address at location index in the host entry.

4.7 Getting a host’s domain name alias
If you want to get only the official domain name of a host, see “ Getting a host entry”
earlier in this chapter. If you want to get any of the host's domain name aliases, you
perform an additional operation, described in this section.

To get one of a host's domain name aliases, your object sends a
DNSEndpointGetAliasMsg to its endpoint in the | PStack.

Notes
Before you perform this operation, you must have already received the host entry,
as described in “4.5 Getting a host entry”.

Table 9 shows the parameters in DNSEndpointGetAliasM sg.

Table 14 Parametersin DNSEndpointGetAliasM sg.

Parameter Description

index (in) The index of the domain name alias that you want to
get. This index must be less than the value of n_alias,
returned when the host entry was received earlier. A value
of O returns the official domain name of the host.

namelMAXDNAME] (out) The domain name alias at |location index in the host
entry.

|
OPEN-R Internet Protocol Version4 36

4.8 Closing an endpoint
To close a DNS endpoint, your object sends a DNSEndpointCloseMsg to the

endpoint in the IPStack. This message has no parameters. After sending this message,
the object can no longer send or receive data.

4.9 DNS client example

This DNS client example illustrates how to use the DNS messages. A complete
version of this program can be found in your |Pv4 distribution.

The DNS client opens an endpoint to the DNS service in the |P stack, and uses it to
look up some names and | P addresses.

Variable definitions

#include <ant.h>
#include <EndpointTypes._h>
#include <DNSEndpointMsg.h>

OPEN-R message-passing-related information:
OID myOID;
antStackRef IPStackRefT;

The endpoint used to access DNS:
antModuleRef endpoint;

Replace these with local DNS and host values:

#define DNS_SERVER1 “IP of primary DNS server”
#define DNS_SERVER2 “1P of secondary DNS server”
#define DNS_DOMAIN “local domain name”

#define HOSTNAME1 “www . yahoo.com”

#define HOSTNAME2 “name of local host”

#define HOSTIP1 “IP address of local machine”

Entry point definition

The following description is needed for stub.cfg. See “Extra entry, 2.3 Stub in
Programmer’s Guide’ for the details of the definition of entry points.

Extra: Initialize()

37 OPEN-R Internet Protocol Version4

___|
Initialize the object

This function isinvoked when the object starts up.

void Initialize

{
WhoAmI (&myOID) ;
IPStackRef = antStackRef(*“1PStack™);
OpenQ);

SetServers();

GetHostByName (HOSTNAMEL) ;
GetHostByName (HOSTNAME2) ;
GetHostByAddress(HOSTIPL);

Close();
EXITQ;

Open and close endpoint

Open() creates a DNS endpoint, which is needed to communicate with the DNS
service in the IP stack.

void Open()
{
antEnvCreateEndpointMsg createMsg(EndpointType DNS,
16*1024) ;
createMsg.Call (IPStackRef, sizeof(antEnvCreateEndpointMsg));
if (ANT_SUCCESS != createMsg.error)

EXITQ;

endpoint = createMsg.moduleRef;

Closg() cleans up the DNS endpoint.

void Close()

DNSEndpointCloseMsg closeMsg(endpoint);
closeMsg.Call (IPStackRef, sizeof(DNSEndpointCloseMsQg));

OPEN-R Internet Protocol Version4 38

Set up the DNS functionality

The SetServers() function:

Q

a

Sets the DNS primary and secondary servers

Sets the local domain name

void SetServers()

{

}

IPAddress addrList[2];

addrList[0]
addrList[1]

DNS_SERVER1;
DNS_SERVER2;

DNSEndpointSetServerAddressesMsg
setServerMsg(endpoint, 2, addrList);

setServerMsg.-Call(
IPStackRef,
sizeof(DNSEndpointSetServerAddressesMsg)

);

iT (DNS_SUCCESS != setServerMsg.error)

EXITQ;

DNSEndpointSetDefaultDomainNameMsg
setDomainMsg(endpoint, DNS_DOMAIN);

setDomainMsg.-Call(

IPStackRef,

sizeof(DNSEndpointSetDefaultDomainNameMsg)

)
it (DNS_SUCCESS != setDomainMsg.error)

EXITQ;
3

GetHostByName() and GetHostByAddress()

void GetHostByName(char* name)

{

}

DNSEndpointGetHostByNameMsg getHostMsg(endpoint, name);
getHostMsg.Call(

I1PStackRef,

sizeof(DNSEndpointGetHostByNameMsg)

);

iT (DNS_SUCCESS == getHostMsg.error)
{

cout << name << “ -> * << getHostMsg.host_address << endl;

}

else

{

cout << “Could not resolve “ << name << endl;

}

void GetHostByAddress(1PAddress address)
-

39 OPEN-R Internet Protocol Version4

{ DNSEndpointGetHostByAddrMsg getHostMsg(endpoint, address);
getHostMsg.Call(
IPStackRef,
sizeof(DNSEndpointGetHostByAddrMsg)
)
iT (DNS_SUCCESS == getHostMsg.error)
{ cout << address << “ -> “ << getHostMsg.name << endl;
}
else
{
cout << “Could not resolve “ << address << endl;
}
}

|
OPEN-R Internet Protocol Version4 40

5IP Guide

This chapter introduces the IP protocol on OPEN-R, and explains how your object
can use the | P services offered by the |Pv4 protocol stack.

5.1 Introduction to IP

In the IPv4 protocol stack, the Internet Protocol (IP) layer is responsible for
transmitting packets over the network. Typically, OPEN-R objects do not
communicate directly with IP. Instead, they open connections with layers on top of
IP, such as TCP or UDP. However, some objects may need to use the IP layer
directly. For example, if you want to add new protocols without programming in the
IPStack, you can write the protocols as OPEN-R objects that communicate directly
with the IP layer.

| P network operations

On OPEN-R, the IPv4 protocol stack offers the following | P operations to objects:

O Bind — Bind the IP endpoint to a particular protocol. All packets sent and
received by an object over this endpoint will be identified as originating from
the specified protocol.

O Send- Send data.

0O Recelve— Recelve data

O Close— Stop sending and receiving data, and delete the endpoint.

Your object performs these operations by sending special messages to an | P endpoint

in the IPStack. These messages are inherited from IPEndpointBaseM essage, which

is itself inherited from antEnvMsg. For descriptions of these messages, see

“Chapter10 IPreference.”

For an overview of how objects create endpoints and request network services, see
“1.3 How your object communicates with the protocol stack.”

I P endpoint life cycle

Figure 8 shows the state transitions of an IP endpoint during its life cycle. The
message types shown in Figure 8 are described fully in the IPv4 Reference.

Your object requires one endpoint for each IP connection, and an endpoint can
perform only one similar operation at a time. For example, if you send an
IPEndpointSendMsg to an endpoint that is already sending data, the endpoint will
return a IP_CONNECTION_BUSY error. However, it is possible to send an
| PEndpointReceiveM sg to this endpoint.

|
41 OPEN-R Internet Protocol Version4

Object:
antEndCreateEndpointmsg.Send

@ Possible operation in Active state

Object:
IPEndpointBindMsg.Send

Endpoint:
IPEndpointBindMsg.Reply

Endpoint: IPEndpointSendM sg
IPEndpointCloseMsg.Send |PEndpointReceiveM sg
IPEndpointCloseM sg

Endpoint:

IPEndpointCloseMsg.Reply

Figure 8 The state transitions of an IP endpoint.

5.2 Creating an IP endpoint

Before your object can send or receive data by IP, it must create a new |P endpoint.
The process for creating an endpoint is the same for each protocol in the IPStack,
and is described in detail in “1.3 How your object communicates with the protocol
stack.”

5.3 Binding an endpoint

An object must bind an endpoint to a particular protocol, after the endpoint has been
created. All packets sent and received by the object over this endpoint will be
identified as originating from the specified protocol.

To bind an endpoint, your object sends an IPEndpointBindMsg to the endpoint in
the IPStack. This message has one parameter, called protocol, which specifies the
protocol to bind to the endpoint. Each protocol is identified by an integer with a
value less than 256.

Notes

It is not possible to bind an endpoint to the TCP or UDP protocols unless the
endpoint has already been bound to the protocol stack. If attempted, the error
IP_INVALID_PROTOCOL will be returned.

However, it is possible to bind an endpoint to ICMP. ICMP will process al
packets that it recognizes, as usual, but will forward al unidentified packets to the
endpoint that you have bound.

|
OPEN-R Internet Protocol Version4 42

5.4 Sending data

To send data by 1P, your object sends an |PEndpointSendMsg to its endpoint in the
|PStack. Table 15 shows the parameters in the UDPEndpointSendM sg message.

Table15 Parametersin IPEndpointSendMsg

Parameter Description

type (in) The type of packet being sent.
Normal IP packets are of type IP_DATA. Other types exist for
|CMP packets.

buffer (in) Pointer to the packet being sent.

This packet must be stored in a shared memory buffer, defined by
the antSharedBuffer structure.

size (in) The size of the packet being sent, in bytes.

The IP endpoint replies to this message when the data has been removed from the
shared buffer and sent.

When sending raw |IP packets, you have to fill in the complete IP packet. The IP
header is shown in Figure 9. A C++ class, |PHeader, is defined in the |PProtocol.h
file. Use the IPHeader to fill in the raw IP packet. The class will take care of all
endian-related issues.

It is mandatory to fill in the following fields

O 8-hit protocol field [IPHeader::ip_pSet(byte val)]

Q 32-bit source IP address [IPHeader::ip_srcSet(uint32 _val)]

O 32-bit destination |P address [IPHeader::ip_dstSet(uint32 _val)]

The following fields are optional. When set to zero, they are considered unspecified
and will be overwritten by the stack:

O 16-hit total length (in bytes) [IPHeader::ip_lenSet(uint16 val)]
Q 4-bit header length [IPHeader::ip_hlSet(byte val)]

O 8-bit type of service [IPHeader::ip_tosSet(byte val)]

O 8-bittimeto live [IPHeader::ip_ttISet(byte val)]

The time to live field is overwritten by the stack only when the IP packet is not a
broadcast packet.

43 OPEN-R Internet Protocol Version4

Bit0

Bit 15 Bit 31
. . . . A
4-bit 4-bit header | 8-bit type 16-hit total length(bytes)
version | length of service (TOS)
16-bit identification 3-bit 13-bit fragment offset
flags

8-bit timeto live 8-bit protocol 16-bit header checksum 20 bytes
(TTL)

32-bit source IP address

32-bit destination | P address 4

options (If any)

data

Figure9 Contents of the |P header

The following fields should not be set, because they are always overwritten by the IP

stack:

O 4-bit version

O 13-bit fragment offset

O 16-bit identification

Q 16-bit header checksum

Also see “5.7 IP-ping example” at the end of this chapter, for an example of how to
use the IPHeader class.

OPEN-R Internet Protocol Version4

5.5 Receiving data

To receive data by | P, your object sends an | PEndpointReceiveM sg to its endpoint in
the |PStack. Table 16 shows the parameters in this message.

Table 16 Parametersin IPEndpointReceiveM sg

Parameter Description

type (out) The type of packet received.
Normal IP packets are of type IP_DATA. Other types exist for
|CMP packets.

buffer (in) Pointer to an area where the packet being received should be
stored.

This area must be in a shared memory buffer, defined by the
antSharedBuffer structure.

size (infout) Specifies the maximum number of bytes to receive. When
the receive operation has completed and the endpoint has replied to
the aobject, this parameter returns the actual number of bytes that
were received.

If the packet being received is too big for the shared buffer, only
part of the packet will be stored in the buffer. The error
IP_PACKETSIZE error will be returned.

The IP endpoint replies to this message when the data has been copied into the
shared buffer.

5.6 Closing an endpoint

To close an IP endpoint, your object sends an |PEndpointCloseMsg to the endpoint
in the IPStack. This message has no parameters. After sending this message, the
object can no longer send or receive data. The endpoint will reply when the
connection has been fully closed.

45 OPEN-R Internet Protocol Version4

5.7 IP ping example

This IP ping example illustrates how to use the |P messages.
The IP ping program sends an |CMP packet to a host on the network and waits for a
reply.

Variable definitions

#include <ant.h>
#include <EndpointTypes.h>
#include <IPEndpointMsg.h>

#include <IPProtocol.h>

#include <ICMPProtocol.h>

#include <endian.h>
Message-passing-related information:

OID myOID;
antStackRef IPStackRefT;
IP endpoint:

antModuleRef connection;
Buffer used to send packet:
antSharedBuffer dataBuffer;
byte* data;

Destination for ping packet:
#define HOSTIP “192.168.1.2"

Entry point definition

The following description is needed for stub.cfg. See “Extra entry, 2.3 Stub in
Programmer’s Guide” for the details of the definition of entry points.

Extra : Initialize()

Initialize the object

This function isinvoked when the object starts up.

void Initialize()
{
WhoAml (&myOID);
IPStackRef = antStackRef(“IPStack™);

Open();
Ping(HOSTIP);
Close();

EXITQ;

OPEN-R Internet Protocol Version4 46

Open endpoint

The Open() function:
O Creates ashared buffer for sending and receiving |CM P packets

O Createsan IPendpoint

O Bindsthisendpoint to the ICMP protocol

void Open()
{

Allocate a shared buffer:
antEnvCreateSharedBufferMsg bufferMsg(1024);
bufferMsg.Call(

I1PStackRef,
sizeof(antEnvCreateSharedBufferMsg)

);
it (ANT_SUCCESS != bufferMsg.error)

EXITQ;

dataBuffer = bufferMsg.buffer;
dataBuffer.Map(Q);

Store the base address of the buffer:
data = (byte*)dataBuffer.GetAddress();

Create an IP endpoint:
antEnvCreateEndpointMsg createMsg(EndpointType_IP, 4096);
createMsg.Call(

1PStackOlID,

sizeof(antEnvCreateEndpointMsg)

)

iT (ANT_SUCCESS != createMsg.error)

EXITQ;
3

connection = createMsg.moduleRef;

Bind to the ICMP protocol:
IPEndpointBindMsg bindMsg(connection, IPPROTO_ICMP);
bindMsg.Call(
IPStackRef,
sizeof(IPEndpointBindMsg)

)
it (IP_SUCCESS !'= bindMsg.error)

EXITQ;

47 OPEN-R Internet Protocol Version4

Close

The Closg() function:
O Unmaps and destroys the shared buffer

O Destroysthe | P endpoint

void Close()

Destroy the shared buffer:
dataBuffer._UnMap();
anteEnvDestroySharedBufferMsg bufferMsg(dataBuffer);
bufferMsg.Call(

IPStackRef,

sizeof(antEnvDestroySharedBufferMsg)

);

Close the endpoint:
IPEndpointCloseMsg closeMsg(connection);
closeMsg.Call(
1PStackRef,
sizeof(1PEndpointCloseMsg)
)
}

Ping

Ping() sends and receives the actual ICMP_ECHO packet.

It first creates araw IP/ICMP packet in the shared buffer, which is then put on the
network by the IP stack. After this, Ping() waits for an ICMP_ECHOREPLY packet
to be received.

void Ping(char* host)

IPAddress dest(host);
Pointers to packet headers:
IPHeader* ipheader = (1PHeader*)data;
ICMPEcho* i1cmpecho (1CMPEcho*) (datatsizeof(1PHeader));

cout << “Pinging “ << dest << endl;

Fill IP header:
ipheader->ip_srcSet(I1P_ADDR_ANY);
ipheader->ip_dstSet(dest);
ipheader->ip_tosSet(0);
ipheader->ip_ttlSet(IPDEFTTL);
ipheader->ip_pSet(1PPROTO_ICMP);
ipheader->ip_offSet(0);

Fill ICMP header:
icmpecho->icmp_typeSet(I1CMP_TYPE_ECHO);
icmpecho->icmp_cksumSet(0);
icmpecho->icmp_idSet(0xaf);
icmpecho->icmp_seqSet(1);

Calculate ICMP checksum:
uint32 cksum = 0;
int sizel6 = sizeof(ICMPEcho) / sizeof(uintl6);
for (int index = 0; index < sizel6; index++)

cksum += ((uintl6*)icmpecho)[index];

OPEN-R Internet Protocol Version4 48

while (cksum > Oxffff)

P

cksum = (cksum & OxFFFF) + (cksum >> 16);

-

icmpecho->icmp_cksumSet(htons(~(cksum & OxFfff)));

Send the packet to IP:
IPEndpointSendMsg sendMsg(
connection,
IP_DATA,
data,
sizeof(IPHeader) + sizeof(I1CMPEcho)

);
sendMsg.Call(
IPStackRef,
sizeof(IPEndpointSendMsg)
):

Wait for an answer:
IPEndpointReceiveMsg receiveMsg(

connection,

data, 1024

)

receiveMsg.Call(

IPStackRef,

sizeof(IPEndpointReceiveMsg)

)

Check packet:
if (ICMP_TYPE_ECHOREPLY == icmpecho->icmp_typeGet())
{
cout << IPAddress(ipheader->ip_srcGet()) << “ 1is alive” <<
endl ;

}
}

49 OPEN-R Internet Protocol Version4

Part2 IPv4 Reference
6 ANT environment reference

This chapter describes the structures and methods that you require when sending
requests for endpoints and shared buffers to the ANT environment.

antEnvCreateEndpointMsg

struct antEnvCreateEndpointMsg: public antEnvMsg

{
public:
antError error;
int32 protocol;
int32 poolSize;
antModuleRef moduleRef;

public:
// constructors
antEnvCreateEndpointMsg(): antEnvMsg(Q) {};
antEnvCreateEndpointMsg(int32 _protocol,
int32 _poolSize = 0);

// reply
antError Reply(antError _error);
}:

Description
Defines the message that requests a new endpoint.

When an object requires a new endpoint, it creates an
antEnvCreateEndpointM sg that specifies what protocol the endpoint is needed
for and what size of SDU pool should be created for the endpoint.

Parameters
error (out) Returns an error that describes the result of the request.
protocol (in) The type of endpoint to create, which corresponds to the available
protocols
EndpointType TCP
EndpointType_UDP
EndpointType TFTP
EndpointType DNS
EndpointType_POP3
EndpointType SMTP
EndpointType_IP
EndpointType_MIBII
EndpointType MIB_ETHERNET
poolSize (in) The size of the SDU pool to create for the new endpoint.
An SDU pool is an internal ANT construct that stores data in the
protocol stack.
As a guideline, always create an SDU pool that is dlightly larger than
the largest packet that you expect to send. For example, 8-KB packets
would require an SDU pool of approximately 10 KB.
moduleRef (out) A reference to the new endpoint.

|
OPEN-R Internet Protocol Version4 50

|
antEnvCreateEndpointM sg::antEnvCreateEndpointM sg()

Constructor

antEnvCreateEndpointMsg(
int32 _protocol,
int32 _poolSize = 0
):

Description
Creates an instance of antEnvCreateEndpointMsg.

When the message has been created, it must be sent to the ANT environment.
When the object receives areply, the moduleRef parameter of
antEnvCreateEndpointM sg contains a reference to the new endpoint.

Parameters
_protocol (in) The type of endpoint to create, which corresponds to the available
protocols

EndpointType _TCP
EndpointType UDP
EndpointType TFTP
EndpointType_ DNS
EndpointType POP3
EndpointType_SMTP
EndpointType_IP
EndpointType_MIBII
EndpointType MIB_ETHERNET

_poolSize (in) The size of the SDU pool to create for the new endpoint.

|
51 OPEN-R Internet Protocol Version4

antEnvCreateSharedBufferMsg

Structure

struct antEnvCreateSharedBufferMsg: public antEnvMsg

public:
antError error;
uint32 size;
antSharedBuffer buffer;

}:

Description
Defines the message that requests a shared memory buffer.

When an object requires a new shared memory buffer, it creates an
antEnvCreateSharedBufferM sg that specifies the size of the buffer.

Parameters

error (out) Returns an error that describes the result of the request.
size (in) The size of the shared buffer, in bytes.

buffer (out) A reference to the new buffer, after it has been created.

antEnvCreateSharedBuffer M sg::antEnvCreateShar edBuffer M sg()

Constructor

antEnvCreateSharedBufferM sg(uint32 _size);

Description
Creates an instance of antEnvCreateSharedBufferMsg.

When the message has been created, it must be sent to the ANT environment.
When the object receives areply, the buffer parameter of the
antEnvCreateSharedBufferM sg structure returns a reference to the new buffer.

Parameters
size (in) The size of the shared buffer, in bytes.

|
OPEN-R Internet Protocol Version4 52

antSharedBuffer

Member

class antSharedBuffer

public:
antError Map(Q);
antError UnMap(Q);
void* GetAddress();
uint32 GetSize();

Description
Defines the shared memory buffers used to exchange data between OPEN-R applications
and the ANT environment.

A shared memory buffer maps a common memory areainto the address spaces
of an object and the ANT environment. When the object exchanges

datawith the ANT environment, the datais identified by a pointer into this
shared buffer. antSharedBuffer can convert this pointer between the application
and the ANT environment address spaces.

To create a shared buffer, an object sends an
antEnvCreateSharedBufferM sg to the ANT environment, specifying the size
of the buffer.

antSharedBuffer::Map()

Member

antError Map();

Description

Maps a shared memory buffer to the address space of an object.

This operation is required before the object can exchange data with the
ANT environment.

Return codes
ANT_SUCCESS Success
ANT_FAIL Failure

antSharedBuffer::UnMap()

Member

antError UnMap();

Description
Removes a shared memory buffer from an object’s address space.
This operation is required before the shared buffer can be destroyed.

Returned value
ANT_SUCCESS Success
ANT_FAIL Failure

53 OPEN-R Internet Protocol Version4

antSharedBuffer::GetAddress()

Member

void* GetAddress();

Description

Gets the base address of a shared memory buffer.

Before performing this operation, the object must have mapped the buffer
to its address space (see antSharedBuffer::Map()).

Returned value
0 Success

antSharedBuffer::GetSize()

Member

uint32 GetSize();

Description
Gets the size of a shared memory buffer, in bytes.

Before performing this operation, the object must have mapped the buffer
to its address space (see antSharedBuffer::Map()).

OPEN-R Internet Protocol Version4 54

7 TCP reference

This chapter describes the TCP messages that an object sends to the IPstack to
request TCP services. All messages are inherited from TCPEndpointBaseM sg.

TCP errors

Table 17 describes the errors that can be returned by any of the messages in this
chapter. The possible error values are defined in the TCPEndpointError enumerated

type.

When your object requests a network operation and receives a reply from the TCP
endpoint, it should examine the request's error field (for example,
TCPENndpointListenMsg.error).

Table 17 TCPEndpointError

Error Value Description

TCP_BUFFER_INVALID The address and size parameters provided in a
TCPEndpointSendMsg or
TCPENndpointReceiveMsg do not fall within a
shared buffer.

TCP_CONNECTION_BUSY The connection is busy and the requested
operation cannot be completed. The TCP endpoint
to which you sent the message may aready be
processing another request.

TCP_CONNECTION_CLOSED The connection has been closed.
TCP_CONNECTION_RESET The connection has been aborted.

TCP_CONNECTION_TIMEOUT
The connection timed out, and has been closed.

TCP_FAIL The operation failed (no more information is
available).

TCP_HOST_UNREACHABLE The IP stack was unable to find a route to the
destination address.

TCP_MESSAGE TOO _LONG An intermediate router was unable to process a
TCP/IP packet because it was too big.

TCP_NETWORK_UNREACHABLE
The IP stack was unable to find a route to the
network containing the destination address.

TCP_OPERATION_INVALID The requested operation is not alowed in the
current state of the endpoint.

TCP_OPERATION_UNKNOWN
The reguested operation was not recognized by
the TCP endpoint.

TCP_PORT_UNREACHABLE There is nobody listening on the destination port
specified for the connection.

|
55 OPEN-R Internet Protocol Version4

___|
TCP_PROTOCOL_UNREACHABLE
The destination host is not running a TCP
implementation.

TCP_SUCCESS Operation succeeded.

TCP_TIME_EXCEEDED An P reassembly queue timed out.

TCP_TTL_EXCEEDED The destination host is more than TTL hops from
the source.

TCPEndpointBaseMsg

Definition

struct TCPEndpointBaseMsg: public antEnvMsg
{
public:

TCPEndpointError error;

public:
TCPEndpointBaseMsg() : error(TCP_FAIL), antEnvMsg() {};
TCPEndpointBaseMsg(
antModuleRef& _module,
TCPEndpointOperation _operation
)
}:

Description
Specify which endpoint in the 1Pv4 protocol stack should receive a reguest for a
TCP service, and which OPEN-R object should receive the reply for the request.

Requests for specific network services are sent in messages inherited from
TCPENdpointBaseM sg, and are described later in this chapter.

Parameters

module (in) The target endpoint.

operation (in) The operation requested by the sending object.

error (out) See“TCPerror” for adescription of the possible TCP error
codes.

Returned value

See “TCPerror” for adescription of the possible TCP error codes.

Seealso
TCPEndpointConnectMsg, TCPEndpointListenMsg,
TCPEndpointSendMsg, TCPEndpointReceiveMsg, TCPEndpointCloseMsg

|
OPEN-R Internet Protocol Version4 56

TCPEndpointConnectMsg

Definition

struct TCPEndpointConnectMsg: public TCPEndpointBaseMsg

public:
IPAddress lAddress;
Port IPort;
IPAddress fAddress;
Port fPort;

public:
TCPEndpointConnectMsg() : TCPEndpointBaseMsg() {}:
TCPEndpointConnectMsg(

antModuleRef& module,

IPAddress 1Address, Port IPort,

IPAddress fAddress, Port fPort

)

}:

Description
Open a TCP connection to another host.

TCPENdpointConnectMsg is normally sent by client objects. The TCP endpoint
replies to this message when the connection has been fully established. The reply
holds the fully specified local and foreign addresses and port numbers.

TCPENdpointConnectMsg is inherited from TCPENdpointBaseM sg.

Parameters

module Destination module reference

[Address (out) Returns the local | P address, when the connection has been
established.

[Port (out) Returns an ephemeral port number assigned to the client
object, when the connection has been established.

fAddress (in) The IP address of the computer that you need to
connect to.

fPort (in) The port number of the object that you need to
connect to.

Returned value

See “TCPerror” for a description of the possible TCP error codes.

See also

TCPEndpointBaseMsg

|
57 OPEN-R Internet Protocol Version4

TCPENndpointListenMsg

Definition

struct TCPEndpointListenMsg: public TCPEndpointBaseMsg

public:
IPAddress lAddress;
Port IPort;
IPAddress fAddress;
Port fPort;

public:
TCPEndpointListenMsg() : TCPEndpointBaseMsg() {}:
TCPEndpointListenMsg(
antModuleRef& _module,
IPAddress l1Address,
Port IPort,
IPAddress fAddress = O,
Port fPort = 0O
)
};

Description
Start listening for connection requests.

TCPENdpointListenMsg is normally sent by server objects. The TCP endpoint
replies to this message when the connection has been fully established. The reply
holds the fully specified local and foreign addresses and port numbers.

It is possible for a server object to perform more than one listen operation with all
accepting connection requests made to the same port number. The object requires a
separate endpoint for each listen operation.

TCPENdpointListenMsg is inherited from TCPENndpointBaseM sg.

Parameters

module Destination module reference

IAddress (out) Returns the local | P address, when a connection has been
established.

IPort (in) The port number that you will accept connection requests.
If you will accept requests for any port, specify a value of
IP_PORT_ANY.

fAddress (out) Returns the 1P address of the computer that requested the
connection.

fPort (out) Returns the port number of the object that requested the
connection

Returned value

See “TCPerror” for adescription of the possible TCP error codes.

See also
TCPEndpointBaseMsg

|
OPEN-R Internet Protocol Version4 58

TCPENndpointSendMsg

Constructor

struct TCPEndpointSendMsg: public TCPEndpointBaseMsg

public:
byte* buffer;
int size;
public:
TCPEndpointSendMsg() : TCPEndpointBaseMsg() {}:
TCPEndpointSendMsg(
antModuleRef& module,
byte* buffer,
int size
)
}:

Description
Send data over an open TCP connection.

Any data that your object sends to the protocol stack must be stored in a shared
memory buffer, defined by the antSharedBuffer structure.

The TCP endpoint replies to this message when the data is copied from the shared
buffer to the | P stack internal memory buffers.

TCPEndpointSendMsg is inherited from TCPEndpointBaseM sg.

Parameters

module Destination module reference

buffer (in) The shared buffer where the data being sent is stored.
size (in) The size of the data being sent, in bytes.

Returned value

See “TCPerror” for adescription of the possible TCP error codes.

See also
TCPEndpointBaseMsg, TCPEndpointConnectMsg, antSharedBuffer

|
59 OPEN-R Internet Protocol Version4

TCPEndpointReceiveMsg

Constructor

struct TCPEndpointReceiveMsg: public TCPEndpointBaseMsg

public:
byte* buffer;
int sizeMin;
int sizeMax;

public:
TCPEndpointReceiveMsg() : TCPEndpointBaseMsg() {}:
TCPEndpointReceiveMsg(

antModuleRef& _module,

byte* buffer,

int sizeMin,

int sizeMax

)

}:

Description
Receive data from an open TCP connection.

Any data that your object receives from the protocol stack is stored in a shared
memory buffer, defined by the antSharedBuffer structure.

The TCP endpoint replies to this message when the data has been copied into the
shared buffer. When all data in the transmission has been received and the TCP
connection is closed, the last receive request may hold a smaller number of bytes
than what is specified in sizeMin.

TCPENdpointReceiveMsg is inherited from TCPEndpointBaseM sg.

Parameters

module Destination module reference

buffer (in) The shared buffer where the data being received should be
stored.

sizeMin (infout) Specifies the minimum number of bytes to receive. When
the receive operation has completed and the endpoint has replied to
the object, this parameter returns the actual number of bytes that
were received.

sizeM ax (infout) Specifies the maximum number of bytes to receive. When
the receive operation has completed and the endpoint has replied to
the object, this parameter returns the actual number of bytes that
were received.

Returned value

See “TCP error“for a description of the possible TCP error codes.

Seealso
TCPEndpointBaseMsg, TCPEndpointConnectMsg, antSharedBuffer

|
OPEN-R Internet Protocol Version4 60

TCPENndpointCloseMsg

Constructor

struct TCPEndpointCloseMsg: public TCPEndpointBaseMsg

public:
boolean abort;

public:
TCPEndpointCloseMsg() : TCPEndpointBaseMsg() {}:
TCPEndpointCloseMsg(
antModuleRef& module,
boolean abort = FALSE
)
};

Description
Close a TCP connection.
A TCP connection can be closed three different ways:

O Active close — The close request is sent directly by your object. The object on
the other side of the connection will receive the rest of the transmission, then
will receive an error to indicate that you have closed the connection. From the
perspective of the other object, a passive close has occurred.

O Passive close — The close request is sent by the object on the other side of the
connection. After your object has received the entire data transmission, a
TCP_CONNECTION_CLOSED error will occur. Your object must then
complete the passive close by sending a TCPEndpointCloseM sg to its endpoint
inthe ANT environment.

O Abort — An error occurs, which closes the connection unexpectedly. An abort
purges all data from the shared buffers and immediately closes the connection.

The TCP endpoint replies to this message when the connection has been fully closed.

TCPEndpointCloseMsg is inherited from TCPEndpointBaseM sg.

Parameters

module Destination module reference

abort (in) If TRUE, the TCP connection is aborted, instead of being shut
down in an orderly fashion.

Returned value

See “TCPerror” for a description of the possible TCP error codes.

See also
TCPEndpointBaseMsg

61 OPEN-R Internet Protocol Version4

8 UDP reference

This chapter describes the UDP messages that an object sends to the IPstack, to
request UDP services. All messages are inherited from UDPEndpointBaseM sg.

UDP errors

Table 18 describes the errors that can be returned by any of the messages in this
chapter. The possible error values are defined in the UDPENdpointError enumerated

type.

When your object requests a network operation and receives a reply from its UDP
endpoint, it should examine the request's error field (for example,
UDPENdpointConnectM sg.error).

Table 18 UDPENdpointError

Error Value Description

UDP_ADDRESSERROR The IP address/port number combination that you
specified is not valid.

UDP_ADDRESSINUSE The IP address/port number combination that you
specified is already used by another connection.

UDP_BUFFER _INVALID The address and size parameters provided in a
TCPENdpointSendMsg or
TCPENdpointReceiveMsg do not fal within a
shared buffer.

UDP_CONNECTION_BUSY The connection is busy and the requested
operation cannot be completed. The UDP
endpoint to which you sent the message may
aready be processing another request.

UDP_CONNECTION_CLOSED The endpoint has been closed.

UDP_FAIL The operation failed (no more information is
available).

UDP_HOST _UNREACHABLE The IP stack was unable to find a route to the
destination address.

UDP_MESSAGE TOO LONG An intermediate router was unable to process a
TCP/IP packet because it was too big.

UDP_NETWORK_UNREACHABLE
The IP stack was unable to find a route to the
network containing the destination address.

UDP_OPERATION_INVALID The requested operation is not alowed in the
current state of the endpoint.

UDP_OPERATION_UNKNOWN
The reguested operation was not recognized by
the UDP endpoint.

UDP_PORT_UNREACHABLE There is nobody listening on the destination port
specified for the connection.

OPEN-R Internet Protocol Version4 62

___|
UDP_PROTOCOL_UNREACHABLE
The destination host is hot running
a UDPimplementation.

UDP_SUCCESS Operation succeeded.

UDP_TIME_EXCEEDED An IPreassembly queue timed out.

UDP_TTL_EXCEEDED The destination host is more than TTL hops from
the source.

|
63 OPEN-R Internet Protocol Version4

UDPENndpointBaseMsg

Definition

struct UDPEndpointBaseMsg: public antEnvMsg

public:
UDPEndpointError error;

public:
UDPEndpointBaseMsg() : error(UDP_FAIL), antEnvMsg(Q) {}:
UDPEndpointBaseMsg(
antModuleRef& module,
UDPEndpointOperation operation
)
}:

Description
Specify which endpoint in the IPv4 protocol stack should receive a request for a
UDP service, and which OPEN-R object should receive the reply for the request.

Requests for specific network services are sent in messages inherited from
UDPENdpointBaseM sg, and are described later in this chapter.

Parameters

error (out)UDPENdpointError returned by the endpoint. See Table 18 for
thelist of errors.

module (in) The target endpoint.

operation (in) The operation requested by the sending object.

Returned value
See “UDPerror” for adescription of the possible UDP error codes.

Seealso
UDPEndpointBindMsg, UDPEndpointConnectMsg, UDPEndpointSendMsg,
UDPEndpointReceiveMsg, UDPEndpointCloseMsg

|
OPEN-R Internet Protocol Version4 64

UDPENndpointBindMsg

Definition

struct UDPEndpointBindMsg: public UDPEndpointBaseMsg

public:
IPAddress address;
Port port;

public:
UDPEndpointBindMsg() : UDPEndpointBaseMsg() {}:
UDPEndpointBindMsg(

antModuleRef& module,

IPAddress address,

Port port

)

};

Description
Set the local connection parameters, which identify the object as a destination for
UDP packets.

After abind operation, the object receives packets if the destination address and port
are the same as the IP address and port number specified by the bind parameters.
When sending data, every packet must specify a destination |P address and port
number, unless the object performs a connect operation first. In a connect operation,
the object specifies a destination for al packets that it sends. See
UDPENdpointConnectMsg for more information.

UDPENdpointBindMsg is inherited from UDPENdpointBaseM sg.

Parameters
module Destination module reference

address (infout) A valid IP address on the local host.
If you specify IP_ ADDR_ANY, the object will receive packets sent
to any IP address on the local host. This is useful for multihomed
hosts, which could have several interfaces with different addresses.
If the host is not multihomed, the local IP address is returned.
On amultihomed host, IP_ADDR_ANY is updated to a specific IP
addressif the abject performs a connect operation after binding.

port (infout) The port number of the object.
If you specify IP_PORT_ANY, an ephemeral port number is
assigned to the object and returned when the endpoint has been
bound. This port number will be greater than or equal to 1024.

Returned value
See “UDPerror” for a description of the possible UDP error codes.

See also
UDPEndpointBaseMsg, UDPEndpointConnectMsg

|
65 OPEN-R Internet Protocol Version4

UDPENndpointConnectMsg

Definition

struct UDPEndpointConnectMsg: public UDPEndpointBaseMsg

public:
IPAddress address;
Port port;

public:
UDPEndpointConnectMsg() : UDPEndpointBaseMsg() {}:
UDPEndpointConnectMsg(

antModuleRef& module,

IPAddress address,

Port port

)

};

Description
Specify adestination | P address and port number for every packet sent by the object.

This operation must be performed after sending a UDPEndpointBindMsg. Once
connected, an object no longer needs to specify a destination when it sends a packet.

UDPENdpointConnectMsg is inherited from UDPENndpointBaseM sg.

Parameters

module Destination module reference

address (in) Specifiesthe IP address of the computer to which all packets
should be sent.

port (in) Specifies the port number of the object to which all packets
should be sent.

Returned value

See “UDPerror” for a description of the possible UDP error codes.

Seealso
UDPEndpointBaseMsg, UDPEndpointBindMsg

|
OPEN-R Internet Protocol Version4 66

UDPENndpointSendMsg

Definition

struct UDPEndpointSendMsg: public UDPEndpointBaseMsg

public:
IPAddress address;
Port port;
byte* buffer;
int size;

public:
UDPEndpointSendMsg() : UDPEndpointBaseMsg() {}:
UDPEndpointSendMsg(
antModuleRef& module,
byte* buffer,
int size

);

UDPEndpointSendMsg(
antModuleRef& module,
IPAddress address,
Port port,
byte* buffer,
int size

)
};

Description
Send data through a UDP endpoint.

Any data that your object sends to the protocol stack must be stored in a shared
memory buffer, defined by the antSharedBuffer structure.

The UDP endpoint replies to this message when the data has been copied from the
shared buffer into the IPStack internal memory buffers.
UDPENdpointSendMsg is inherited from UDPENndpointBaseM sg.

Notes

If the endpoint is bound but not connected, this message must specify a
destination IP address and port number. If the endpoint has been connected by a
UDPEndpointConnectM sg, this information is not required.

Parameters

module Destination module reference

address (in) The IP address of the computer to which the data should be sent.
If your object has performed a connect operation, this parameter is
ignored. The IP address specified in the UDPEndpointConnectMsg
isused instead.

port (in) The port number of the object to which the data should be sent.
If your object has performed a connect operation, this parameter is
ignored. The port number specified in the
UDPENdpointConnectMsg is used instead.

buffer (in) Location (in a shared buffer) where the data being sent is
stored.

size (in) The size of the data being sent, in bytes.

|
67 OPEN-R Internet Protocol Version4

Returned value
See “UDPerror” for adescription of the possible UDP error codes.

Seealso
UDPEndpointBaseMsg, UDPEndpointConnectMsg, antSharedBuffer

|
OPEN-R Internet Protocol Version4 68

UDPENndpointReceiveMsg

Definition

struct UDPEndpointReceiveMsg: public UDPEndpointBaseMsg

public:
IPAddress address;
Port port;
byte* buffer;
int size;
public:
UDPEndpointReceiveMsg() : UDPEndpointBaseMsg() {}:
UDPEndpointReceiveMsg(
antModuleRef& module,
byte* buffer,
int size
)
}:

Description
Receive data from a UDP endpoint.

Any data that your object receives from the protocol stack is stored in a shared
memory buffer, defined by the antSharedBuffer structure.

The UDP endpoint replies to this message when the data has been copied into the
shared buffer. When the receive operation has completed, the size parameter returns
the actual number of bytes that were received. If the received packet is larger than
the specified size, the extra datais deleted.

UDPEnNdpointReceiveMsg is inherited from UDPENdpointBaseM sg.

Parameters

module Destination module reference

buffer (in) The location (in a shared buffer) where the data being received
should be stored.

size (infout) Specifies the maximum number of bytes to receive. When
the receive operation has completed, this parameter returns the
actual number of bytes received. If the received packet is larger
than size, the extra datais deleted.

address (out) IP address from where the received data originated

port (out) port from which the received data originated

Returned value

See“UDPerror” for adescription of the possible UDP error codes.

Seealso
UDPEndpointBaseMsg, UDPEndpointConnectMsg, antSharedBuffer

69 OPEN-R Internet Protocol Version4

UDPENndpointCloseMsg

Definition

struct UDPEndpointCloseMsg: public UDPEndpointBaseMsg

public:
UDPEndpointCloseMsg() : UDPEndpointBaseMsg() {}:
UDPEndpointCloseMsg(antModuleRef& module);

};

Description
Close a UDP endpoint.

After sending this message, the object can no longer send or receive data. The
endpoint will reply when the connection has been fully closed.

UDPENdpointCloseMsg isinherited from UDPEndpointBaseM sg.

Parameters
module Destination module reference

Returned value
See “UDPerror” for adescription of the possible UDP error codes.

Seealso
UDPEndpointBaseMsg

|
OPEN-R Internet Protocol Version4 70

9 DNS reference

This chapter describes the DNS messages that an object sends to the IPStack to
request DNS services. All messages are inherited from DNSEndpointBaseM sg.

DNS errors
Table 19 describes the errors that can be returned by any of the messages in this
chapter. The possible error values are defined in the DNSEndpointError enumerated
type.
When your object requests a network operation and receives a reply from its DNS
endpoint, it should examine the request's eror field (for example,
DNSEndpointSetServerAddressesM sg.error).

Table19 DNSEndpointError

Error value Description
DNS BUFFER _INVALID Invalid use of a shared buffer.

DNS_CONNECTION_BUSY The connection is busy and the requested
operation cannot be completed. The DNS
endpoint to which you sent the message may
aready be processing another request.

DNS CONNECTION_CLOSED The connection has been closed.

DNS FAIL The operation failed (no more information is
available).

DNS HOST_NOT_FOUND No bind information could be found for the
provided host name.

DNS INDEX_INVALID The specified index does not exist.
DNS NO_DATA No data record exists for the requested type.
DNS _NO_RECOVERY A non-recoverable error occurred.

DNS OPERATION_INVALID The requested operation is not alowed in the
current state.

DNS_OPERATION_UNKNOWN
The requested operation was not recognized by

the DNS endpoint.

DNS _SUCCESS Operation succeeded.

DNS TRY_AGAIN The requested host was not found, or the server
request failed.

71 OPEN-R Internet Protocol Version4

DNSEndpointBaseMsg

Definition

struct DNSEndpointBaseMsg: public antEnvMsg
DNSEndpointError error;

};

Description
Defines the base message for all DNS network operation requests.

Requests for specific network services are sent in messages inherited from
DNSEndpointBaseM sg, and are described later in this chapter.

Parameters
error (out) Returns the result of the operation.

Seealso
DNSEndpointSetServerAddressesMsg,
DNSEndpointGetServerAddressesMsg,
DNSEndpointSetDefaultDomainNameMsg,
DNSEndpointGetDefaultDomainNameMsg,

DNSEndpointGetHostByNameMsg, DNSEndpointGetHostByAddrMsg,
DNSEndpointGetAddressMsg, DNSEndpointGetAliasMsg,
DNSEndpointCloseMsg

|
OPEN-R Internet Protocol Version4 72

DNSEndpointSetServerAddressesMsg

Definition

DNSEndpointSetServerAddressesMsg(
int nscount,
IPAddress addrList[MAXNS]

);

Description
Register a list of DNS servers that the object will use for resolving domain names
and IP addresses.

The list identifies the DNS servers by their |P addresses. After this list is registered,
queries will be sent to the serversin the order they appear in the list.

DNSEndpointSetServerAddressesM sg is inherited from DNSEndpointBaseM sg.

Parameters
nscount (in) The number of IP addresses to register.

addrListfMAXNSY] (in) Thelist of IP addressesto register.

Returned value
See “DNS error” for a description of the possible DNS error codes.

See also
DNSEndpointBaseMsg, DNSEndpointGetServerAddressesMsg,
antSharedBuffer

|
73 OPEN-R Internet Protocol Version4

DNSEndpointGetServerAddressesMsg

Definition

DNSEndpointGetServerAddressesMsg(
int nscount,
IPAddress addrList [MAXNS]

);

Description
Get alist of the DNS servers used by the object for resolving domain names and 1P
addresses.

The list identifies the DNS servers by their |P addresses. The addresses must have
been set previously by DNSEndpointSetServerAddressesM sg.

DNSEndpointGetServerAddressesM sg is inherited from DN SEndpointBaseM sg.

Parameters
nscount (out) The number of registered |P addresses.

addrListfMAXNS] (out) Thelist of 1P addresses.

Returned value
See “DNS error” for a description of the possible DNS error codes.

Seealso
DNSEndpointBaseMsg, DNSEndpointSetServerAddressesMsg,
antSharedBuffer

|
OPEN-R Internet Protocol Version4 74

DNSEndpointSetDefaultDomainNameMsg

Definition

DNSEndpointSetDefaultDomainNameMsg(
char name[MAXDNAME]

);

Description
Sets the default domain name for an object.

After the default domain name is registered, the name will automatically be added to
all host names that are not fully qualified.

DNSEndpointSetDefaultDomainNameMsg is inherited from DNSEndpointBaseM sg.

Parameters
name[MAXDNAME] (in) The default domain name. This name must be null-
terminated.

Returned value
See “DNS error” for adescription of the possible DNS error codes.

See also
DNSEndpointBaseMsg, DNSEndpointGetDefaultDomainNameMsg,
antSharedBuffer

|
75 OPEN-R Internet Protocol Version4

DNSEndpointGetDefaultDomainNameMsg

Definition

DNSEndpointGetDefaultDomainNameMsg(
char name[MAXDNAME]

);

Description
Gets the default domain name for an object.

The domain name must have been set previously by
DNSEndpointSetDefaultDomainNameM sg.

DNSEndpointGetDefaultDomainNameM sg is inherited from
DNSEndpointBaseM sg.

Parameters
name[MAXDNAME] (out) The default domain name. This name is null-
terminated.

Returned value
See “DNS error” for adescription of the possible DNS error codes.

Seealso
DNSEndpointBaseMsg, DNSEndpointSetDefaultDomainNameMsg,
antSharedBuffer

|
OPEN-R Internet Protocol Version4 76

DNSEndpointGetHostByNameMsg

Definition

DNSEndpointGetHostByNameMsg(
char name[MAXDNAME],
IPAddress server_address,
IPAddress host_address,
int n_address,
int n_alias

):

Description

Get alist of IP addresses and domain name aliases for the host specified by domain
name.

Thislist, called a host entry, will contain:

O Theaddress of the DNS server that returned the host entry.

O The first IP address in the list (the official address), and a count of the total
number of | P addresses for the host.

O The first domain name in the list (the official domain name), and a count of the
total number of domain name aliases for the host.

If you want to get a different |P address or one of the domain name aiases, you must
request them specificaly. For details, see DNSEndpointGetAddressMsg and
DNSEndpointGetAliasMsg.

DNSEndpointGetHostByNameMsg isinherited from DNSEndpointBaseM sg.

Parameters

name[MAXDNAME] (in/out) The domain name of the host for which you want
to get an entry. The domain name must be null-terminated.
If you specify a domain name alias, this parameter will
return the official domain name of the host.

server_address (out) The IP address of the DNS server that sent the host
entry.
host_address (out) The IP address of the host.

If the host has more than one IP address, this parameter
returns the first | P address.

n_address (out) The number of | P addresses for the host.

n_alias (out) The number of domain name aliases for the host.
Returned value

See “DNS error” for adescription of the possible DNS error codes.

See also

DNSEndpointBaseMsg, DNSEndpointGetHostByAddrMsg,
DNSEndpointGetAddressMsg, DNSEndpointGetAliasMsg,
antSharedBuffer

77 OPEN-R Internet Protocol Version4

DNSEndpointGetHostByAddrMsg

Definition

DNSEndpointGetHostByAddrMsg(
IPAddress host_address,
IPAddress server_address,
char name[MAXDNAME],
int n_address,
int n_alias

):

Description

Get a list of IP addresses and domain name aliases for the host specified by IP
address.

Thislist, called a host entry, will contain:

O Theaddress of the DNS server that returned the host entry.

O The first IP address in the list (the official address), and a count of the total
number of | P addresses for the host.

O Thefirst domain name in the list (the official domain name), and a count of the
total number of domain name aliases for the host.

If you want to get a different |P address or one of the domain name aliases, you must
request them specificaly. For details, see DNSEndpointGetAddressMsg and
DNSEndpointGetAliasMsg.

DNSEndpointGetHostByAddrMsg is inherited from DNSEndpointBaseM sg.

Parameters

host_address (infout) The IP address of the host. This parameter returns
the first IP address of the host, even if you specify a
different IP address in the original message.

server_address (out) The IP address of the DNS server that sent the host

entry.

name[MAXDNAME] (out) The official domain name of the host. The domain
name s null-terminated.

n_address (out) The number of | P addresses for the host.

n_alias (out) The number of domain name aliases for the host.
Returned value

See “DNS error” for a description of the possible DNS error codes.

Seealso

DNSEndpointBaseMsg, DNSEndpointGetHostByNameMsg,
DNSEndpointGetAddressMsg, DNSEndpointGetAliasMsg,
antSharedBuffer

|
OPEN-R Internet Protocol Version4 78

DNSEndpointGetAddressMsg

Definition

DNSEndpointGetAddressMsg(
int index,
IPAddress address

);

Description
Get aregistered | P address for the specified host.

Notes
Before you perform this operation, you must have already received the host entry.
For details, see DNSEndpointGetHostByNameM sg or

DNSEndpointGetHostByAddrM sg.

DNSEndpointGetAddressMsg is inherited from DNSEndpointBaseM sg.

Parameters

index (in) The index of the IP address that you want to get.
This index must be less than the value of n_address, returned in
DNSEndpointGetHostByNameMsg or
DNSEndpointGetHostByAddrMsg when the host entry was
received earlier. A value of O returns the first |P address in the host
entry list.

address (out) The IP address at |ocation index in the host entry.

Returned value

See “DNS error” for a description of the possible DNS error codes.

Seealso

DNSEndpointBaseMsg, DNSEndpointGetHostByNameMsg,
DNSEndpointGetHostByAddrMsg, DNSEndpointGetAliasMsg,
antSharedBuffer

|
79 OPEN-R Internet Protocol Version4

DNSEndpointGetAliasMsg

Definition

DNSEndpointGetAl iasMsg(

int index,

);

char name[MAXDNAME]

Description

Get adomain name alias for the specified host.

Notes

Before you perform this operation, you must have already received the host entry.

For details,

see DNSEndpointGetHostByNameM sg or

DNSEndpointGetHostByAddrM sg.

DNSEndpointGetAliasMsg is inherited from DNSEndpointBaseM sg.

Parameters

index (in) The index of the domain name aias that you want to
get.
This index must be less than the value of n_alias, returned
in DNSEndpointGetHostByNameM sg or
DNSEndpointGetHostByAddrMsg when the host entry
was received earlier. A value of O returns the officia
domain name of the host.

name[MAXDNAME] (out) The domain name aias at location index in the host
entry.

Returned value

See “DNS error” for adescription of the possible DNS error codes.

See also

DNSEndpointBaseMsg, DNSEndpointGetHostByNameMsg,

DNSEndpointGetHostByAddrMsg, DNSEndpointGetAddressMsg,

antSharedBuffer

OPEN-R Internet Protocol Version4

80

DNSEndpointCloseMsg

Definition

DNSEndpointCloseMsg();

Description
Close aDNS endpoint.

After sending this message, the object can no longer send or receive data. The
endpoint will reply when the connection has been fully closed.
DNSEndpointCloseMsg isinherited from DNSEndpointBaseM sg.

Returned value
See “DNS error” for a description of the possible DNS error codes.

Seealso
DNSEndpointBaseMsg

|
81 OPEN-R Internet Protocol Version4

10 IP reference

This chapter describes the 1P messages that an object sends to the IPStack to request
network services. All messages are inherited from | PEndpointBaseM sg.

IP errors

Table 20 describes the errors that can be returned by any of the messages in this
chapter. The possible error values are defined in the IPEndpointError enumerated

type.

When your object requests a network operation and receives a reply from its IP
endpoint, it should examine the request's eror field (for example,
| PEndpointBindMsg.error).

Table 20 |PEndpointError

Error value Description

IP_BUFFER_INVALID Invalid use of a shared buffer.

IP_CONNECTION_BUSY The connection is busy and the requested
operation cannot be completed. The IP endpoint
to which you sent the message may aready be
processing another request.

IP_CONNECTION_CLOSED The connection has been closed.

IP_FAIL The operation failed (no more information is
available).

IP_INVALID_PROTOCOL The specified protocol identifier is not valid.

IP_OPERATION_INVALID The requested operation is not allowed in the
current state.

IP_OPERATION_UNKNOWN The requested operation was nhot recognized by
the | P endpoint.

IP_PACKETSIZE The specified packet sizeisincorrect.

IP_SUCCESS Operation succeeded.

|
OPEN-R Internet Protocol Version4 82

IP packet types

A number of different packets can be sent and received by an IP endpoint, as
described in Table 21.

Notes
Normal 1P packets are type IP_DATA. The other types are for ICMP packets.

Table 21 IP packet types

Packet type Description
IP_DATA Normal |P data.
IP_ HOST_UNREACHABLE (ICMP packet) The host cannot be reached.
IP_MESSAGE TOO LONG (ICMP packet) The message was too long or
could not be fragmented somewhere during the

transmission.

IP_ NETWORK_UNREACHABLE
(ICMP packet) The network cannot be reached.

IP_PORT_UNREACHABLE (ICMP packet) The requested port could not be
reached.

IP_PROTOCOL_UNREACHABLE
(ICMP packet) The requested protocol is not
available on the target host.
IP_TIME_EXCEEDED (ICMP packet) Packet reassembly timed out.

IP_ TTL_EXCEEDED (ICMP packet) TTL of packet has expired during transit.

83 OPEN-R Internet Protocol Version4

IPEndpointBaseMsg

Member

IPEndpointBaseMsg(
IPEndpointError error

):

Description
Defines the base message for all 1P network operation requests.

Requests for specific network services are sent in messages inherited from
| PEndpointBaseM sg, and are described later in this chapter.

Parameters
error (out) Returns the result of the operation.

Returned value
See“IPerror* for adescription of the possible IP error codes.

Seealso
IPEndpointBindMsg, IPEndpointSendMsg, IPEndpointReceivelMsg,
IPEndpointCloseMsg

OPEN-R Internet Protocol Version4 84

IPEndpointBindMsg

Member

IPEndpointBindMsg(
Protocol protocol

);

Description
Bind an endpoint to a particular protocol.

All packets sent and received by the object over this endpoint will be identified as
originating from the specified protocol.

The endpoint will reply to this message when the protocol has been bound and IP
packets can be sent and received.

| PEndpointBindMsg is inherited from |PEndpointBaseM sg.

Notes

It is not possible to bind an endpoint to the TCP or UDP protocols, which have
dready been bound in the protocol stack. If attempted, the error
IP_INVALID_PROTOCOL will be returned.

However, it is possible to bind an endpoint to ICMP. ICMP will process al
packets that it recognizes, as usual, but will forward al unidentified packets to the
endpoint that you have bound.

Parameters

protocol (in) The protocol to bind to the endpoint. Each protocol is identified
by an integer with a value less than 256.

Returned value

See“IPerror” for a description of the possible IP error codes.

Seealso
IPEndpointBaseMsg

|
85 OPEN-R Internet Protocol Version4

IPEndpointSendMsg

Member

IPEndpointSendMsg(
IPPacketType type,
byte* buffer,
int size

);

Description
Send an | P packet.

Any data that your object sends to the protocol stack must be stored in a shared
memory buffer, defined by the antSharedBuffer structure. The IP endpoint replies to
this message when the data has been copied from the shared buffer into the |PStack
internal memory buffers.

| PEndpointSendMsg is inherited from | PEndpointBaseM sg.

Parameters

type (in) Thetype of packet being sent.
Normal IP packets are of type IP_DATA. See “Ip Packet types’ for
descriptions of all available packet types.

buffer (in) Thelocation (in a shared buffer) where the packet being sent is stored.

size (in) The size of the packet being sent, in bytes.

Returned value
See“IPerror” for adescription of the possible IP error codes.

Seealso
IPEndpointBaseMsg, antSharedBuffer

OPEN-R Internet Protocol Version4 86

IPEndpointReceiveMsg

Member

UDPEndpointReceiveMsg(
IPPacketType type,
byte* buffer,
int size

);

Description

Receive an | P packet.

Any data that your object receives from the protocol stack is stored in a shared
memory buffer, defined by the antSharedBuffer structure. The IP endpoint replies to
this message when the data has been copied into the shared buffer. The size
parameter returns the actual number of bytes received. If the received packet is too
big for the shared buffer, only part of the packet will be stored in the buffer. The
error IP_PACKETSIZE error will be returned.

| PEndpointReceiveMsg isinherited from | PEndpointBaseM sg.

Parameters

type (out) Thetype of packet received.
Normal IP packets are of type IP_DATA. See “IP packet types’ for
descriptions of all available packet types.

buffer (in) The location (in a shared buffer) where the packet being received should
be stored.

size (in/out) Specifies the maximum number of bytes to receive. When the
receive operation has completed and the endpoint has replied to the object,
this parameter returns the actual number of bytes that were received. If the
packet being received is too big for the shared buffer, only part of the packet
will be stored in the buffer. The error IP_PACKETSIZE error will be
returned.

Returned value
See “IPerror” for adescription of the possible IP error codes.

See also
IPEndpointBaseMsg, antSharedBuffer

|
87 OPEN-R Internet Protocol Version4

IPEndpointCloseMsg

Member

IPEndpointCloseMsg();

Description

Close the IP connection.

After sending this message, the object can no longer send or receive data. The
endpoint will reply when the connection has been fully closed.

| PEndpointCloseM sg is inherited from | PEndpointBaseM sg.

Returned value
See“IPerror” for a description of the possible IP error codes.

Seealso
IPEndpointBaseMsg

|
OPEN-R Internet Protocol Version4 88

Glossary

ANT environment

The ANT environment is the object in the OPEN-R system layer that offers
networking services to objects. It communicates through normal message passing. It
communicates directly with OPEN-R device drivers that exchange data over the
physical network.

datagram
A term for packet in the UDP protocol.

Domain Name System (DNS)
A protocol that runs on top of the UDP layer in the IPv4 protocol stack. It offers
services for setting, getting, and translating Internet domain names and | P addresses.

endpoint
A construct in the ANT environment that communicates with objects. Endpoints
communicate with OPEN-R objects via message passing.

Objects have one endpoint for each open network connection. Endpoints are created
dynamically at run time when the object requires a new network connection. Objects
send requests for new endpoints to endpoint factories, which create the endpoints.

ephemeral port number
See port number.

I nternet Protocol (1P)

A network protocol that is responsible for transmitting packets over the network. In
the IPv4 protocol stack, IP is the bottom layer. Typically, objects do not
communicate directly with IP. Instead, they open connections with layers on top of
IP, such as TCP or UDP. However, some objects may be able to use the IP layer
directly. For example, if you want to add new protocols without programming in the
ANT environment, you can write the protocols as objects that communicate directly
with the IP layer.

Internet Protocol version 4 (I Pv4) protocol stack
A protocol stack in the ANT environment that offers the following network
protocols: TCP, UDP, DNS, and IP.

packet
A unit of datathat is sent over aphysical network.

port number

A number that identifies a specific software process on a host or server. Some
processes, such as FTP, are assigned permanent port numbers. These are called well-
known port numbers. Some port numbers are assigned to processes temporarily for
the duration of a network connection. These are called ephemeral port numbers.

SDU (service data unit)

The basic data container in the ANT environment. An SDU is a pointer to a series of
data cellsin an SDU pool. SDUs carry the data that is being sent over the network—
called protocol data units (PDUSs) in the OSI standard.

SDU pool

A memory buffer inside the ANT environment, which stores the data that is
processed by the protocol stack. The ANT environment allocates service data units
(SDUs) inside SDU pools.

shared memory buffer

89 OPEN-R Internet Protocol Version4

A structure that maps a shared memory area into the address spaces of your object
and the protocol stack. When your object exchanges data with the protocol stack, the
dataisidentified by a pointer to the shared buffer and an offset in the buffer.

Transmission Control Protocol (TCP)
Runs on top of the IP protocol. It provides a connection-oriented, reliable, byte
stream service.

User Datagram Protocol (UDP)
Runs on top of the IP protocol. It provides objects with an unreliable datagram
delivery service.

OPEN-R Internet Protocol Version4 0

	taku_20030127_InternetProtocolVersion4_E.pdf
	Notes on This Document
	Notes on Using This Document
	Notes on Copyright
	About Trademarks

	About this book
	Part1 IPv4 Programmer’s Guide
	1 Introduction to the IPv4 protocol stack
	1.1 Protocols in the IPv4 protocol stack
	1.2 The IPv4 protocol stack
	1.3 How your object communicates with the protocol stack
	Creating new endpoints
	Creating shared memory buffers
	Requesting network services

	2 TCP guide
	2.1 TCP
	TCP network operations
	TCP endpoint life cycle

	2.2 Creating a TCP endpoint
	2.3 Establishing a connection (client side)
	2.4 Listening for connection requests (server side)
	2.5 Sending data
	2.6 Receiving data
	2.7 Closing a connection
	Active close
	Passive close
	Abort

	2.8 TCP echo client example

	3 UDP guide
	3.1 Introduction to UDP on OPEN-R
	UDP network operations
	UDP endpoint life cycle

	3.2 Creating a UDP endpoint
	3.3 Binding an endpoint
	3.4 Setting foreign connection parameters (Optional)
	3.5 Sending data
	3.6 Receiving data
	3.7 Closing an endpoint
	3.8 UDP echo server example

	4 DNS guide
	4.1 Introduction to DNS
	DNS network operations
	DNS endpoint life cycle

	4.2 Creating a DNS endpoint
	4.3 Setting and getting an object’s DNS servers
	4.4 Setting and getting an object’s default domai
	4.5 Getting a host entry
	Getting an entry by domain name
	Getting an entry by IP address

	4.6 Getting a host’s IP address
	4.7 Getting a host’s domain name alias
	4.8 Closing an endpoint
	4.9 DNS client example

	5 IP Guide
	5.1 Introduction to IP
	IP network operations
	IP endpoint life cycle

	5.2 Creating an IP endpoint
	5.3 Binding an endpoint
	5.4 Sending data
	5.5 Receiving data
	5.6 Closing an endpoint
	5.7 IP ping example

	Part2 IPv4 Reference
	6 ANT environment reference
	antEnvCreateEndpointMsg
	antEnvCreateEndpointMsg::antEnvCreateEndpointMsg()

	antEnvCreateSharedBufferMsg
	antEnvCreateSharedBufferMsg::antEnvCreateSharedBufferMsg()

	antSharedBuffer
	antSharedBuffer::Map()
	antSharedBuffer::UnMap()
	antSharedBuffer::GetAddress()
	antSharedBuffer::GetSize()

	7 TCP reference
	TCP errors
	TCPEndpointBaseMsg
	TCPEndpointConnectMsg
	TCPEndpointListenMsg
	TCPEndpointSendMsg
	TCPEndpointReceiveMsg
	TCPEndpointCloseMsg

	8 UDP reference
	UDP errors
	UDPEndpointBaseMsg
	UDPEndpointBindMsg
	UDPEndpointConnectMsg
	UDPEndpointSendMsg
	UDPEndpointReceiveMsg
	UDPEndpointCloseMsg

	9 DNS reference
	DNS errors
	DNSEndpointBaseMsg
	DNSEndpointSetServerAddressesMsg
	DNSEndpointGetServerAddressesMsg
	DNSEndpointSetDefaultDomainNameMsg
	DNSEndpointGetDefaultDomainNameMsg
	DNSEndpointGetHostByNameMsg
	DNSEndpointGetHostByAddrMsg
	DNSEndpointGetAddressMsg
	DNSEndpointGetAliasMsg
	DNSEndpointCloseMsg

	10 IP reference
	IP errors
	IP packet types
	IPEndpointBaseMsg
	IPEndpointBindMsg
	IPEndpointSendMsg
	IPEndpointReceiveMsg
	IPEndpointCloseMsg

	Glossary

