
1

Computational
Geometry for
the Tablet PC

CSE 481b
Lecture 17

Announcements

Thursday, March 2
ABET Program
review

Give important
feedback on the
program
Free Donuts!

Overview

Computational
Geometry on the
Tablet PC
Geometric primitives
Intersections
Polygons
Convexity
Voronoi Diagram

Tablet Geometry

Basic structure –
Stroke: sequence of
points

Himetric coordinates
Sampled 150 times
per second

Coordinates stored in
an array Points

Computational Geometry

Algorithms for geometric computation
Numerical issues with coordinates
Importance of degenerate cases

Examples of degenerate cases
Three lines intersecting at a point
Segments overlapping
Three points co-linear

Basic geometry

Point
p

Line segment
(p1, p2)

Distance
Dist(p1, p2)

Basic Test
LeftOf(p1, p2, p3)
CCW(p1, p2, p3)

p1

p1

p3

p2

p2

p

2

Counter Clockwise Test

CCW(p1, p2, p3)

public static bool CcwTest(Point p1, Point p2, Point p3){
int q1 = (p1.Y - p2.Y)*(p3.X - p1.X);
int q2 = (p2.X - p1.X)*(p3.Y - p1.Y);
return q1 + q2 < 0;

}

p1

p2

p3

Segment intersection

Find intersection of (p1,p2) and (p3,p4)
Q = αp1 + (1-α)p2

Q = βp3 + (1-β)p4

Solve for α, β
Two equations, two unknowns
Intersect if 0 < α < 1 and 0 < β < 1

Derived points
In general, try to avoid computing derived points
in geometric algorithms

Problem
Determine if two line segments (p1, p2) and (p3,p4)
intersect just using CCW Tests

Student
Submission

Making intersection test more
efficient

Take care of easy cases
using coordinate
comparisons

Only use CCW tests if
bounding boxes
intersect

Computing intersections

How many self intersections can a
single stroke with n points have?

Student
Submission

Segment intersection
algorithm
Run time O(nlog n + Klog n) for finding K intersections
Sweepline Algorithm

3

1

2

4

5

6

7

3

Sweepline Algorithm
Event queue

Start Segment (S2)
End Segment (E2)
Intersection (I2,4)

Move sweepline to next
event
Maintain vertical order
of segments as line
sweeps across

Start Segment
Insert in list
Check above and below
for intersection

End Segment
Remove from list
Check newly adjacent
segments for intersection

Intersection
Reorder segments
Check above and below
for intersection

Sweepline example
3

1

2

4

5

6

7

Activity: Identify when each of
the intersections is detected

A

B

C

D

E

F

Student
Submission

Polygons

Sequence of points representing a
closed path
Simple polygon – closed path with no
self intersections

Describe an algorithm to test
if a point q is in a polygon P Polygon inclusion test

Is the point q inside the Polygon P?

4

Convexity

Defn: Set S is convex if whenever p1,
and p2 are in S, the segment (p1, p2) is
contained in S

Convex polygons

P = {p0, p1, . . . pn-1}
P is convex if

CCW(pi, pi+1, pi+2) for all i
Interpret subscripts mod n
Also holds for CW (depending on how points
are ordered)

Problem: Test if a point q is inside a
convex polygon P using CCW Tests

Student
Submission

Convex hull

Smallest enclosing
convex figure
Rubber band
“algorithm”

Compute the Convex Hull

Student
Submission

Algorithms

Convex hull algorithms: O(nlog n)
Related to sorting

Insertion algorithm
Gift Wrapping (Jarvis’s march)
Divide and Conquer
Graham Scan

5

Convex Hull Algorithms
Gift wrapping Divide and Conquer

Graham Scan

Polar sort the points around a point
inside the hull
Scan points in CCW order

Discard any point that causes a CW turn
If CCW advance
If !CCW, discard current point and back up

Polar sort the red points around q
(Start with p, number the points in CCW
order)

pq

Student
Submission

Graham Scan Algorithm

Stack of vertices
Possible hull vertices
z – next vertex
y – top of stack
x – next on stack

If CCW(x, y, z)
Push(z)

If (! CCW(x, y, z))
Pop stack

x
y

z

z

y

x

GS Example to walk through

6

Student submission: Give order
vertices are discarded in the scan

p

Student
Submission

Voronoi Diagram

Given a set of points: subdivide space
into the regions closest to each point

Compute the Voronoi Diagram

Student
Submission

Algorithms for Computing the
Voronoi

