Computational
Geometry for
* the Tablet PC

CSE 481b
Lecture 17

2 Announcements

= Thursday, March 2

= ABET Program
review
= Give important
feedback on the
program
= Free Donuts!

Mmm...Donuts!

1 Overview

= Computational
Geometry on the
Tablet PC

= Geometric primitives
= Intersections

= Polygons

= Convexity

= Voronoi Diagram

3 Tablet Geometry

= Basic structure —
Stroke: sequence of
points
= Himetric coordinates

= Sampled 150 times
per second

= Coordinates stored in
an array Points

Computational Geometry

= Algorithms for geometric computation
= Numerical issues with coordinates
= Importance of degenerate cases

= Examples of degenerate cases
= Three lines intersecting at a point
= Segments overlapping
= Three points co-linear

3 Basic geometry

= Point o,
=p
= Line segment o
= (pll pz) ke
= Distance
= Dist(p;, p,)
= Basic Test
= LeftOf(p, Py P3)
= CCW(pll P2, p3)

:‘ Counter Clockwise Test

s CCW(py, Py P3)

public static bool CcwTest(Point p1, Point p2, Point p3){
int gl = (p1.Y - p2.Y)*(p3.X - p1.X);
int g2 = (p2.X - p1.X)*(p3.Y - pL.Y);
returngql + g2 < 0;

oP:

P3

:-’ Segment intersection

= Find intersection of (p;,p,) and (ps,Ps)
= Q=ap; + (l-a)p,
= Q= Bp; + (1-p)p,
= Solve for a, B
= Two equations, two unknowns
= Intersectif0<a<land0<p<1
= Derived points

= In general, try to avoid computing derived points
in geometric algorithms

!-‘ Problem

= Determine if two line segments (p,, p,) and (ps,p,)
intersect just using CCW Tests

!-‘ Computing intersecg(;\n{\

= How many self intersections can a
single stroke with n points have?

Making intersection test more

!-’ efficient /

= Take care of easy cases
using coordinate
comparisons

= Only use CCW tests if
bounding boxes
intersect

Segment intersection

!-’ algorithm

= Run time O(nlog n + Klog n) for finding K intersections
= Sweepline Algorithm

3 Sweepline Algorithm

= Event queue = Start Segment
= Start Segment (S,) = Insertin list
= End Segment (E,) = Check above and below
= Intersection (I,,) for intersection
= Move sweepline to next = End Segment
event = Remove from list

= Check newly adjacent

= Maintain vertical order !)
segments for intersection

of segments as line h
sweeps across = Intersection
= Reorder segments
= Check above and below
for intersection

i_SweepIine example

R4

Activity: Identify when each of
i the intersections is detected

3 Polygons

= Sequence of points representing a
closed path

= Simple polygon — closed path with no
self intersections

Describe an algorithm to test

3 if a point g is in a polygon P

3 Polygon inclusion test

= Is the point q inside the Polygon P?

:‘ Convexity

= Defn: Set S is convex if whenever p,,
and p, are in S, the segment (p,, p,) is
contained in S

:-’ Convex polygons

=P = {pOI pll L] Pn.l}
= P is convex if
= CCW(p;, Pisys Piso) for all i
= Interpret subscripts mod n

= Also holds for CW (depending on how points
are ordered)

Problem: Test if a point q is inside a
convex polygon P using CCW Tests

!-‘ Compute the Convex Hull
® @
) @
PY @
@ @
() @
@
(]
@
@ @

!-’ Convex hull

= Smallest enclosing
convex figure

= Rubber band
“algorithm”

!-’ Algorithms

= Convex hull algorithms: O(nlog n)
= Related to sorting

= Insertion algorithm

= Gift Wrapping (Jarvis's march)

= Divide and Conquer

= Graham Scan

Convex Hull Algorithms

:‘ Gift wrapping

:’ Divide and Conquer

@
e ! Y [A]
.:‘. ® ® o [/
e
) ®e °q
[1 o
1
@ | [
° e ° o ¢ g
1
1
H [
[/
®gq
¢ 9

!-‘ Graham Scan

= Polar sort the points around a point
inside the hull

= Scan points in CCW order

= Discard any point that causes a CW turn
» If CCW advance
= If ICCW, discard current point and back up

Polar sort the red points around q
(Start with p, number the points in CCW

i order)

@
® @
) @
@ ® ?
q
@ @
]
@
@
) @

Graham Scan Algorithm

= Stack of vertices
= Possible hull vertices y
= Z — next vertex
= y — top of stack
= X — next on stack

= If CCW(X, Y, 2)

= Push(z) .\./.-.
= If (! CCW(X, Y, 2)) z *
y

= Pop stack

Student submission: Give order
vertices are discarded in the scan

¢
1
\®
Y
‘\ Y o
DTS .-
LN ‘ -
N (-4
[SURNTIES
J et Y
I 1 e "
S SOS~. 0 T Tl
@ NN -e
e ® -
// \\\
s S
e (]

!-’ Voronoi Diagram

= Given a set of points: subdivide space
into the regions closest to each point

Algorithms for Computing the

‘_-’ Voronoi

