
The RISC-V 
psABI



The RISC-V psABI Sam Elliott 21/05/2020

Who am I?

2

Senior Software Engineer and 
Software Team Lead at lowRISC 

Former UW PhD Student 

Contributor to: 

• LLVM's RISC-V Backend 

• RISC-V psABI



The RISC-V psABI Sam Elliott 21/05/2020 3

Who are lowRISC?



The RISC-V psABI Sam Elliott 21/05/2020 4



The RISC-V psABI Sam Elliott 21/05/2020

This Lecture

5

• What is an ABI? 

• The RISC-V psABI 

• Embedded Systems 

• Running Programs 

• A New Embedded ABI?



The RISC-V psABI Sam Elliott 21/05/2020 6

Let's talk APIs



The RISC-V psABI Sam Elliott 21/05/2020

What is an ABI?

7

The essence of APIs: 

Meaning of an Interface 

An ABI is another kind of API 

Application Binary Interface 

A Set of Conventions About: 

• Representation of Values 

• Where to Locate Items 

• How to Achieve Actions



The RISC-V psABI Sam Elliott 21/05/2020 8

Why Do We Need ABIs?

Compiler A

Compiler B

Compiler



The RISC-V psABI Sam Elliott 21/05/2020 9

The RISC-V psABI



The RISC-V psABI Sam Elliott 21/05/2020 10

Where Does The ABI Matter?

Types!

Symbols! Calling Conventions!



The RISC-V psABI Sam Elliott 21/05/2020 11

How Ibex Sees That C Code



The RISC-V psABI Sam Elliott 21/05/2020

Types!

12

How Do We Represent Values? 

Major Decisions 

• Sizes 

• Signed Values 

• Alignment 



The RISC-V psABI Sam Elliott 21/05/2020 13

Type Conventions

ILP32 LP64
64-Bit32-Bit

int 
long 

pointer

long 
pointer



The RISC-V psABI Sam Elliott 21/05/2020 14

"Implementation-Defined" and "Undefined"
The RISC-V ELF psABI is a supplement for 

• the System-V ABI (including ELF) 

• the DWARF Specification 

• the Linux Standards Base 

… but it also re-uses work: 

• the IA32 psABI (x86) 

• the MIPS psABI 

• the Itanium C++ ABI for IA-64 (Exception Handling)



The RISC-V psABI Sam Elliott 21/05/2020 15

Calling Conventions
IA-32: All Arguments (and Return Address) are Passed on the Stack. 

Why? Only 8 32-bit Registers, some with specific uses. (Stack Pointer uses one) 

x86-64: First Arguments in 6 Registers, Rest on Stack 

Why? 16 64-bit Registers 

RISC-V: First Arguments in 8 Registers, Rest on Stack, Return Address in Register 

Why? 32 General Purpose Registers 

Extra Complexity: Floating Point



The RISC-V psABI Sam Elliott 21/05/2020 16

Calling Convention in Action



The RISC-V psABI Sam Elliott 21/05/2020 17

Stack Management
RISC-V psABI dedicates one register to point to current stack 

Interrupts have to respect this convention 

Lots of details here are up to Compiler 

However: C-extension was Co-designed with the Conventions



The RISC-V psABI Sam Elliott 21/05/2020 18

Finding Functions



The RISC-V psABI Sam Elliott 21/05/2020 19

Finding Functions



The RISC-V psABI Sam Elliott 21/05/2020 20

Code Models
Monolithic Embedded Images: 

• All Addresses Known At Static-Link Time 

• Still Allows Relative References 

Linux Objects (With Virtual Memory): 

• Relative Offsets Known for Both Code and Data 

• Inter-Object References Require GOT or PLT 



The RISC-V psABI Sam Elliott 21/05/2020 21

Finding Globals



The RISC-V psABI Sam Elliott 21/05/2020 22

Linker Relaxation
Do we always need (for example) the upper 20 bits? 

• No 

• However we only know this at link time. 

Linker Relaxation is Peephole Optimisation, using 
information only the Linker knows. 



The RISC-V psABI Sam Elliott 21/05/2020 23

Linker Relaxation 1



The RISC-V psABI Sam Elliott 21/05/2020 24

Linker Relaxation 2



The RISC-V psABI Sam Elliott 21/05/2020 25

Linker Relaxation 3



The RISC-V psABI Sam Elliott 21/05/2020 26

Linker Relaxation
Helps Code Size: ~5% Savings 

Mostly Deletes Instructions 

Realigns Instructions 

Can Compress Instructions



The RISC-V psABI Sam Elliott 21/05/2020 27

Program Loading
On Linux: 

• OS sets up user-space memory map, GOT 

• User-space process does some self-initialization 

• Inter-Object calls may need runtime loading 

On Embedded Systems: 

• The bootloader has to do everything 

• No memory map 



The RISC-V psABI Sam Elliott 21/05/2020 28

Embedded Loading + C Runtime Library
Lots of things need to happen before main can run 

• Initialise Data Section 

• Zero Uninitialised Data Section 

• Initialise Registers (Stack Pointer, Arguments) 

• C++ Static Constructors 

Relatedly, after main returns 

• C's atexit, C++ Static Destructors 



The RISC-V psABI Sam Elliott 21/05/2020

Further Details

29

Things I haven't talked about: 

- Interrupt Handlers 

- Dynamic Loading 

- Syscalls and the GNU/Linux ABI 

- Floating Point 

- Debug and Unwind Information



The RISC-V psABI Sam Elliott 21/05/2020

Future of the psABI

30

Embedded PIC 

• Function Descriptor PIC 

• ROPI/RWPI 

64-bit Compact Code Model 

Fast Interrupts Working Group



The RISC-V psABI Sam Elliott 21/05/2020 31

Want to run multiple instances of the same application 

It's inefficient to load the code and data each time for each process 

We want to share the code between the processes 

No Virtual Memory, so data for separate processes has to be at different addresses 

No longer a fixed offset between data and code 

Instead, we use GP to help represent this offset 

FDPIC supports multiple objects, so each object has its own GP 

Embedded PIC



ROPI/RWPI takes a slightly different approach to FDPIC. 

No Dynamic Loading, no GOT, no PLT. 

Read-Only vs Read-Write is slightly misleading. 

Access to Code and Shared Data is PC-relative. 

Access to Private Data is GP-relative. 

Single GP, so no change to Register Convention.

The RISC-V psABI Sam Elliott 21/05/2020 32

ROPI/RWPI for RISC-V



The RISC-V psABI Sam Elliott 21/05/2020 33

Further Reading
• Linkers and Loaders by John R. Levine 

• SiFive Blog Post on Linker Relaxation



The RISC-V psABI Sam Elliott 21/05/2020

This Lecture

34

• An ABI is 

• The RISC-V psABI 

• Embedded Systems 

• Running Programs 

• A New Embedded ABI 

Any Questions?


