The RISC-V
psABI

Z2lowRISC

Whoam |?

Senior Software Engineer and

Software Team Lead at lowRISC

Former UW PhD Student

Contributor to:
e LLVM's RISC-V Backend
« RISC-V psABI

P e | seae | e | @esc 2

Who are lowRISC?

@

IP Repository
foundations

Specification
foundations

=

Commercial

2

lowRISC

Open source

community

-

R\

Academia

Engineers

A.a
A O
o
aletn 0,
o

The RISC-V psABI

Sam Elliott

21/05/2020

22 lowRISC

Al
L

opentltan

This Lecture
« Whatis an ABI?

« The RISC-V psABI

« Embedded Systems

» Running Programs

A New Embedded ABI?

P e | seae | e | @eesc 5

@ Python » English

Previous topic
Introduction

Next topic
Built-in Constants

This Page

Report a Bug
Show Source

Let's talk APIs

B 383 B Documentation » The Python Standard Library »

Built-in Functions

The Python interpreter has a number of functions and types built into it that are always available. They

are listed here in alphabetical order.

abs() delattr()
all() dict()
any() dir()
ascii() divmod()
bin() enumerate()
bool() eval()
breakpoint() exec()
bytearray() filter()
bytes() float()
callable() format()
chr() frozenset()
classmethod() getattr()
compile() globals()
complex() hasattr()
abs(x)

Return the absolute value of a number. The argument may be an integer or a floating point num-
ber. If the argument is a complex number, its magnitude is returned. If x defines

abs(x) returns x.__abs__ ().

all(iterable)

Built-in Func-
tions

hash()
help()

hex()

id()

input()
int()
isinstance()
issubclass()
iter()

len()

list()
locals()
map()

max()

memoryview()
min()
next()
obiject()
oct()
open()
ord()
pow()
print()
property()
range()
repr()
reversed()

round()

Go | previous | next | modules | index

set()
setattr()
slice()
sorted()
staticmethod()
str()

sum()

super()
tuple()

type()

vars()

zip()

__dmport__ ()

Return True if all elements of the iterable are true (or if the iterable is empty). Equivalent to:

def all(iterable):
for element in iterable:
if not element:
return False
return True

any(iterable)

Return True if any element of the iterable is true. If the iterable is empty, return False. Equivalent

to:

def any(iterable):
for element in iterable:
if element:
return True
return False

_abs__ (),

Docs~ Blog

REST API v3

Overview

This describes the resources that make up the official GitHub REST API v3. If you have any
problems or requests, please contact GitHub Support or GitHub Premium Support.

i. Current version
il. Schema
iii. Authentication
iv. Parameters
v. Root endpoint
vi. GraphQL global node IDs
vii. Client errors
viii. HITP redirects

x. Hypermedia
xi. Pagination
xii. Rate limiting
xiii. User agent required
xiv. Conditional requests
xv. Cross origin resource sharing
xvi. JSON-P callbacks
xvii. Timezones

Current version

By default, all requests to https://api.github.com receive the v3 version of the REST API. We
encourage you to explicitly request this version via the Accept header.

Accept: application/vnd.github.v3+json

For information about GitHub's GraphQL API v4, see the v4 documentation. For information about
migrating to GraphQL, see "Migrating from REST."

Schema

All API access is over HTTPS, and accessed from https://api.github.com . All data is sent and
received as JSON.

curl =i https://api.github.com/users/octocat/orgs

Forum Versions ~

Reference Guides Libraries

¥ Overview
Media Types
OAuth Autherizations API
Other Authentication Methods
Troubleshooting
API Previews
Versions

F Activity

» Checks

Code Scanning

> Gists

> Git Data

> GitHub Actions

» GitHub Apps

GitHub Marketplace

v

Interactions

v

Issues

v

Migrations

v

Miscellaneous

v

Organizations

v

Projects

v

Pull Requests

v

Reactions

v

Repositories

v

Search

v

Teams
SCIM

F Users

API Status: good

ascii(object)
. As repr(), return a string containing a printable representation of an object, but escape the non-
ASCII characters in the string returned by repr() using \x, \u or \U escapes. This generates a
string similar to that returned by repr() in Python 2.

(@)

bin(x)
Convert an integer number to a binary string prefixed with “0b”. The result is a valid Python ex-
pression. If x is not a Python int object, it has to define an __index__ () method that returns an
integer. Some examples:

Blank fields are included as null instead of being omitted.

All timestamps return in ISO 8601 format:
>>> bin(3)
'0b1l’

The RISC-V psABI sam Elliott 21/05/2020 Z2IowRISC

What is an ABI?

The essence of APls:

Meaning of an Interface

An ABI is another kind of API

Application Binary Interface

A Set of Conventions About:
» Representation of Values
« Where to Locate Items

« How to Achieve Actions

Why Do We Need ABIs?

N2176 C17 ballot ISO/TEC 9899:2017

INTERNATIONAL STANDARD ©ISO/IEC ISO/IEC9899:2017

er: N4861
2020-04-01
N4849

[]
Richard Smith l
Googl'e Ine) I e r
Programming languages — C exxeditor@gmail com () I I l I)

(cover sheet to be replaced by ISO)

The RISC-V Instruction Set Manual
Volume I: Unprivileged ISA
Document Version 20190608-Base-Ratified

This is a working document of SC22/WG14 ogramming
This version of the document is intended to be the version that is to go into ballot for C17.

— Itis based on the transformed IfIpXversion of the document that has been proofread by the
members of WG14 and that has been approved by teleconference in June 2017.

— Itapplies all TCs of closed DRs up to April 2017.
— Itapplies the changes that have been voted in Markham. .

([]
— It updates some normative references.
— It provides the minimal changes required for a new version of the standard. O I ' l p I e r -1

— Itintegrates some editorial changes that had been found during the revision process.

Editors: Andrew Waterman', Krste Asanovié'?
1SiFive Inc.,
2CS Division, EECS Department, University of California, Berkeley
andrew@sifive.com, krste@berkeley.edu
June 8, 2019

A brief explanation of the changes could still be added to the foreword.

Document conventions

This document classifies identifiers into different categories. This categorization is important to
produce a correct index.

The classes are

— Normal identifiers, toto.

— keywords, while
— symbols with external linkage of the C library, malloc
— types, size_t

[]
— predefined macros that alias language features, complex
— other predefined macros, EOF O I I l p I (r

— pragmas and their particles, STDC
— tag names and members of struct, union or enum, tv_sec

— name fragments, usually reserved prefixes, atomic_

kt, and it has lots of bad
fomatting.

The RISC-V psABI Sam Elliott 21/05/2020 lowRISC 8

The RISC-V psABI
RISC-V ELF psABI specification

Table of Contents

1. Register Convention
o |nteger Register Convention

o Floating-point Register Convention

2. Procedure Calling Convention
o |nteger Calling Convention

o Hardware Floating-point Calling Convention
o |[LP32E Calling Convention

o Named ABIs

o Default ABls

3. Ctype details
o C type sizes and alignments

o C type representations

o va_list, va_start, and va_arg

The RISC-V psABI sam Elliott 21/05/2020 Z2IowRISC

typedef struct mem_region {
char* base_addr;
unsigned length;

} mem_region_t;

Symbols! Calling Conventions!

%
extern char mem_region_read(mem region_t region, unsigned offset) {

if (offset < region.length) {
return region.base_addr[offset];
} else {
return '\0';
}
}

ctext
.globl mem_region_read

mem_region_read:
bgeu a2, al, 1f
add a0, a0, a2
lbu a0, 0(a0)
jalr zero, 0(ra)

mv ald, zero
jalr zero, 0(ra)

>

; ad := 0
s+ jump to (ra + 0)

> al, jump to 1 (forwards)
; a0 := ab + a2

s a0 := load (a0 + 0)
s+ jump to (ra + 0)

Types!

How Do We Represent Values?

Major Decisions

e Sizes

» Signed Values

 Alignment

P necme | seae | e | @eesc 0

Type Conventions

32-Bit 64-Bit

ILP32 LP64

iInt long
long pointer
pointer

TTTTTTT -V psABI Sam Elliott

21/05

/2020

Z2IowRISC | 13

"Implementation-Defined” and "Undefine
The RISC-V ELF psABI is a supplement for

» the System-V ABI (including ELF

(informative)
Portability issues o fo o
1 ';'lt;izdzr:gtax collects some information about portability that appears in this International [t h e D W A R F S p e C I fl C a t I O n

J.1 Unspecified behavior
1 The following are unspecified:
— The manner and timing of static initialization (5.1.2). ° t h e L i n u X Sta n d a rd S B a S e
— The termination status returned to the hosted environment if the return type of main
is not compatible with int (5.1.2.2.3).

— The values of objects that are neither lock-free atomic objects nor of type volatile
sig atomic t and the state of the floating-point environment, when the
processing of the abstract machine is interrupted by receipt of a signal (5.1.2.3).

— The behavior of the display device if a printing character is written when the active

position is at the final position of a line (5.2.2). e but it alSO re_uses WO rk:

— The behavior of the display device if a backspace character is written when the active
position is at the initial position of a line (5.2.2).

— The behavior of the display device if a horizontal tab character is written when the
active position is at or past the last defined horizontal tabulation position (5.2.2).

— The behavior of the display device if a vertical tab character is written when the active o t e I A ; 2 p S A B I X 8 6
position is at or past the last defined vertical tabulation position (5.2.2).

— How an extended source character that does not correspond to a universal character
name counts toward the significant initial characters in an external identifier (5.2.4.1).

— Many aspects of the representations of types (6.2.6). ° t h M I P f A B I
— The value of padding bytes when storing values in structures or unions (6.2.6.1). e p S
— The values of bytes that correspond to union members other than the one last stored

into (6.2.6.1).

— The representation used when storing a value in an object that has more than one

. o\ e the Itanium C++ ABI for IA-64 (Exception Handling

— The values of any padding bits in integer representations (6.2.6.2).

- — Whether certain operators can generate negative zeros and whether a negative zero
- * becomes a normal zero when stored in an object (6.2.6.2).

Portability issues §J.1

The RISC-V psABI sam Elliott 21/05/2020 Z2IowRISC

Calling Conventions

|IA-32: All Arguments (and Return Address) are Passed on the Stack.

Why? Only 8 32-bit Registers, some with specific uses. (Stack Pointer uses one)

x86-64: First Arguments in 6 Registers, Rest on Stack
Why? 16 64-bit Registers

RISC-V: First Arguments in 8 Registers, Rest on Stack, Return Address in Register

Why? 32 General Purpose Registers
Extra Complexity: Floating Point

The RISC-V psABI

Sam Elliott

21/05/2020

22 lowRISC

15

mem_region_read:
bgeu a2, a1, 1f » if a2 = a1, jump to 1 (forwards)
add a0, a0, a2 + a0 := ad + a2
lbu a0, 0(a0) : a0 &
jalr zero, 0(ra) ; jump

typedef struct mem_region {
char* base_addr;
unsigned length;

. a0 := } mem_region_t;

mv a@, zero

jalr zero, 0(ra) ; jump
extern char mem_region_read(mem region_t region, unsigned offset) {

if (offset < region.length) {
return region.base_addr[offset];
} else {
return '\0';
}
}

Stack Management

RISC-V psABI dedicates one register to point to current stack

Interrupts have to respect this convention

Lots of details here are up to Compiler

However: C-extension was Co-designed with the Conventions

The RISC-V psABI Sam Elliott 21/05/2020 22 lowRISC

lui ra, %hi(mem_region_read)

R RISCV HI20(mem region read)
jalr ra, %lo(mem_region_read)(ra)
R _RISCV L0012 I(mem_region_read)

label:
auipc ra, %pcrel _hi(mem_region_read)

R RISCV PCREL _HI20(mem region read)

jalr ra, %pcrel_lo(label)(ra)
R RISCV PCREL L012 I(label)

Code Models

Monolithic Embedded Images:
o All Addresses Known At Static-Link Time

o Still Allows Relative References

Linux Objects (With Virtual Memory):
» Relative Offsets Known for Both Code and Data
» Inter-Object References Require GOT or PLT

The RISC-V psABI

Sam Elliott

21/05/2020

22 lowRISC

20

label:
auipc a0, %got_pcrel_hi(global)
R _RISCV GOT PCREL _HI2o0(global)

lw a0, %pcrel_lo(label)(a0)
R RISCV PCREL L012 I(label)
lw a0, 0(a0)

Linker Relaxation

Do we always need (for example) the upper 20 bits?
 NO

« However we only know this at link time.

Linker Relaxation is Peephole Optimisation, using
information only the Linker knows.

The RISC-V psABI

Sam Elliott

21/05/2020

22 lowRISC

22

lui ra, %hi(mem_region_read)

R _RISCV HI20(mem _region_read)
jalr ra, %lo(mem_region_read)(ra)

R RISCV L0O12 I(mem_region _read)

jalr ra, %lo(mem_region_read)(zero)
R _RISCV L0012 I(mem_region_read)

label:
auipc ra, %pcrel_hi(mem_region_read)
R RISCV PCREL HI20(mem region read)
jalr ra, %pcrel_lo(label)(ra)
R RISCV PCREL L012 I(label)

jal ra, %pcrel_jal(mem_region_read)
R RISCV JAL(mem region read)

label:
auipc a0, %got_pcrel_hi(global)
R _RISCV GOT PCREL_HI20(global)
lw a0, %pcrel_lo(label)(a0)
R RISCV PCREL L012 I(label)
lw a0, 0(a0)

lw a0, %gprel _lo(global)(gp)
R _RISCV GPREL I(global)

Linker Relaxation
Helps Code Size: ~5% Savings

Mostly Deletes Instructions
Realigns Instructions

Can Compress Instructions

The RISC-V psABI

Sam Elliott

21/05/2020

22 lowRISC

26

Program Loading

On Linux:

« OS sets up user-space memory map, GOT

» User-space process does some self-initialization
» Inter-Object calls may need runtime loading

On Embedded Systems:

» The bootloader has to do everything

« NOo memory map

The RISC-V psABI Sam Elliott 21/05/2020 22 lowRISC

Embedded Loading + C Runtime lerary

Lots of things need to happen before main can run
e |nitialise Data Section

 Zero Uninitialised Data Section

o Initialise Registers (Stack Pointer, Arguments)
 C++ Static Constructors

Relatedly, after main returns

 C's atexit, C++ Static Destructors

The RISC-V psABI

Sam Elliott

21/05/2020

22 IowRISC

28

Further Details

Things | haven't talked about:

- Interrupt Handlers
- Dynamic Loading

- Syscalls and the GNU/Linux ABI

N
N

- Floating Point

N
. "

Debug and Unwind Information

Future of the psABI

Embedded PIC

« Function Descriptor PIC
« ROPI/RWPI
64-bit Compact Code Model

Fast Interrupts Working Group

P necme | seae | e | @eesc o

Embedded PIC

Want to run multiple instances of the same application

It's inefficient to load the code and data each time for each process

We want to share the code between the processes

No Virtual Memory, so data for separate processes has to be at different addresses

No longer a fixed offset between data and code
Instead, we use GP to help represent this offset

FDPIC supports multiple objects, so each object has its own GP

The RISC-V psABI

Sam Elliott

21/05/2020

@IOWRISC

31

ROPI/RWPI for RISC-V

ROPI/RWPI takes a slightly different approach to FDPIC.

No Dynamic Loading, no GOT, no PLT.
Read-Only vs Read-Write is slightly misleading.
Access to Code and Shared Data is PC-relative.

Access to Private Data is GP-relative.

Single GP, so no change to Register Convention.

The RISC-V psABI

Sam Elliott

21/05/2020

&) IowRISC

32

Further Reading

o Linkers and Loaders by John R. Levine

» SiFive Blog Post on Linker Relaxation

J O H N

LEVINE

Linkers

| / -
. ." -~
. e :
. o :
' > -

The RISC-V psABI

Sam Elliott

21/05/2020

22 lowRISC

33

This Lecture
« An ABl s

» The RISC-V psABI

« Embedded Systems

» Running Programs

« ANew Embedded ABI

Any Questions?

