
Xkvisor
Bryan Yue, Omeed Magness, Sandip Samantaray, Edward Matsushima, Bernard Kim

University of Washington
{byue, omag01, sandip80, edwarm4, kimb0128}@cs.washington.edu

ABSTRACT
This paper introduces xkvisor, an extension to the

monolithic, POSIX-like, teaching operating system xk

[1]. Xkvisor defines the interface to allow customizable,

lightweight guest operating systems1 to be run from user

mode.

In this paper, the focus is on two features of xkvisor that

we have implemented2. The first feature is the virtual

memory (VM) interface, which exposes a way for a guest

operating system to request physical pages from xkvisor

and interface with the application's page table. The guest

OS is expected to use this interface to create and manage

other user process within its isolation domain. The second

feature we discuss is system call redirection, which allows

a system call from a guest OS user application delivered

to xkvisor (via the normal syscall instruction) to be

forwarded to and handled by a guest OS running as a

background process. Importantly, these system calls can

be handled by the guest OS asynchronously via the use of

a syscall buffer and sleeping application processes.

These features are made possible by adding the notion of

“privileged system calls” (which are made by a guest OS

to xkvisor to request physical resources) and a “universal

syscall,” which the guest OS user process can use to make

system calls to xkvisor that redirect to the corresponding

guest OS. We’ve found that both features provide a

reasonable way to run a simplistic guest OS, which

creates a user process through the VM interface, and then

1 A “lightweight guest OS” is similar to a guest OS in the virtual

machine setting because it can start and manage processes, but

different in that it is not a goal for the guest to be able to run

on standalone hardware. Our guest OS is built on top of some

high-level host OS abstractions and is more like a container

(isolated collection of applications) where the (syscall)

interface exposed to the applications inside the container is

defined by the container.

2 xkvisor is a group undergraduate research project led by

Professor Tom Anderson and graduate students Danyang Zhuo

and Matthew Rockett. The group is broken into multiple

subgroups that are working on different parts of the project

(e.g. one group working on user-level threads, one on the disk

interface, etc.). This paper will focus on the subgroup of the

authors of this paper, which is the virtual memory system.

responds to syscalls from that user process via the syscall

redirection mechanism.

1. INTRODUCTION
Many operating systems in use today impose strict

abstractions on user processes running on that system,

such as fixed ways of doing inter-process communication,

file I/O, etc. For some operating system designs (e.g.

monolithic), this can cause some (or all) of those high-

level abstractions to be implemented in the kernel, which

can make the kernel a performance bottleneck, and

certainly will increase kernel code size and thus decrease

confidence in kernel correctness. It would be ideal to push

some of these abstractions up to user space, because this

would mean less code is running in full CPU privileged

mode. Some kernel designs already do this to some extent

(e.g. microkernels).

In a monolithic kernel, these fixed abstractions decrease

customizability from the user perspective. It can

sometimes be beneficial for an application to have direct

access to hardware features or exposure to a different

abstraction, or different level abstraction. For example,

some performance-critical applications (e.g. databases,

language runtime garbage collectors) can make

optimizations if given low-level hardware access, and

other applications might prefer still high-level, but

slightly different, abstractions (e.g. a Windows

application running on Linux looking for the Win32 API).

Xkvisor tries to solve this problem by pushing all the

high-level operating system functions into a guest OS,

and, from the host, only exposing a very low-level API

that focuses on mediating access to the hardware,

allocating and isolating physical resources, and

redirecting communication between the guest OS and its

applications. This leaves the management policies and

higher-level abstractions for the guest to implement in

user space. The goal is to simplify the interface, allow

customizability, and limit machine-dependence as much

as possible.

This paper focuses on the virtual memory interface and

system call redirection in xkvisor. Section 2 will provide

some background on microkernels, since our design is a

modified microkernel design. Section 3 presents a

detailed explanation of our design and implementation.

Section 4 discusses challenges we ran into during

implementation. Section 5 presents results of this project

(primarily design results). Section 6 mentions related

work. Section 7 concludes.

2. BACKGROUND ON MICROKERNELS
In a microkernel, the goal is to move functionality to user

space to minimize the kernel. The kernel retains only low-

level abstractions, and the rest of the kernel is now a

collection of user-level services, grouped by function (e.g.

a file system process, network stack process, graphics

handling process, etc.). Microkernels can also expose

multiple APIs, as in the case of Windows NT (which

provides OS/2, POSIX, Win32, etc. APIs).

Microkernels handle system calls by forwarding to the

appropriate user process. For example, the kernel might

forward a file write system call to its user space “file

system process.”

Microkernels also provide many benefits over traditional

monolithic kernels. As mentioned earlier, the kernel code

base (code running in privileged CPU mode) can be

smaller, because some work is being delegated to

unprivileged, user-level processes. Multi-level (multi-

API) microkernels also provide some amount of

customizability because user processes can pick the

appropriate API from a couple options.

Xkvisor’s design is like a microkernel, except that it

doesn’t have multiple user-level processes. For now, the

guest OS is a single process that just supports a few

simple system calls. Once the xkvisor project is fully

integrated across subgroups, it is likely that there will be

multiple user-level processes representing a guest OS.

Additionally, xkvisor does not limit the user-facing

interface to be a few built-in choices. Xkvisor exposes a

low-level API that any custom guest OS can be

implemented on top of, and that guest can expose the

abstractions it would like.

3. DESIGN AND IMPLEMENTATION
In xkvisor’s interface, guest operating systems are each

simply a generic user-level process. What this means is

that there is no existing abstraction in xk (which has a

limited POSIX interface) for a user-level process to be

managing another process’ page table. To add support for

this, we introduced privileged system calls, system calls

which expose a lower-level abstraction than a typical

syscall, and which are meant only for a guest operating

system to call.

This is enforced by a special bit in the process metadata to

indicate that process is a guest OS and can make

privileged system calls. Our convention is that we preface

privileged system call names with ‘g’ to indicate that they

are intended for a guest OS to call.

We will now discuss two features of xkvisor: the virtual

memory system (resource allocation), and system call

redirection.

3.1 Resource Allocation
At a high level, for a guest OS to run a guest user process,

it needs to create a process, map some memory into that

process’s address space, and schedule the process.

This requires some privileged instructions (e.g. mov to

%cr3 to load in a page table of a process it is attempting to

schedule), so xkvisor exposes these privileged steps as

privileged system calls.

Xkvisor uses two key data structures to track which guest

operating systems have control of specific resources.

One key data structure is the physical memory map inside

of each guest OS’s process metadata (recall that each

guest OS is just a user process). This is a map of physical

page number to page state – 0 for not owned, 1 for owned,

or 2 for owned and in use by an application. The physical

page number (PPN) is the index into the physical memory

map. A guest OS can get back a copy of this data

structure from the host OS via a gquery_user_pages

privileged system call.

The second data structure xkvisor uses is a process table

map. This is just a mapping from process id to a memory

segment struct, which indicates if a user process is owned

by a guest OS, and if so, what the base, midpoint, and

bound virtual addresses are (used for the stack and heap

virtual address boundaries).

There are two copies of each of these maps. One copy is

for the guest OS to modify/read, and one copy is inside

xkvisor for security purposes. Although our privileged

system calls that modify xkvisor's maps will also modify

the guest OS maps via a return parameter, it is the

responsibility of the guest OS to properly manage its copy

of these maps.

We currently abstract xkvisor's underlying host process

structs as process IDs for the guest OS to use when

creating a user application process. This is obviously not

ideal and will be reworked once we implement fork and

exec at user level and expose privileged system calls for

the guest OS to control scheduling itself. In future work,

the guest OS will have its own representation of a process

and will make a privileged system call to schedule this in.

Given these data structures, a guest OS can create a

process with the privileged syscall interface:

// Get a process from the host OS with the
// given virtual address description. Updates
// the guest OS’s process map as well. Returns
// a pid for the new process.
int grequest_proc(struct app_va_segment
*proc_map, uint64_t base, uint64_t midpoint,
uint64_t bound);

// Loads the executable ELF from the given file
// into the given process’s code segment.
int gload_program(int pid, char *path);

// Finishes setting up a process with the given
// arguments (primarily puts the args on the
// process’s user stack).
int gdeploy_program(struct syscall_message
*args);

// Returns the process with given pid back to
// the host OS for reclamation.
int greturn_proc(int pid);

// Copies the host’s physical memory map to the
// guest OS stack.
int gquery_user_pages(uint8_t *page_map);

// Adds a mapping in the given process’
// page table to point to the given physical
// page with the given flags.
int gaddmap(int app_pid, int host_ppn, uint64_t
va, int app_present, int app_writeable);

// Removes the mapping in the given process’
// page table with the given virtual address.
int gremovemap(int app_pid, uint64_t va);

// Updates the flags on the existing mapping in
// the given process’ page table.
int gupdate_flags(int app_pid, uint64_t va, int
app_present, int app_writeable);

The typical workflow a guest OS would go through to

create a process looks like the following:

1. A call to grequest_proc, where a guest OS passes in

its copy of the process map. This is a little awkward

and will be fixed in future version, but for now, both

the guest OS and host keep a copy of the process

state map discussed earlier, and it is the responsibility

of the guest OS to maintain it. In addition to the

process map, the guest OS also provides a base

virtual address, midpoint, and bound, and the host OS

creates a process in its own process table to represent

the guest user process (with the given virtual address

bounds).

2. A call to gload_program to load the executable

(ELF) code from a given file on disk into a given

guest user process code region.

3. A call to gdeploy_program to finish setting up a

process with the given arguments. The process will

be scheduled after a call to gresume sets the process

to be “runnable” (see section 3.2)

At any point during the lifecycle of a process, the guest

OS uses gaddmap, gremovemap, and gupdate_flags to

update the page table of its guest user process (for now,

all page table updates are done individually through this

interface, but eventually we want to batch these updates).

All page tables are currently kept in kernel memory, so

these privileged syscalls are necessary for a guest OS to

modify a page table.

Xkvisor will check that each of these attempted page

mappings are operating on physical pages belonging to

the guest OS, as determined by the page map in the

process's metadata (note how xkvisor is not doing any

memory management logic for the guest process, just

verification that the operation is legal). These calls must

be used to add pages to a guest user process’ stack and

heap, which start out empty.

Because xkvisor verifies all page table operations from

the guest OS, it’s safe for guest user process page tables

to map from virtual to physical (i.e. no Vt-X “Extended

Page Tables” or shadow page tables are needed). Xkvisor

is mapped in the top of each guest OS’s address space

(user process and guest OS) at address KERNBASE, but

guest operating systems are not mapped into their user

processes, since both the guest user process and guest OS

are at ring 3 (lowest privilege level), and this would

require special care to protect guest OS memory.

In order for the guest OS to be able to access user process

memory, user process stack/heap pages are mapped in

both the guest OS and user process page tables at the

same virtual address for the same physical pages (Fig. 1a,

Fig. 1b). The stack/heap boundary is set at 3G, with the

heap growing up to the bound value of 4G, and the stack

growing down to the base value of 2G. The guest OS can

specify these boundaries when the user process is being

initialized. With several user processes per guest OS, this

design is not viable since the maximum memory usage for

the user process is not known ahead of time and having

set boundaries for the virtual address space is not flexible.

Adjusting this design is future work.

Fig. 1a: Guest OS Virtual Address Space

Guest OS Proc VA

Xkvisor
KERNBASE

3G

2G

0

App Heap

App Stack

Guest OS code

Guest app
memory

Guest OS
memory

Stack

Heap

4G

Fig. 1b: Guest OS User Process Virtual Address Space

When a guest OS is done with a process, it can return it to

xkvisor to reclaim the resources via the greturn_proc

call.

For now, each guest OS is statically assigned a certain

number of physical pages to allocate for use in user

applications. Eventually we want to allow the guest OS to

request for more physical pages or return extra pages.

3.2 System Call Redirection
The other major feature we will discuss in this report is

system call redirection, through which a guest user

process can make a system call to another background

guest OS.

Syscalls are a bit tricky to handle synchronously because

both the guest user and guest OS are just normal xkvisor

processes, which can be interrupted any point. We want

syscalls to be asynchronous, but also need to guarantee

that a guest user process that makes a syscall is not

rescheduled before its guest OS has finished handling the

syscall. We achieve this by putting the current process to

sleep on a syscall and guarantee that it is not awoken until

its corresponding guest OS handles the system call.

There is also the question of how to communicate the

syscall information if syscalls are asynchronous. Our

solution was to make a struct representing a syscall,

which holds the syscall index (defined by the guest OS),

arguments, current proc pid and pointer to the next struct.

Xkvisor will add one of these new syscall “message”

structs to the end of a linked list of structs for a guest OS,

and the guest OS can read from the front and handle a

syscall whenever it is scheduled in.

Syscall redirection is implemented by the following:

On guest syscall:

1. Wake up guest OS process

2. Add a syscall message to its syscall buffer

3. Put guest user process to sleep

When guest OS is rescheduled:

1. Reads the next entry from its syscall message buffer or

sleeps (atomically) if there are no syscalls

2. Handles a syscall

3. Wakes up originating user process

This means that the main part of the guest OS can just be

the simple while loop:

while (1) {
 gnext_syscall(…)
 // handle syscall
 gresume(…)
}

With these two privileged system calls:

// Consumes the next system call from the
// kernel process metadata and places it in the
// given syscall message OR puts this process
// to sleep if there are no syscalls waiting to
// be handled.
int gnext_syscall(struct syscall_message
*message);

// Sets the process with given pid to runnable
// (so it will be scheduled again).
int gresume(int pid);

Note that it is critical for gnext_syscall to atomically

put the guest OS to sleep if necessary, otherwise there

could be dirty read concurrency issues.

As an optimization, rather than having xkvisor being

aware of each of guest OS’ syscalls (e.g. awrite, aread,

afork, etc.), we made a universal syscall meant for the

guest OS and then it is up to the guest OS to determine

which syscall was intended through the syscall index:

int app_syscall(int syscall_index, struct
arg*);

So to walk through an example of the control flow of

syscall redirection for two apps, “guest test” (guest user

process) and “guest os”:

1. User application process makes a write system call

intended for the guest OS with

app_syscall(WRITE, args)

a. Trap into xkvisor

b. Add syscall message to guest OS buffer

c. Put guest user process to sleep

d. Wake up guest OS

Guest App Proc VA

Xkvisor
KERNBASE

3G

0

App Heap

App Stack

App Code

Guest app
memory

2G

4G

e. Yield to scheduler; eventually get

rescheduled in guest OS

2. Guest OS does a gnext_syscall

a. Trap into xkvisor

b. Xkvisor consumes syscall message and

copies to guest OS (the ‘awrite’),

c. Return to guest OS

3. Guest OS handles awrite

4. Guest OS does a gresume on user application

a. Trap into xkvisor

b. Xkvisor sets user application process to

“runnable”

c. Return to guest OS

5. Guest OS does a gnext_syscall

a. Trap into into xkvisor

b. Syscall message buffer is now empty, so

xkvisor puts guest OS to sleep

6. User application process eventually gets scheduled

and continues executing, with its syscall completed

Note that the significance of this redirection is on step 3,

where the guest OS can now implement awrite however

it wants, and the code for write can be removed from

xkvisor, shrinking the size of the kernel.

4. CHALLENGES
During the implementation of these two features of

xkvisor, we ran into many challenges along the way. We

originally spent a while creating a great design and were

trying to implement xkvisor in big chunks. When we

attempted to do so, there was too many tasks to complete

without a clear direction and it was tough to get runnable

code.

After a suggestion from one of our research mentors, we

decided to work on xkvisor incrementally. With this new

strategy, we intentionally began with simpler designs and

gradually tried to scale up towards our final design. As a

result, we have a working version, but it is not the original

design we wanted. We learned that this is the best

possible way to go, because details in the design will

change based on new challenges that are faced, and

having a runnable version is important for providing

directions for next steps.

Besides gaining more technical knowledge of

microkernels, the most important takeaway was learning

the iterative design approach and taking small steps

towards the goal. For example, when dealing with

deadlock issues between the shell/user application/guest

OS processes, we decided to first handle just the guest OS

and shell, and once the shell worked, we added the

application process and resolved additional deadlock

issues that arose. Implementing in large chunks ended up

being terrible for momentum, correctness, and

productivity.

5. RESULTS
The main result we got out of this project was the design

of what we think is a reasonable virtual memory interface

for a container/guest OS to use to create and communicate

with its own guest user processes. We made many

simplifications along the way but think that our prototype

implementation also demonstrated that there was promise

in our design.

In particular, we believe we’ve shown that asynchronous

redirection of syscalls with sleeping/waking processes is

viable via a simple interface and that a physical memory

map page leasing scheme is reasonable as well. We have

pushed some of memory management logic to the guest

OS and will continue to transfer functionality from

xkvisor to the guest OS.

While xkvisor's design can still be improved a lot, we've

laid the groundwork for a simple interface with all the

essentials needed for the guest OS to implement

management logic tailored to the application's specific

needs. As the design continues to evolve, additional

features will be added if necessary, but simplicity will still

be a goal as most of the management logic should be

implemented in the guest OS.

6. RELATED WORK
For xkvisor, we heavily built off ideas from Exokernel,

trying to push all the high-level operating system

functions into a guest OS, and making the operating

system expose a very low-level API that focuses on just

protecting (but not managing) the hardware. Although our

project is inspired by Exokernel, we have made many

simplifications to it, such as abandoning the mechanism

for a library OS to download code into the kernel, and not

forwarding interrupts to a guest OS.

We also are using some ideas from the Xen microkernel

[2] – in particular, we are following the design of a

introducing “hypercalls” (really privileged system calls

for us) for a paravirtualized OS to use. We are also

requiring all page table update operations to go through

xkvisor. We have abandoned some of the more complex

aspects of the Xen design, such as the circular buffers for

data transfer (I/O rings) and the usage of x86 ring 1 to

isolate the guest OS. In addition, we borrowed Xen's idea

of having the guest OS be aware of the physical page

numbers to avoid additional translations via shadow page

tables.

7. CONCLUSIONS
In this paper, we presented xkvisor, an operating system

which provides a guest OS abstraction to user processes

and provides some privileged system calls for these guest

OS processes to make in order to request resources. The

VM interface and syscall redirection system demonstrate

that these two features are viable even with a simple

design.

In the future, we would like to add additional

functionalities to this prototype by allowing more than

one guest user process, allowing more than on guest OS,

and providing a more robust VM interface. We’d also like

to expose synchronization to user level and implement

multiprocessing there to remove the dependency on the

underlying xkvisor scheduler and process table. In

addition, we want to implement page fault redirection via

a trap message buffer (similar to our syscall buffer) to

reduce the time spent transitioning between user and

kernel mode. All these additions will be iteratively

accomplished in small steps.

REFERENCES
[1] T. Anderson, D. Zhuo, M. Rockett. et. al. xk

(“Experimental Kernel”). University of Washington.

2017 - present.

[2] P. Barham, B. Dragovic, H. Fraser, S. Hand, T.

Harris, A. Ho, R. Neugebauer, I. Pratt, and A.

Warfield. Xen and the Art of Virtualization. In SOSP,

2003.

[3] D. Engler, M. F. Kaashoek, and J. O’Toole Jr.

Exokernel: an operating system architecture for

application-level resource management. In

Proceedings of the Fifteenth ACM Symposium on

Opearting System Principles, pages 251-266, 1995.

