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ABSTRACT 
This paper introduces xkvisor, an extension to the 

monolithic, POSIX-like, teaching operating system xk 

[1]. Xkvisor defines the interface to allow customizable, 

lightweight guest operating systems1 to be run from user 

mode. 

 

In this paper, the focus is on two features of xkvisor that 

we have implemented2. The first feature is the virtual 

memory (VM) interface, which exposes a way for a guest 

operating system to request physical pages from xkvisor 

and interface with the application's page table. The guest 

OS is expected to use this interface to create and manage 

other user process within its isolation domain. The second 

feature we discuss is system call redirection, which allows 

a system call from a guest OS user application delivered 

to xkvisor (via the normal syscall instruction) to be 

forwarded to and handled by a guest OS running as a 

background process. Importantly, these system calls can 

be handled by the guest OS asynchronously via the use of 

a syscall buffer and sleeping application processes. 

 

These features are made possible by adding the notion of 

“privileged system calls” (which are made by a guest OS 

to xkvisor to request physical resources) and a “universal 

syscall,” which the guest OS user process can use to make 

system calls to xkvisor that redirect to the corresponding 

guest OS. We’ve found that both features provide a 

reasonable way to run a simplistic guest OS, which 

creates a user process through the VM interface, and then 

                                                           

 

1 A “lightweight guest OS” is similar to a guest OS in the virtual 

machine setting because it can start and manage processes, but 

different in that it is not a goal for the guest to be able to run 

on standalone hardware. Our guest OS is built on top of some 

high-level host OS abstractions and is more like a container 

(isolated collection of applications) where the (syscall) 

interface exposed to the applications inside the container is 

defined by the container. 

2 xkvisor is a group undergraduate research project led by 

Professor Tom Anderson and graduate students Danyang Zhuo 

and Matthew Rockett. The group is broken into multiple 

subgroups that are working on different parts of the project 

(e.g. one group working on user-level threads, one on the disk 

interface, etc.). This paper will focus on the subgroup of the 

authors of this paper, which is the virtual memory system. 

responds to syscalls from that user process via the syscall 

redirection mechanism. 

 

1. INTRODUCTION 
Many operating systems in use today impose strict 

abstractions on user processes running on that system, 

such as fixed ways of doing inter-process communication, 

file I/O, etc. For some operating system designs (e.g. 

monolithic), this can cause some (or all) of those high-

level abstractions to be implemented in the kernel, which 

can make the kernel a performance bottleneck, and 

certainly will increase kernel code size and thus decrease 

confidence in kernel correctness. It would be ideal to push 

some of these abstractions up to user space, because this 

would mean less code is running in full CPU privileged 

mode. Some kernel designs already do this to some extent 

(e.g. microkernels). 

 

In a monolithic kernel, these fixed abstractions decrease 

customizability from the user perspective. It can 

sometimes be beneficial for an application to have direct 

access to hardware features or exposure to a different 

abstraction, or different level abstraction. For example, 

some performance-critical applications (e.g. databases, 

language runtime garbage collectors) can make 

optimizations if given low-level hardware access, and 

other applications might prefer still high-level, but 

slightly different, abstractions (e.g. a Windows 

application running on Linux looking for the Win32 API).   

 

Xkvisor tries to solve this problem by pushing all the 

high-level operating system functions into a guest OS, 

and, from the host, only exposing a very low-level API 

that focuses on mediating access to the hardware, 

allocating and isolating physical resources, and 

redirecting communication between the guest OS and its 

applications. This leaves the management policies and 

higher-level abstractions for the guest to implement in 

user space. The goal is to simplify the interface, allow 

customizability, and limit machine-dependence as much 

as possible.  

This paper focuses on the virtual memory interface and 

system call redirection in xkvisor. Section 2 will provide 

some background on microkernels, since our design is a 

modified microkernel design. Section 3 presents a 

detailed explanation of our design and implementation. 

Section 4 discusses challenges we ran into during 

implementation. Section 5 presents results of this project 



(primarily design results). Section 6 mentions related 

work. Section 7 concludes. 

2. BACKGROUND ON MICROKERNELS 
In a microkernel, the goal is to move functionality to user 

space to minimize the kernel. The kernel retains only low-

level abstractions, and the rest of the kernel is now a 

collection of user-level services, grouped by function (e.g. 

a file system process, network stack process, graphics 

handling process, etc.). Microkernels can also expose 

multiple APIs, as in the case of Windows NT (which 

provides OS/2, POSIX, Win32, etc. APIs). 

 

Microkernels handle system calls by forwarding to the 

appropriate user process. For example, the kernel might 

forward a file write system call to its user space “file 

system process.”  

 

Microkernels also provide many benefits over traditional 

monolithic kernels. As mentioned earlier, the kernel code 

base (code running in privileged CPU mode) can be 

smaller, because some work is being delegated to 

unprivileged, user-level processes. Multi-level (multi-

API) microkernels also provide some amount of 

customizability because user processes can pick the 

appropriate API from a couple options. 

 

Xkvisor’s design is like a microkernel, except that it 

doesn’t have multiple user-level processes. For now, the 

guest OS is a single process that just supports a few 

simple system calls. Once the xkvisor project is fully 

integrated across subgroups, it is likely that there will be 

multiple user-level processes representing a guest OS. 

 

Additionally, xkvisor does not limit the user-facing 

interface to be a few built-in choices. Xkvisor exposes a 

low-level API that any custom guest OS can be 

implemented on top of, and that guest can expose the 

abstractions it would like. 

 

3. DESIGN AND IMPLEMENTATION 
In xkvisor’s interface, guest operating systems are each 

simply a generic user-level process. What this means is 

that there is no existing abstraction in xk (which has a 

limited POSIX interface) for a user-level process to be 

managing another process’ page table. To add support for 

this, we introduced privileged system calls, system calls 

which expose a lower-level abstraction than a typical 

syscall, and which are meant only for a guest operating 

system to call. 

This is enforced by a special bit in the process metadata to 

indicate that process is a guest OS and can make 

privileged system calls. Our convention is that we preface 

privileged system call names with ‘g’ to indicate that they 

are intended for a guest OS to call. 

We will now discuss two features of xkvisor: the virtual 

memory system (resource allocation), and system call 

redirection. 

3.1 Resource Allocation 
At a high level, for a guest OS to run a guest user process, 

it needs to create a process, map some memory into that 

process’s address space, and schedule the process.  

This requires some privileged instructions (e.g. mov to 

%cr3 to load in a page table of a process it is attempting to 

schedule), so xkvisor exposes these privileged steps as 

privileged system calls.  

Xkvisor uses two key data structures to track which guest 

operating systems have control of specific resources. 

One key data structure is the physical memory map inside 

of each guest OS’s process metadata (recall that each 

guest OS is just a user process). This is a map of physical 

page number to page state – 0 for not owned, 1 for owned, 

or 2 for owned and in use by an application. The physical 

page number (PPN) is the index into the physical memory 

map. A guest OS can get back a copy of this data 

structure from the host OS via a gquery_user_pages 

privileged system call. 

The second data structure xkvisor uses is a process table 

map. This is just a mapping from process id to a memory 

segment struct, which indicates if a user process is owned 

by a guest OS, and if so, what the base, midpoint, and 

bound virtual addresses are (used for the stack and heap 

virtual address boundaries).  

There are two copies of each of these maps. One copy is 

for the guest OS to modify/read, and one copy is inside 

xkvisor for security purposes. Although our privileged 

system calls that modify xkvisor's maps will also modify 

the guest OS maps via a return parameter, it is the 

responsibility of the guest OS to properly manage its copy 

of these maps. 

We currently abstract xkvisor's underlying host process 

structs as process IDs for the guest OS to use when 

creating a user application process. This is obviously not 

ideal and will be reworked once we implement fork and 

exec at user level and expose privileged system calls for 

the guest OS to control scheduling itself. In future work, 

the guest OS will have its own representation of a process 

and will make a privileged system call to schedule this in.  

Given these data structures, a guest OS can create a 

process with the privileged syscall interface:  

// Get a process from the host OS with the 
// given virtual address description. Updates 
// the guest OS’s process map as well. Returns 
// a pid for the new process. 
int grequest_proc(struct app_va_segment 
*proc_map, uint64_t base, uint64_t midpoint, 
uint64_t bound); 



 
// Loads the executable ELF from the given file 
// into the given process’s code segment. 
int gload_program(int pid, char *path); 
 
// Finishes setting up a process with the given 
// arguments (primarily puts the args on the 
// process’s user stack). 
int gdeploy_program(struct syscall_message 
*args); 
 
// Returns the process with given pid back to 
// the host OS for reclamation. 
int greturn_proc(int pid); 

// Copies the host’s physical memory map to the 
// guest OS stack. 
int gquery_user_pages(uint8_t *page_map); 
 
// Adds a mapping in the given process’ 
// page table to point to the given physical 
// page with the given flags. 
int gaddmap(int app_pid, int host_ppn, uint64_t 
va, int app_present, int app_writeable); 
 
// Removes the mapping in the given process’ 
// page table with the given virtual address. 
int gremovemap(int app_pid, uint64_t va); 

// Updates the flags on the existing mapping in 
// the given process’ page table. 
int gupdate_flags(int app_pid, uint64_t va, int 
app_present, int app_writeable); 
 

The typical workflow a guest OS would go through to 

create a process looks like the following: 

1. A call to grequest_proc, where a guest OS passes in 

its copy of the process map. This is a little awkward 

and will be fixed in future version, but for now, both 

the guest OS and host keep a copy of the process 

state map discussed earlier, and it is the responsibility 

of the guest OS to maintain it. In addition to the 

process map, the guest OS also provides a base 

virtual address, midpoint, and bound, and the host OS 

creates a process in its own process table to represent 

the guest user process (with the given virtual address 

bounds).  

2. A call to gload_program to load the executable 

(ELF) code from a given file on disk into a given 

guest user process code region. 

3. A call to gdeploy_program to finish setting up a 

process with the given arguments. The process will 

be scheduled after a call to gresume sets the process 

to be “runnable” (see section 3.2) 

At any point during the lifecycle of a process, the guest 

OS uses gaddmap, gremovemap, and gupdate_flags to 

update the page table of its guest user process (for now, 

all page table updates are done individually through this 

interface, but eventually we want to batch these updates). 

All page tables are currently kept in kernel memory, so 

these privileged syscalls are necessary for a guest OS to 

modify a page table.  

Xkvisor will check that each of these attempted page 

mappings are operating on physical pages belonging to 

the guest OS, as determined by the page map in the 

process's metadata (note how xkvisor is not doing any 

memory management logic for the guest process, just 

verification that the operation is legal). These calls must 

be used to add pages to a guest user process’ stack and 

heap, which start out empty.  

Because xkvisor verifies all page table operations from 

the guest OS, it’s safe for guest user process page tables 

to map from virtual to physical (i.e. no Vt-X “Extended 

Page Tables” or shadow page tables are needed). Xkvisor 

is mapped in the top of each guest OS’s address space 

(user process and guest OS) at address KERNBASE, but 

guest operating systems are not mapped into their user 

processes, since both the guest user process and guest OS 

are at ring 3 (lowest privilege level), and this would 

require special care to protect guest OS memory. 

In order for the guest OS to be able to access user process 

memory, user process stack/heap pages are mapped in 

both the guest OS and user process page tables at the 

same virtual address for the same physical pages (Fig. 1a, 

Fig. 1b). The stack/heap boundary is set at 3G, with the 

heap growing up to the bound value of 4G, and the stack 

growing down to the base value of 2G. The guest OS can 

specify these boundaries when the user process is being 

initialized. With several user processes per guest OS, this 

design is not viable since the maximum memory usage for 

the user process is not known ahead of time and having 

set boundaries for the virtual address space is not flexible. 

Adjusting this design is future work. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1a: Guest OS Virtual Address Space 
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Fig. 1b: Guest OS User Process Virtual Address Space 

When a guest OS is done with a process, it can return it to 

xkvisor to reclaim the resources via the greturn_proc 

call. 

For now, each guest OS is statically assigned a certain 

number of physical pages to allocate for use in user 

applications. Eventually we want to allow the guest OS to 

request for more physical pages or return extra pages. 

3.2 System Call Redirection 
The other major feature we will discuss in this report is 

system call redirection, through which a guest user 

process can make a system call to another background 

guest OS. 

Syscalls are a bit tricky to handle synchronously because 

both the guest user and guest OS are just normal xkvisor 

processes, which can be interrupted any point. We want 

syscalls to be asynchronous, but also need to guarantee 

that a guest user process that makes a syscall is not 

rescheduled before its guest OS has finished handling the 

syscall. We achieve this by putting the current process to 

sleep on a syscall and guarantee that it is not awoken until 

its corresponding guest OS handles the system call. 

There is also the question of how to communicate the 

syscall information if syscalls are asynchronous. Our 

solution was to make a struct representing a syscall, 

which holds the syscall index (defined by the guest OS), 

arguments, current proc pid and pointer to the next struct. 

Xkvisor will add one of these new syscall “message” 

structs to the end of a linked list of structs for a guest OS, 

and the guest OS can read from the front and handle a 

syscall whenever it is scheduled in. 

Syscall redirection is implemented by the following: 

 

On guest syscall:  

1. Wake up guest OS process  

2. Add a syscall message to its syscall buffer  

3. Put guest user process to sleep  

 

When guest OS is rescheduled:  

1. Reads the next entry from its syscall message buffer or 

sleeps (atomically) if there are no syscalls  

2. Handles a syscall  

3. Wakes up originating user process  

 

This means that the main part of the guest OS can just be 

the simple while loop: 

while (1) { 
  gnext_syscall(…) 
  // handle syscall 
  gresume(…) 
} 

With these two privileged system calls: 

// Consumes the next system call from the 
// kernel process metadata and places it in the 
// given syscall message OR puts this process 
// to sleep if there are no syscalls waiting to 
// be handled. 
int gnext_syscall(struct syscall_message 
*message); 
 
// Sets the process with given pid to runnable 
// (so it will be scheduled again). 
int gresume(int pid); 
 

Note that it is critical for gnext_syscall to atomically 

put the guest OS to sleep if necessary, otherwise there 

could be dirty read concurrency issues. 

As an optimization, rather than having xkvisor being 

aware of each of guest OS’ syscalls (e.g. awrite, aread, 

afork, etc.), we made a universal syscall meant for the 

guest OS and then it is up to the guest OS to determine 

which syscall was intended through the syscall index: 

int app_syscall(int syscall_index, struct 
arg*); 

So to walk through an example of the control flow of 

syscall redirection for two apps, “guest test” (guest user 

process) and “guest os”: 

1. User application process makes a write system call 

intended for the guest OS with 

app_syscall(WRITE, args) 

a. Trap into xkvisor 

b. Add syscall message to guest OS buffer 

c. Put guest user process to sleep 

d. Wake up guest OS 
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e. Yield to scheduler; eventually get 

rescheduled in guest OS 

2. Guest OS does a gnext_syscall 

a. Trap into xkvisor 

b. Xkvisor consumes syscall message and 

copies to guest OS (the ‘awrite’), 

c. Return to guest OS 

3. Guest OS handles awrite 

4. Guest OS does a gresume on user application 

a. Trap into xkvisor 

b. Xkvisor sets user application process to 

“runnable” 

c. Return to guest OS 

5. Guest OS does a gnext_syscall 

a. Trap into into xkvisor 

b. Syscall message buffer is now empty, so 

xkvisor puts guest OS to sleep 

6. User application process eventually gets scheduled 

and continues executing, with its syscall completed 

Note that the significance of this redirection is on step 3, 

where the guest OS can now implement awrite however 

it wants, and the code for write can be removed from 

xkvisor, shrinking the size of the kernel. 

4. CHALLENGES 
During the implementation of these two features of 

xkvisor, we ran into many challenges along the way. We 

originally spent a while creating a great design and were 

trying to implement xkvisor in big chunks. When we 

attempted to do so, there was too many tasks to complete 

without a clear direction and it was tough to get runnable 

code. 

After a suggestion from one of our research mentors, we 

decided to work on xkvisor incrementally. With this new 

strategy, we intentionally began with simpler designs and 

gradually tried to scale up towards our final design. As a 

result, we have a working version, but it is not the original 

design we wanted. We learned that this is the best 

possible way to go, because details in the design will 

change based on new challenges that are faced, and 

having a runnable version is important for providing 

directions for next steps.  

Besides gaining more technical knowledge of 

microkernels, the most important takeaway was learning 

the iterative design approach and taking small steps 

towards the goal. For example, when dealing with 

deadlock issues between the shell/user application/guest 

OS processes, we decided to first handle just the guest OS 

and shell, and once the shell worked, we added the 

application process and resolved additional deadlock 

issues that arose. Implementing in large chunks ended up 

being terrible for momentum, correctness, and 

productivity. 

 

5. RESULTS 
The main result we got out of this project was the design 

of what we think is a reasonable virtual memory interface 

for a container/guest OS to use to create and communicate 

with its own guest user processes. We made many 

simplifications along the way but think that our prototype 

implementation also demonstrated that there was promise 

in our design. 

In particular, we believe we’ve shown that asynchronous 

redirection of syscalls with sleeping/waking processes is 

viable via a simple interface and that a physical memory 

map page leasing scheme is reasonable as well. We have 

pushed some of memory management logic to the guest 

OS and will continue to transfer functionality from 

xkvisor to the guest OS. 

While xkvisor's design can still be improved a lot, we've 

laid the groundwork for a simple interface with all the 

essentials needed for the guest OS to implement 

management logic tailored to the application's specific 

needs. As the design continues to evolve, additional 

features will be added if necessary, but simplicity will still 

be a goal as most of the management logic should be 

implemented in the guest OS.  

 

6. RELATED WORK 
For xkvisor, we heavily built off ideas from Exokernel, 

trying to push all the high-level operating system 

functions into a guest OS, and making the operating 

system expose a very low-level API that focuses on just 

protecting (but not managing) the hardware. Although our 

project is inspired by Exokernel, we have made many 

simplifications to it, such as abandoning the mechanism 

for a library OS to download code into the kernel, and not 

forwarding interrupts to a guest OS.  

We also are using some ideas from the Xen microkernel 

[2] – in particular, we are following the design of a 

introducing “hypercalls” (really privileged system calls 

for us) for a paravirtualized OS to use. We are also 

requiring all page table update operations to go through 

xkvisor. We have abandoned some of the more complex 

aspects of the Xen design, such as the circular buffers for 

data transfer (I/O rings) and the usage of x86 ring 1 to 

isolate the guest OS. In addition, we borrowed Xen's idea 

of having the guest OS be aware of the physical page 

numbers to avoid additional translations via shadow page 

tables.   

7. CONCLUSIONS 
In this paper, we presented xkvisor, an operating system 

which provides a guest OS abstraction to user processes 

and provides some privileged system calls for these guest 

OS processes to make in order to request resources. The 

VM interface and syscall redirection system demonstrate 

that these two features are viable even with a simple 

design. 



In the future, we would like to add additional 

functionalities to this prototype by allowing more than 

one guest user process, allowing more than on guest OS, 

and providing a more robust VM interface. We’d also like 

to expose synchronization to user level and implement 

multiprocessing there to remove the dependency on the 

underlying xkvisor scheduler and process table. In 

addition, we want to implement page fault redirection via 

a trap message buffer (similar to our syscall buffer) to 

reduce the time spent transitioning between user and 

kernel mode. All these additions will be iteratively 

accomplished in small steps. 
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