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ABSTRACT 
In this paper, we present our hypervisor visualization        
capstone. We first introduce the motivation and overall        
design of this project. We provide some background        
information to understand our work. We then walk through         
our instrumentation of the hypervisor and guest operating        
system and the control flow for the data collection. We          
finally discuss our visualization results and potential       
extensions to our project. Throughout, we describe the        
interface between the layers of our system. 

 

1. INTRODUCTION 
Hypervisors provide the means of running multiple OSs        
managed by a single entity. As platform-as-a-service and        
infrastructure-as-a-service offerings grow as the backbone      
of modern applications, providing OS-level isolation for       
customers running within a single physical machine       
becomes more and more important. A common problem        
encountered by these cloud providers is managing       
resources allocated to each virtualized machine and       
displaying the resources consumed to customers to justify        
billing. This is a standard feature of any modern cloud          
provider. We endeavor to visualize components of lvisor,        
and the OSs running within it, to solve this problem. In           
addition, we provide an interactive web console, similar to         
the console provided by DigitalOcean [2]. 
 

2. BACKGROUND 
We use lvisor as the underlying hypervisor that runs a          
single guest operating system. The guest operating system        
we run is xv6, and because lvisor currently only supports          
one guest operating system, the extended page table, EPT,         
of lvisor uses identity memory mapping. We visualize the         
hypervisor and guest operating system in three ways: CPU         
time, memory usage, and disk usage. We instrument xv6 by          
adding hypercalls to collect relevant data in each category.         
Furthermore, we set conditional VM exit flags to break on          
other events of interest, such as IO. After logging, we parse           
the logs to generate a visualization of the log contents.  
 

3. DESIGN 
The goal of our visualizations is to determine the memory,          
CPU, and disk usage of a guest operating system,         
specifically xv6, running on the hypervisor lvisor. These        

three fundamental areas reflect the overall performance of a         
system, and visualizing their usage provides key insight to         
not only the underlying system’s efficiency but also how         
other processes interact with the system.  

In order to gather data for these areas, we utilize the vmcall            
instruction to trap into the hypervisor whenever related        
instructions and system calls are executed in the guest         
operating system. In this way, we log all the information          
we need in a temporary file, which is later pipelined to a            
Flask web server for visualizations using D3. We use         
Jinja2 to render templates and pass objects through to D3. 

However, our temporary file based solution failed to        
capture output from the running xv6 operating system. We         
chose not to replace every occurrence of print to the          
console in xv6 with an explicit vmcall, but rather chose to           
break on writes to the COM port assigned for console          
output. First, we changed, in xv6, the console output to          
output to COM2, then created an IO bitmap wherein we          
marked COM2 writes to cause a VM exit. An alternative          
and similar design, with the fewest modifications to xv6,         
would rather leave console inputs and outputs both on         
COM1, then use the VM exit data structure returned to          
determine the instruction that caused the exit, re-executing        
console input and just logging console output. 

To visualize our data in memory usage, disk usage, and          
CPU time, we use a grid map for memory and disk usage            
and a donut chart for CPU time. We chose a grid map for             
memory usage to show the individual pages in memory and          
highlight which pages are being allocated and deallocated        
by the guest OS. We also use a grid map for disk usage to              
color-code regions on disk and emphasize the disk blocks         
that are being written to in different regions during some          
program execution in the guest OS. A donut chart helps us           
visualize CPU time in lvisor partitioned by the set of          
VMexit reasons we encounter since booting lvisor and xv6. 

 

4. CHALLENGES 
In designing and implementing our project, we encountered        
and overcame several challenges.  
 
We initially planned to visualize the memory mapping        
between the guest OS and the hypervisor. However, in the          
case of lvisor, the hypervisor and the guest OS have          
identical memory mapping. Therefore, we needed to think        
of a way to visualize memory usage that is informative and           

 



 

interesting. We considered and now use a grid map         
visualization that shows the distinctions between memory       
allocated for lvisor and for xv6 and also whether pages in           
memory are actually used or free.  
 
For CPU time usage, we recognized that the additional         
hypercalls lead to some overhead in program execution due         
to frequent VM exits and entries. However, this timing data          
can be informative to see the differences in CPU usage for           
each hypercall reason. We also needed to find an         
appropriate refresh time for the CPU time graph such that          
the graph is not outdated but also not refreshed too          
frequently that data logging and parsing cannot keep up.         
We decided to update the visualizations with new data         
pipelined from the log every second. We record the VMexit          
reason for a given data value and group data based on           
VMexit reasons to visualize the overall CPU time spent in          
lvisor between a VMexit and VMentry.  
 
With our temporary file-based technique for capturing       
output, we have the challenge of piping user input into a           
Python subprocess, which is the current means of capturing         
output. Another design trade off is having a monolithic         
Flask app for simplicity versus having a running database         
that is updated with a log parsing function that we can draw            
from instead. To interface with Flask, we chose the simpler          
output file-based approach rather than a networking based        
approach due to the massive complexity involved without        
any functional gain. However, we investigated the use of         
lwip and the creation of an e1000 driver such that instead           
of vmcall instructions, we could instead serve data directly         
through TCP [3]. Because of the difficulties in setting up          
networking, we continue to use the temporary log file to          
record our data and we parse the logs to categorically          
gather data that is then piped to D3. 
 
For the web console, the main challenges were ergonomic.         
After reading the character output to the console by         
examining register values after breaking on IO, we directly         
logged the output characters in lvisor, one at a time, as they            
were output on COM2. Then, we created the input layer,          
wherein we wrote to the “make qemu” subprocess’ stdin         
through another Flask route. Combining the two, we        
created the UI for printing out the xv6 console output and           
accepting input. After discussing with potential users, we        
opted for a design in Figure 1 that closely emulates what a            
user of xv6 would interact with. 
 

 
Figure 1: Interactive Web Console UI 

 
5. DATA COLLECTION 
The mechanism for data collection is VMCALL. VMCALL 
is an instruction executed by the guest OS to voluntarily 
hand control over to the hypervisor, with the argument 
stored in  %edi and VMCALL number in %eax. Lvisor 
then executes the corresponding function with the 
VMCALL number and log datas into a temporary local file. 
This can also be referred to as a hypercall. 
 
For CPU usage, we are interested in how much time is 
spent inside lvisor and the reason behind it. Therefore, 
whenever there is a VMEXIT, we first log the current time 
of the VMEXIT and then the reason of the VMEXIT, 
which could be a VMCALL, a disk allocation, a cr3 access 
etc.  
 
As for memory allocation, we want to know the total 
number of pages that are occupied by xv6 and lvisor. Inside 
xv6, whenever the OS needs to allocate or free memory, it 
calls kalloc or kfree respectively, both of which return the 
base address of the page allocated or freed. Therefore, 
inside those two functions, before they return the address, 
we trigger a VMCALL and pass in the base address. Inside 
the VMCALL, lvisor simply prints the base address and 
indicates whether it is allocated or freed.  
 
Lastly, for disk usage, we want to log disk writes. We had 
to be careful to only consider the disk itself, and disregard 
the block cache, as this information is implicitly visualized 
in our memory visualization. True disk writes only occur in 
xv6 when the block cache is flushed. This occurs in iderw, 
which determines if a block is dirty, and writes it to disk if 
it is. Immediately after this write we use a hypercall to pass 
lvisor the number of the block which was flushed. 
 

 



 

To transform the data into the correct format, we utilize the 
python web server to parse the temporary file into the 
correct data structures for transmitting to the web client. 
Every time we get pinged for data, we re-parse the updates 
contents of the temporary data file.  
 
A problem we ran into when piping data to D3 was that it 
quickly started to lag as the dataset size grew. Initially, we 
would just re-render the entire dataset on the client side 
every couple seconds, but as the log size grew, D3 was 
unable to keep up. To remedy this, we now keep track of 
where the web client is in the file so we only send the 
updated data for each request, instead of re-rendering the 
entire dataset each time.  
 
6. RESULTS 
We use D3 to create our visualizations. The following three 
figures are our visualization results from data collected 
during lvisor and xv6 booting. 

 
Figure 2: Disk Map after xv6 Boot 

 
Figure 3: Memory Map after xv6 Boot 

 

 
Figure 4: CPU Pie Chart 

 
After booting, xv6 starts shell, and as we run programs in 
the shell and data is collected during execution of some 
program is piped to D3, our visualizations dynamically 
change to reflect the data. For example, we can run the 
program stressfs, which we used to allocate and deallocate 
hundreds of 4K-sized pages and also write to multiple disk 

blocks. As data is piped to D3, blocks in memory that are 
being written to will blink and the tooltip updates with the 
number of pages still allocated in a particular page. Blocks 
in disk will also darken and blink when they have been 
written to due to a flush in the block cache, and tooltips 
indicate to the user the region of the disk block. The CPU 
time chart updates based on the amount of time spent in 
lvisor due to some VMexit reason.  
 
The following figures are the memory and disk 
visualizations during execution of stressfs (there was no 
dramatic change in the CPU time visualization from the 
previous screenshot): 

 
Figure 5: Disk Map after stressfs 

 
Figure 6: Memory Map after stressfs 

 
The lighter blue boxes in the memory map represent pages 
in memory that had all of its 4K-page size chunks freed by 
the guest OS. Since these visualizations dynamically 
change as a program in the guest OS executes, users 
quickly see how memory and disk usage and CPU time in 
relation to the hypervisor changes over time.  
  
7. EXTENSIONS 
Due to a copious usage of VMCALL, the performance of 
the operating system slows down. In addition, the 
VMCALL approach is not scalable since we have to 
instrument every guest OS we want to visualize. To 
improve out design, we could find ways to trigger traps into 
the lvisor without explicitly inserting VMCALLs inside 
xv6’s code. For example, we can let lvisor change the page 
table of xv6 to be read-only. Thus whenever xv6 is 
requesting more memory, it will try to update the page 
table, trap into the lvisor, and then log information; the 
amount of VMCALLs will be reduced.  
 
One aim of this project was to change the guest OS, xv6, 
minimally while still collecting runtime information 
through the hypervisor. The main techniques behind this 
would be those used for the console, breaking on key 

 



 

instructions and binary translation, which would make 
OS-level changes fewer.  
 
Secondly, we should extend this project further to improve 
the method of export, as file-based techniques rely on 
concurrent access to a file and unsupported usages of the 
Python subprocess API. One substitution would be using 
networking to export from lvisor, adding a TCP stack, 
e1000 driver, and networking syscalls to connect with the 
running Flask server to pipe data out of lvisor. 
 
Another extension of the project that was explored and 
abandoned was supporting multiple operating systems 
running within lvisor. To do so, we would need to create an 
array of VM Control Structures (VMCS) to track the state 
of multiple running operating systems. Furthermore, we 
would need to implement a scheduler such that each OS 
gets scheduled. To do so, we investigated usage of Intel’s 
VMX Pre-emption Timer, wherein we could schedule 
operating systems in a round robin fashion. This would 
provide additional value to our visualizations as we could 
make sure contention for resources could be monitored and 
facilitate development of resource-allocation strategies. 
 
8. CONCLUSION 
We want to provide visualization tools for management of 
virtual machines within a hypervisor. In our capstone 
project, we collect data on memory, CPU, and disk usage 
when the hypervisor lvisor runs one guest operating system 
(xv6). We insert VMCALLs to collect data on those three 
categories. We log data in a temporary file and periodically 
parse the log to pipe data categorically to D3 to render 
visualizations. When different processes are run in the web 
console, our visualizations dynamically change based on 
the new data collected for those processes. In this way, we 
show the interaction of the guest operating system with 
memory and disk, and we display the time spent in lvisor 
given a VMexit reason. Our visualizations provide insight 
on what happens when we run processes within a guest 
operating system that runs on top of a hypervisor.  
 
A key area of development that was investigated in terms 
of the interactive console is changing running guest OSs 
minimally while still visualizing and interacting with them. 
This is a key concern in any hypervisor - users do not want 
to run a custom operating system for their hypervisor to get 
full functionality. We investigated approaches that involve 
varying levels of changes to the guest OS, although we 
opted for an approach that did not minimize OS changes. 
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