

Hypervisor Visualization
Cathy Cao, Christopher Mackie, Daniel Li, Nick Anderson, Wei Lin

{cathycao, mackic, dli123, nja4, veilam} @ cs.washington.edu

ABSTRACT
In this paper, we present our hypervisor visualization
capstone. We first introduce the motivation and overall
design of this project. We provide some background
information to understand our work. We then walk through
our instrumentation of the hypervisor and guest operating
system and the control flow for the data collection. We
finally discuss our visualization results and potential
extensions to our project. Throughout, we describe the
interface between the layers of our system.

1. INTRODUCTION
Hypervisors provide the means of running multiple OSs
managed by a single entity. As platform-as-a-service and
infrastructure-as-a-service offerings grow as the backbone
of modern applications, providing OS-level isolation for
customers running within a single physical machine
becomes more and more important. A common problem
encountered by these cloud providers is managing
resources allocated to each virtualized machine and
displaying the resources consumed to customers to justify
billing. This is a standard feature of any modern cloud
provider. We endeavor to visualize components of lvisor,
and the OSs running within it, to solve this problem. In
addition, we provide an interactive web console, similar to
the console provided by DigitalOcean [2].

2. BACKGROUND
We use lvisor as the underlying hypervisor that runs a
single guest operating system. The guest operating system
we run is xv6, and because lvisor currently only supports
one guest operating system, the extended page table, EPT,
of lvisor uses identity memory mapping. We visualize the
hypervisor and guest operating system in three ways: CPU
time, memory usage, and disk usage. We instrument xv6 by
adding hypercalls to collect relevant data in each category.
Furthermore, we set conditional VM exit flags to break on
other events of interest, such as IO. After logging, we parse
the logs to generate a visualization of the log contents.

3. DESIGN
The goal of our visualizations is to determine the memory,
CPU, and disk usage of a guest operating system,
specifically xv6, running on the hypervisor lvisor. These

three fundamental areas reflect the overall performance of a
system, and visualizing their usage provides key insight to
not only the underlying system’s efficiency but also how
other processes interact with the system.

In order to gather data for these areas, we utilize the vmcall
instruction to trap into the hypervisor whenever related
instructions and system calls are executed in the guest
operating system. In this way, we log all the information
we need in a temporary file, which is later pipelined to a
Flask web server for visualizations using D3. We use
Jinja2 to render templates and pass objects through to D3.

However, our temporary file based solution failed to
capture output from the running xv6 operating system. We
chose not to replace every occurrence of print to the
console in xv6 with an explicit vmcall, but rather chose to
break on writes to the COM port assigned for console
output. First, we changed, in xv6, the console output to
output to COM2, then created an IO bitmap wherein we
marked COM2 writes to cause a VM exit. An alternative
and similar design, with the fewest modifications to xv6,
would rather leave console inputs and outputs both on
COM1, then use the VM exit data structure returned to
determine the instruction that caused the exit, re-executing
console input and just logging console output.

To visualize our data in memory usage, disk usage, and
CPU time, we use a grid map for memory and disk usage
and a donut chart for CPU time. We chose a grid map for
memory usage to show the individual pages in memory and
highlight which pages are being allocated and deallocated
by the guest OS. We also use a grid map for disk usage to
color-code regions on disk and emphasize the disk blocks
that are being written to in different regions during some
program execution in the guest OS. A donut chart helps us
visualize CPU time in lvisor partitioned by the set of
VMexit reasons we encounter since booting lvisor and xv6.

4. CHALLENGES
In designing and implementing our project, we encountered
and overcame several challenges.

We initially planned to visualize the memory mapping
between the guest OS and the hypervisor. However, in the
case of lvisor, the hypervisor and the guest OS have
identical memory mapping. Therefore, we needed to think
of a way to visualize memory usage that is informative and

interesting. We considered and now use a grid map
visualization that shows the distinctions between memory
allocated for lvisor and for xv6 and also whether pages in
memory are actually used or free.

For CPU time usage, we recognized that the additional
hypercalls lead to some overhead in program execution due
to frequent VM exits and entries. However, this timing data
can be informative to see the differences in CPU usage for
each hypercall reason. We also needed to find an
appropriate refresh time for the CPU time graph such that
the graph is not outdated but also not refreshed too
frequently that data logging and parsing cannot keep up.
We decided to update the visualizations with new data
pipelined from the log every second. We record the VMexit
reason for a given data value and group data based on
VMexit reasons to visualize the overall CPU time spent in
lvisor between a VMexit and VMentry.

With our temporary file-based technique for capturing
output, we have the challenge of piping user input into a
Python subprocess, which is the current means of capturing
output. Another design trade off is having a monolithic
Flask app for simplicity versus having a running database
that is updated with a log parsing function that we can draw
from instead. To interface with Flask, we chose the simpler
output file-based approach rather than a networking based
approach due to the massive complexity involved without
any functional gain. However, we investigated the use of
lwip and the creation of an e1000 driver such that instead
of vmcall instructions, we could instead serve data directly
through TCP [3]. Because of the difficulties in setting up
networking, we continue to use the temporary log file to
record our data and we parse the logs to categorically
gather data that is then piped to D3.

For the web console, the main challenges were ergonomic.
After reading the character output to the console by
examining register values after breaking on IO, we directly
logged the output characters in lvisor, one at a time, as they
were output on COM2. Then, we created the input layer,
wherein we wrote to the “make qemu” subprocess’ stdin
through another Flask route. Combining the two, we
created the UI for printing out the xv6 console output and
accepting input. After discussing with potential users, we
opted for a design in Figure 1 that closely emulates what a
user of xv6 would interact with.

Figure 1: Interactive Web Console UI

5. DATA COLLECTION
The mechanism for data collection is VMCALL. VMCALL
is an instruction executed by the guest OS to voluntarily
hand control over to the hypervisor, with the argument
stored in %edi and VMCALL number in %eax. Lvisor
then executes the corresponding function with the
VMCALL number and log datas into a temporary local file.
This can also be referred to as a hypercall.

For CPU usage, we are interested in how much time is
spent inside lvisor and the reason behind it. Therefore,
whenever there is a VMEXIT, we first log the current time
of the VMEXIT and then the reason of the VMEXIT,
which could be a VMCALL, a disk allocation, a cr3 access
etc.

As for memory allocation, we want to know the total
number of pages that are occupied by xv6 and lvisor. Inside
xv6, whenever the OS needs to allocate or free memory, it
calls kalloc or kfree respectively, both of which return the
base address of the page allocated or freed. Therefore,
inside those two functions, before they return the address,
we trigger a VMCALL and pass in the base address. Inside
the VMCALL, lvisor simply prints the base address and
indicates whether it is allocated or freed.

Lastly, for disk usage, we want to log disk writes. We had
to be careful to only consider the disk itself, and disregard
the block cache, as this information is implicitly visualized
in our memory visualization. True disk writes only occur in
xv6 when the block cache is flushed. This occurs in iderw,
which determines if a block is dirty, and writes it to disk if
it is. Immediately after this write we use a hypercall to pass
lvisor the number of the block which was flushed.

To transform the data into the correct format, we utilize the
python web server to parse the temporary file into the
correct data structures for transmitting to the web client.
Every time we get pinged for data, we re-parse the updates
contents of the temporary data file.

A problem we ran into when piping data to D3 was that it
quickly started to lag as the dataset size grew. Initially, we
would just re-render the entire dataset on the client side
every couple seconds, but as the log size grew, D3 was
unable to keep up. To remedy this, we now keep track of
where the web client is in the file so we only send the
updated data for each request, instead of re-rendering the
entire dataset each time.

6. RESULTS
We use D3 to create our visualizations. The following three
figures are our visualization results from data collected
during lvisor and xv6 booting.

Figure 2: Disk Map after xv6 Boot

Figure 3: Memory Map after xv6 Boot

Figure 4: CPU Pie Chart

After booting, xv6 starts shell, and as we run programs in
the shell and data is collected during execution of some
program is piped to D3, our visualizations dynamically
change to reflect the data. For example, we can run the
program stressfs, which we used to allocate and deallocate
hundreds of 4K-sized pages and also write to multiple disk

blocks. As data is piped to D3, blocks in memory that are
being written to will blink and the tooltip updates with the
number of pages still allocated in a particular page. Blocks
in disk will also darken and blink when they have been
written to due to a flush in the block cache, and tooltips
indicate to the user the region of the disk block. The CPU
time chart updates based on the amount of time spent in
lvisor due to some VMexit reason.

The following figures are the memory and disk
visualizations during execution of stressfs (there was no
dramatic change in the CPU time visualization from the
previous screenshot):

Figure 5: Disk Map after stressfs

Figure 6: Memory Map after stressfs

The lighter blue boxes in the memory map represent pages
in memory that had all of its 4K-page size chunks freed by
the guest OS. Since these visualizations dynamically
change as a program in the guest OS executes, users
quickly see how memory and disk usage and CPU time in
relation to the hypervisor changes over time.

7. EXTENSIONS
Due to a copious usage of VMCALL, the performance of
the operating system slows down. In addition, the
VMCALL approach is not scalable since we have to
instrument every guest OS we want to visualize. To
improve out design, we could find ways to trigger traps into
the lvisor without explicitly inserting VMCALLs inside
xv6’s code. For example, we can let lvisor change the page
table of xv6 to be read-only. Thus whenever xv6 is
requesting more memory, it will try to update the page
table, trap into the lvisor, and then log information; the
amount of VMCALLs will be reduced.

One aim of this project was to change the guest OS, xv6,
minimally while still collecting runtime information
through the hypervisor. The main techniques behind this
would be those used for the console, breaking on key

instructions and binary translation, which would make
OS-level changes fewer.

Secondly, we should extend this project further to improve
the method of export, as file-based techniques rely on
concurrent access to a file and unsupported usages of the
Python subprocess API. One substitution would be using
networking to export from lvisor, adding a TCP stack,
e1000 driver, and networking syscalls to connect with the
running Flask server to pipe data out of lvisor.

Another extension of the project that was explored and
abandoned was supporting multiple operating systems
running within lvisor. To do so, we would need to create an
array of VM Control Structures (VMCS) to track the state
of multiple running operating systems. Furthermore, we
would need to implement a scheduler such that each OS
gets scheduled. To do so, we investigated usage of Intel’s
VMX Pre-emption Timer, wherein we could schedule
operating systems in a round robin fashion. This would
provide additional value to our visualizations as we could
make sure contention for resources could be monitored and
facilitate development of resource-allocation strategies.

8. CONCLUSION
We want to provide visualization tools for management of
virtual machines within a hypervisor. In our capstone
project, we collect data on memory, CPU, and disk usage
when the hypervisor lvisor runs one guest operating system
(xv6). We insert VMCALLs to collect data on those three
categories. We log data in a temporary file and periodically
parse the log to pipe data categorically to D3 to render
visualizations. When different processes are run in the web
console, our visualizations dynamically change based on
the new data collected for those processes. In this way, we
show the interaction of the guest operating system with
memory and disk, and we display the time spent in lvisor
given a VMexit reason. Our visualizations provide insight
on what happens when we run processes within a guest
operating system that runs on top of a hypervisor.

A key area of development that was investigated in terms
of the interactive console is changing running guest OSs
minimally while still visualizing and interacting with them.
This is a key concern in any hypervisor - users do not want
to run a custom operating system for their hypervisor to get
full functionality. We investigated approaches that involve
varying levels of changes to the guest OS, although we
opted for an approach that did not minimize OS changes.

9. REFERENCES
[1] Bostock, Mike. “Data-Driven Documents.” D3.Js,
d3js.org/

[2] Ellingwood, Justin. “Contents.” How To Use the
DigitalOcean Console to Access Your Droplet |
DigitalOcean, DigitalOcean, 27 Feb. 2018,
www.digitalocean.com/community/tutorials/how-to-use-the
-digitalocean-console-to-access-your-droplet.
[3] Goldschmidt, Simon. “LwIP - A Lightweight TCP/IP
Stack - Summary.” LwIP - A Lightweight TCP/IP Stack, 17
Oct. 2002, savannah.nongnu.org/projects/lwip/.
[4] Ronacher, Armin. “Welcome.” Welcome | Flask (A
Python Microframework), 16 May 2017, flask.pocoo.org/.

