Project Payload
CSE 481A Final Report
One small step for xv6, one giant leap for our brains

Colin Evans
colin2l@cs.washington.edu

Sixto Josue Rios
jrios777@cs.washington.edu

Megan McGrath
mkmg@cs.washington.edu

Paul Yau
yvaup@cs.washington.edu

Zhitao Zhang
zzt1l24@cs.washington.edu

1 Abstract

For our CSE 481A Cloud Capstone project, we imple-
mented network support and container support for xv6
[4], a simple, Unix-like educational operating system.
Added network support allows us to communicate with
xv6 from outside of QEMU [12] and provides incentive
for implementing containers. Container support provides
isolation of resources. Our containers isolate processes,
files, and network access from each other. We accomplish
this by implementing namespaces, and isolating these re-
sources based on namespace. Unlike Linux, where dif-
ferent namespaces can be mixed and matched to create
isolation or allow sharing, our containers only completely
isolate the namespace.

2 Introduction

For our capstone project, we wanted to choose a topic re-
lated to the cloud platforms common in today’s world.
With containers and virtual machines being popular ser-
vices today, we chose to implement containers inside xv6
[4], an educational operating system based on Unix ver-
sion 6. Since most container instances in the real world
involve talking over the network, we also decided to add
network support and isolation. From our past experience,
we were familiar with Docker being used to host web
servers in the cloud, and we wanted to create a similar
capabilities in xv6.

The rest of this paper is organized as follows. Section
3 describes related work. Section 4 details some of the
challenges of our project. Section 5 gives an overview on
xv6 and a description of some additional functionality we

added to support the development of our planned features.
Section 6 describes our design, implementation, and re-
sults in adding network support. Section 7 describes our
design, implementation, and results for container support.
Section 8 concludes.

3 Related Work

In terms of networking support, there is plenty of re-
lated work that adds networking support to kernels. JOS
[11] and hv6 [7] use IPC and a network serving pro-
cess with multiple threads to integrate network support
with lightweight IP (IwIP). xv6-networking-stack [6] in-
tegrates the E1000 driver and sends an ARP request but
does not integrate 1wIP. xv6plus [5], loosely based on
xv6, integrates a different driver but similarly integrates
IwIP though through the use of kernel threads. Our net-
work support integration has some similarities but on top
of that, we have network isolation for containers.

As for work related to our containers implementation,
we based our design loosely on Linux namespaces. Linux
provides a clone system call which creates a new names-
pace with the given resources isolated. There are many
resources to choose from:

e UTS - Hostname namespace
e mnt - Mount points/file system namespace

e PID - Process ID namespace

User - User namespace

Network - Network namespace

IPC - Interprocess Communication namespace

The namespaces are created by passing a flag OR-ed with
each desired namespace’s flag. We decided to implement
a subset of these namespaces with an all or nothing inter-
face since this better fit with our goal of supporting con-
tainers.

4 Challenges

Part of the challenge of implementing these features in
xv6 is that xv6 itself is missing a lot of the tools and fea-
tures that we are used to having in our standard Linux
environment. For example, there are no users, no permis-
sions, no procfs (a special process file system in UNIX-
like systems), no sophisticated Interprocess Communica-
tion (IPC), no threads, no network support, among many
other things. Thus, we either had to implement them or
create workaround solutions.

For networking support, we had trouble integrating
lightweight IP (IwIP) since xv6 was missing a lot of com-
ponents. For one, we didn’t have threads so we could not
use the sequential API in the kernel nor did we have an
easy way of sharing pages via IPC so we could not use
the sequential API in a network serving process much like
what’s found in JOS. The solutions we found online for
xv6 involved one or the other and usually involved more
changes to how xv6 was structured than we desired.

Furthermore, having only previously used high level
container programs such as Docker, we began this project
lacking a understanding of how containers like Docker
containers are implemented. It took us a while to com-
prehend that we would not be building a new version of
Docker, but rather a version of Linux namespaces, a set
of kernel features upon which container programs like
Docker are built.

5 Xvé6

xv6 [4] is a simple, Unix-like teaching operating system
developed at MIT during the summer of 2006. Its a reim-
plementation of Unix Version 6 which was developed in
the 1970s. We decided to build onto xv6 because we
wanted to start with a fairly primitive operating system
that was Unix-like. Specifically we used the xv6 source
code provided as part of the lvisor repository [13] created
for the CSE 481A capstone offered at the University of
Washington. Since xv6 is a bare bones OS, we started
our project by adding a few user programs and their cor-
responding system calls.

ps Since we planned to add process isolation as part of
container support, we started by implementing the user
level program ps. This program prints out all the pro-
cesses along with their process IDs, the ID of their par-
ent, and the name of the program they’re running. To
implement this user program, no additional system calls
were added. Instead we decided to model our implemen-
tation off of Linux’s /proc directory. Basically Linux
makes information about processes available through the
file system. If yourun 1s /proc on a Linux machine,
you’ll see a directory for each process, named with the
process’ ID. Inside each process folder are more folders
containing information about each process. We made our
implementation a bit simpler. Rather than having a sepa-
rate directory for each process, we simply populated the
/proc directory with a file for each process (this design
minimizes traps into the kernel). The process file contains
the data of a custom struct we designed, called struct
procf. struct procf contains information such as
the process ID, the ID of the parent process, and the name
of the program being run. This content is generated dy-
namically using the information stored in the global pro-
cess table. Just like a normal file, a file in /proc is first
opened, creating a file descriptor and an entry in the global
file table used to store data such as offset. This offset is
used to determine how much of the /proc directory or
process file has been read. We added an extra field to the
struct stored in the global file table to store a pointer to
a process struct to keep track of our place when iterating
through the global process table. With this /proc inter-
face implemented, the user level program ps simply has
to open files and read them using normal file system calls.
Much of the logic in ps is similar to the logic in the pro-
gram ls.

pwd For the purpose of testing file system isolation, we
built a pwd program to display the full file path of the
current process. It consists of a user program and a sys-
tem call into the kernel. When the syscall is invoked, it
will recursively traverse up the hierarchy of inodes from
process’s current working directory to the process’ root
inode. Since the inode struct doesn’t store any names, it
has to get the inode of the parent and retrieve the name
from the parent inode struct. The user program makes a
call to the corresponding syscall. There are other designs
to implement a pwd program, we chose this particular de-
sign to reduce the number of times we trapped into the
kernel.

6 Networking

Our networking design and implementation is loosely
based on the E1000 driver we wrote for JOS and multi-
ple online networking solutions we found online that inte-
grated IwIP or the E1000 driver, such as xv6plus [5], xv6-
networking-stack [6] and hv6 [7]. Unfortunately, none
of those solutions were easily portable since they all de-
pended on either threads or more sophisticated IPC than
what pipes can easily provide. Additionally, except for
xv6-networking-stack [6], we were unable to successfully
compile and run any of these solutions on the school lab
machines. We eventually gave up on porting anything
over and instead decided to make sense of all these so-
lutions and the IwIP source code in order to try to under-
stand how we might accomplish a simpler solution. Un-
fortunately our solution was all but simple, but designing
and implementing pieces one at a time helped facilitate
the process.

6.1 E1000 Driver

The E1000 driver is responsible for setting up the net-
work interface card properly, which involves configuring
the driver and initializing queues for sending and receiv-
ing of data. The design and implementation of this is as
straight forward as following Intel’s E1000 driver manual
[9]. We first implemented it in JOS’ lab 6 to confirm our
understanding. When we tried to port it over to xv6 [4]
though we learned that xv6 was missing Memory-mapped
/O (MMIO) and PCI support. This is where deciphering
online solutions helped out, especially when looking at
xv6-networking-stack [6] and xv6plus [5].

Memory-mapped I/O (MMIO) Our solution in JOS
relied on memory mapped I/O but we had no idea how
to do this in xv6 initially. After reading through the driver
code in xv6plus and xv6-networking-stack we came up
with a working solution for memory mapping I/O.

PCI Support Since xv6-networking-stack contained
minimal changes to xv6 from our xv6’s existing files, we
were able to add PCI support using the same techniques
they had after specifying our attach function, which gets
run during PCI initialization in the boot process.

Finally, to ensure our driver worked before inte-
grating lwIP, we found an arptest program in
xv6-networking-stack that didn’t rely on IwIP. When
we replaced xv6-networking-stack’s [6] driver with ours
(theirs doesn’t receive packets from the driver), after

E1000

User Reception

non-blocking

lsyscall on socket s interrupt

Sockets
Abstraction Layer IwiP
(acquires s.Jock)

locking op

non-blocking wiP op

IwIP RAW API

input function
for network interface

wakeup(s.lock)

sleep(s.Jock) |« == -~ = - -~ Callbacks

Figure 1: User program to network card flow. This is after
creating a socket and assumes the callback has context on
the socket.

some small modifications we were able to send and
receive ARP requests and replies. This user program was
also added to our xv6 implementation for demo purposes
and regression testing.

6.2 IwlP Integration

Once we had a working driver we needed to integrate
IwIP. LwIP has three APIs as detailed in the IwIP Wiki

[8I:
e low-level “core” / “callback” or “raw” API.
e higher-level “sequential” netconn API.

e BSD-style socket API that wraps around the netconn
APL

The sequential APIs rely on threads, so since we didn’t
have them nor IPC, we chose to use the low-level “raw”
APIL. This API relies on a per-socket Protocol Control
Block (PCB). Since we can keep track of this in the kernel
per file descriptor that corresponds to a socket, our design
is basically to call the relevant t cp_* or udp_* functions,
track that in a struct with a spin lock and use that struct as
a callback arg. Then, on blocking calls the kernel puts the
process to sleep on the socket’s lock, to be later awoken
by a callback when there’s activity on the PCB. Callbacks
are usually triggered by an E1000 interrupt. The flow for
this design is shown in Figure 1.

To integrate this APl we had to implement a cou-
ple things. First was an arch/cc.h header file which
defines certain types IwIP needs and an lwipopts.h
header file for IwIP options. Additionally since 1wIP
needs a network interface, for communicating with the
driver, we added that as well in a file called netif.c.
netif . c defines functions for configuring the interface,
reading from driver when there’s input, and writing to the

driver when there’s output. Once we had these files de-
fined, to setup the network interface we added some ini-
tialization code that provides IwIP with our network inter-
face and brings the link up. Then, for interrupts, to allow
the E1000 driver to notify IwIP that a packet has been
received, we borrowed the strategies in xv6-networking-
stack [6] to set them up. On a hardware interrupt, if we
see it’s from the network card xv6 notifies IwIP that there
is input and IwIP handles calling the appropriate callback.

6.3 Socket Abstraction

The IwIP “raw” API provides you with functions that are
somewhat similar to BSD sockets. However, instead of
blocking you pass a callback function that gets notified
when there is a result for the function. We decided to
build out an abstraction that provides an API as close as
possible to the BSD sockets API for user programs to use
and also to easily port over external user programs that
rely on them. Disregarding any network isolation specific
state for containers, from a high level our socket abstrac-
tion keeps track of:

e socket type - UDP or TCP.

e pcb - IwIP specific UDP/TCP PCBs.

e lock - spin lock for atomic operations and condition
variables.

e accept state - incoming connections received asyn-
chronously.

e receive state - packets received asynchronously and
a read offset into them.

e closed state - whether the socket is closed, as it
could’ve happened asynchronously.

So our design basically relies on asynchronous events,
triggered by callbacks. When a socket is created its call-
back argument is set to this socket abstraction such that all
callbacks have context on the related socket. To make the
calls blocking, a system call sleeps on the socket (as if it
were a condition variable) if it needs to wait for some-
thing. When executed successfully, callbacks wake up
processes sleeping on the socket. To ensure socket opera-
tions are non-interfering, a socket’s spin lock is acquired
when operating on it from a system call or from a call-
back, which disables interrupts until the operation com-
pletes.

Integrating With Xv6 File Descriptors Our sockets
are built with a file abstraction in mind. We added to the
existing struct file in xv6 an FD_SOCK type and a
field with the socket abstraction above. User programs
work with file descriptors just like in Linux.

Supporting Loopback Connections Our implementa-
tion also allows for loopback connections on 127.0.0.1
(localhost). LwIP supports this, though to actually get it
to work we added a periodic call to netif poll in the
scheduler so that loopback operations flowed through.

Sockets API Our sockets implementation supports the
following “Big Socket Daddy” (BSD) Sockets API calls:

accept ()
bind ()
connect ()
getpeername ()
getsockname ()
listen()
recv ()
recvifrom ()
send ()
sendto ()
socket ()

User Programs and Results Along with the API we
included a lot of network-specific types, struct defini-
tions and functions such as struct sockaddr and
inet_aton for maximum compatibility with user pro-
grams that depended on them. These definitions and func-
tions were independent of the kernel so they’re easily able
to be used by both user and kernel code.

To test our implementation we added a couple of user
programs borrowed from JOS and online sources:

e arptest - Sends an ARP request.

e curl - Curls a web page via HTTP and displays the
content to the console. We modified the code we
borrowed to not do DNS and instead take in an IP
address.

e httpd-Runsan HTTP server on port 80. Borrowed
from JOS, we made some modifications to have it
generate HTML for a directory and know more mime

types.

e tcpecho - Runs a TCP server on port 7 that just
sends to client what it received.

e udpecho - Same as tcpecho but with UDP.

Namespace 1

Namespace 2

Namespace 3 Namespace 4

Figure 2: The hierarchal structure of namespaces. The
root namespace, namespace 1, is the parent of all other
namespaces. Namespaces 2 and greater are all siblings,
and are unable to access the resources of their siblings.

All of the programs above worked as expected from all
use cases we could think of. We were even able to down-
load web content (curl sompage > somefile)and
then serve it up all from within xv6 using httpd. A mi-
nor note on this functionality though, we’re not sure what
itis, but either IwIP or QEMU or our code is slow so fetch-
ing web content from xvo6 is not as fast as we’re normally
used to.

7 Containers

The second part of our project involved adding container
support to xv6. A container inside xv6 has a new view of
the system resources separate from that of the root system.
It sees a different view of the active processes, the file
system, and the network. We added container support by
implementing namespaces in xv0.

7.1 Namespace

Namespaces in xv6 achieve isolation by showing pro-
cesses only the resources their specific namespace has ac-
cess to and preventing access to resources in other names-
paces. Unlike Linux namespaces, where each of the six
different resources can be selectively isolated with their
respective namespaces, our xv6 implementation only al-
lows one type of namespace where processes, the file sys-
tem, and networking are isolated.

To manage the data associated with namespaces, we
had to make two main changes. First we added an ar-
ray of namespace structs (the global namespace table) to
keep track of the active namespaces and associated data,
and then we added a field to the process struct to keep
track of which namespace each process belongs to. The
namespace ID stored in the process’ namespace field de-
termines which view of the system the process sees. The
first namespace, which we call the root namespace, al-
ways has an ID of 1. Every other namespace is consid-

ered a child of the root namespace but equal in hierarchy
to each other (called siblings), as seen in Figure 2.

Our implementation of namespaces are organized in a
similar fashion as process IDs. The global namespace
table tracks the number of processes currently in each
namespace. When a new namespace is created, the kernel
loops through the global table in search of a namespace
to which no process belongs, and assigns that ID to the
new namespace. Like process IDs, namespace IDs start at
1. When other processes are then created in that names-
pace, the count in the table for that namespace increments.
Similarly, when a process belonging to a specific names-
pace is cleaned up, the count decrements. When the count
returns to 0, resources allocated for that namespace are
cleaned up.

Namespaces are created with a new system call we
added called spawn (). The spawn () system call is
modeled after the fork () system call semantics, and es-
sentially does a fork () with the child existing inside
a new namespace. Like fork (), it also copies over
the program state and continues executing from the same
place, differentiating the parent from the child using the
return value of the system call. Programs can then follow
the fork—and-exec model to launch different applica-
tions. We also modified fork () to let the child inherit
the namespace from the parent.

Lastly, we created a new user program spawn that
will create a new namespace and launch the nsinit
program, which loops indefinitely, cleaning up children
processes that have finished. spawn can take additional
arguments to launch an additional program in this new
namespace. Since the nsinit program will run indef-
initely, the namespace will not be cleaned up even after
the additional program launched has finished executing.
However, nsinit running in a child namespace can be
killed from root namespace, allowing the child namespace
to be cleaned up.

7.2 PID Isolation

Each process inside a child namespace has its own unique
process ID with respect to its namespace. That is, each
child namespace resets the view of the process IDs. The
initial process of a namespace always has a process ID
of 1 when viewed from within its namespace (e.g. ps
is run in a shell process belonging to the namespace).
However, since we followed Linux conventions and allow
a parent namespace (in this case the root namespace) to
view all processes of its child namespace, each process of
a child namespace must have a different process ID when
viewed from the root namespace. Otherwise, we would

see many processes with a process ID of 1 when running
ps from the root namespace. Since all namespaces other
than the root namespace are children of the root names-
pace and equal to each other, we have a hierarchy lim-
ited to two levels, therefore requiring at most two process
IDs per process (see Figure 2). To accommodate an addi-
tional process ID for each process, we added a field to the
process struct called nid to store the namespace specific
process ID. This is in addition the the pid field which
stores the globally unique process ID. For processes in-
side the root namespace, the pid is equal to the nid. We
have modified user interaction with the system so that all
user actions use the process ID visible from the current
view(e.g. ki1l () will take the process ID from the cur-
rent namespace’s view). This prevents namespaces from
being able to kill processes created in sibling namespaces.
We also add to modify ps to use nids instead of pids.

The program with nid 1 for every namespace is the
init process. In the root namespace, this will be the
actual init program launched when xv6 first boots up.
For a child namespace, this will be the nsinit program
launched by spawn when the namespace is first created.
When a process inside a namespace has finished execut-
ing, it assigns all of its children to the init process of its
own namespace, instead of the global init process. In
addition to taking over responsibility of all orphaned pro-
cesses, the init program for each namespace is also re-
sponsible for killing all remaining processes of the names-
pace should it exit while there are still other processes
remaining in the namespace. This is done by killing all
processes still alive inside the namespace, and assigning
them to the global init, which will finish the clean up
process with wait ().

7.3 File System Isolation

In order to support a container and secure the content in
a namespace, we create a new file system when a names-
pace is spawned. Therefore, the content in a namespace
cannot be modified by other namespaces within the same
host.

To isolate the file system, a new root inode will be al-
located when creating a namespace and assigned to the
proc_rootino field of the init process. If a process is
forked within a namespace, it will inherit the root inode
from its parent process. Since file lookup in xv6 is recur-
sive until it reaches the root, by setting a new inode as the
proc_rootino, we have effectively isolated the files of
a namespace from those of another namespace. Since the
proc_rootino is defined when the namespace is ini-
tialized, and children inherit the proc_rootino from

their parent, processes inside a namespace can never ac-
cess files outside of its namespace. This change results in
the / in a file path no longer pointing to ROOTINO, but
the inode defined as the root for that namespace.

Creating a brand new root, however, removes the exe-
cutables from the view of the new namespace, effectively
turning it into a file system with no programs, which is
pretty useless. We could add symbolic links to the ex-
ecutables to the new namespace. However, this would
allow children namespaces to modify the executables by
writing to it and corrupt the executables for the whole sys-
tem, breaking isolation. To solve this, we copied the exe-
cutables to the new namespace.

While copying executables achieve complete system
isolation, we found the process to took a really long time
in xv6. In order to improve performance, we decided to
move all the executables files into a globally visible bin
directory. Every exec call will start search in that bin di-
rectory. Otherwise, exec will search in current process
directory. Other file system methods such as open, read
and write do no access the bin. We modified the file
system image to allocate another inode as a bin direc-
tory while the fs image is being initialized, and copied
executables into that directory instead of root directory.
Moreover, we also implement the functionality to copy
over files from the root namespace to a child namespace.
If a child namespace needs its own copy of a certain file,
the parent can call “nspcopy <filename> <child
namespace id>" to copy the specified file into the
child’s root directory. This creates a deep copy with no
shared data in order to achieve complete isolation.

7.4 Network Isolation

One of the most interesting properties about containers
in the real world is that you can run applications in dif-
ferent containers that bind to the same port number due
to network namespace isolation. In reality those appli-
cations are bound to different port numbers on the host
machines, often times specified by a configuration file.
Another property of network isolation is that containers
are often configured such that they have their own IP ad-
dresses within the host machine and can only talk to each
other over the network using those IP addresses and the
container’s port number if the listening container is listen-
ing on it. For our implementation we kept things simple
by defining container IP addresses and port forwarding
based on namespace ID. Namely, for some namespace ID
n the container IP address is 192.168.1.n. Underneath,
since IwIP is unaware of the container addresses, xv6 ac-
tually translates container IP addresses and ports passed

in through system calls to ones IwIP can used based on
the process’ namespace and the task. We are able to get
the IP address/port for a connection because IwIP pro-
vides Protocol Control Blocks for TCP and UDP that con-
tain the local and remote IP address/port. For our pur-
poses we’ll refer to these as the host address and host
port. In this way, the kernel acts much like a Network Ad-
dress Translation box. In terms of network isolation, there
are three interesting cases that are handled: bind(),
accept () /recvfrom (), connect () /sendto ().

When binding, an application passes in a socket and the
address and port it’d like to have the socket listen on. Our
first step involves inspecting the address passed in, vali-
dating it and doing any necessary translation. If the ad-
dress is not 0.0.0.0 nor 127.0.0.1 nor 192.168.1.n (where
n is the namespace ID of the calling process) then the call
fails. Otherwise, if the address is 192.168.1.n, this is a
container address, so we change it to the host address be-
fore binding. If the address is 127.0.0.1 we take note that
the socket is bound to a loopback address. Then, right
before binding we modify the port number based on the
namespace and keep track of the container port and host
port for a socket.

Then, when a TCP connection or UDP packet comes
in via accept () /recvfrom(), if it’s coming from
0.0.0.0, we first check its port number to see if it’s a valid
host port (unfortunately, QEMU does not distinguish be-
tween connections from within xv6 and outside xv6 on the
real host machine) and if so, what container it’s coming
from. If we know that the destination socket is a loopback
socket then we drop the connection/packet if it’s not com-
ing from the same container. Otherwise, we let the packet
through, and before returning the address and port to the
user, if the connection came from a container, we set the
address and port output parameters to the container ad-
dress and port it came from.

For connecting or sending UDP packets, the process is
very similar, but it’s reversed. If the target address is a
container address and port, we check to see if it’s a valid
container address and port, and if not reject the connec-
tion/sending. Because xv6 needs to know all container
port to host port mappings for everything to work, one
trick we did in connect () /sendto () is bind to port
0 and store that as the container port and host port before
connecting/sending.

For purposes of testing, our ht tpd program binds on
port 80 and can take in an address to bind to (0.0.0.0 is
the default) and our curl program can take in an ad-
dress, port (default 80), path (default /), and hostname
(for real web servers, garbage header field in ‘httpd*) to
send a GET request to. Since we provided a sockets API

similar to Linux, they’re based on programs from JOS and
online solutions for curling web pages. We did modify
httpd though to generate a web page for directories.

Since xv6 is aware of all host port to container port
mappings, changes to the ps program (explained later)
involved simply exposing those mappings to user space
and outputting that. To facilitate data structures, we dis-
allowed multiple simultaneous listening sockets per pro-
cess since we don’t have threads anyways. For controlling
what gets returned to user space, we decided to expose the
underlying host address/port if the ps program was run in
namespace 1 and in any case always return the container
port.

Results after modifying httpd, curl, ps show that
containers are indeed isolated since one cannot be reached
by another unless it’s receiving packets from outside. Ad-
ditionally, each container can independently bind to the
same port number and use that communicate with oth-
ers as if they were indeed machines with isolated network
stacks. Finally, within namespace 1 all port mappings can
be seen when doing ps but other ones think they’re really
listening on the container port they binded to.

7.5 Switching Between Namespaces

After implementing namespaces, we decided we needed
a way to switch between namespaces so we could inter-
act with multiple namespaces. Since xv6 only supports
one terminal, we couldn’t simply create each namespace
in a new terminal. Instead, we implemented a user level
program and corresponding system call called attach.
The usage is as follows: say you’re in namespace 1 and
want to switch to an existing namespace 2. You would
run “attach 2”. This would cause the current shell to
be placed into a waiting state and a new shell in names-
pace 2 would be created and immediately run. The rea-
son the existing shell has to be placed in an unrunnable
state is the new shell will use the same standard in and
standard out as the existing shell. Having two shell pro-
grams reading from the same standard in stream leads to
unpredictable behavior. When the user wants to return
to namespace 1, they simply type “attach 1” and the
shell that was created for the user to use in namespace 2
exits and the shell in namespace 1 is changed from wait-
ing to runnable, and is immediately run by the scheduler.
In order to guarantee the desired shell would be scheduled
next, we modified the scheduler to use the process stored
in a new variable, nextProc, if there is one, otherwise
it resumes its normal scheduling algorithm. In order to
ensure our containers are secure and don’t leak informa-
tion such as the existence of other containers, users cannot

switch between sibling namespace (e.g. from 2 to 3). In-
stead the user must first attach to the root namespace and
then attach to the desired namespace.

8 Conclusion

In this project we added network support and container
support to the xv6 operating system. Processes running
inside a container have a separate view of the process IDs,
file system, and network resources that is unique to it-
self. Working with xv6, which is pretty minimal, we had
to implement many additional functionalities to support
these two features, solving different challenges along the
way. In the end, we were able to run multiple contain-
ers, each running a web server with its own view of pro-
cesses, its own file system and the illusion of being bound
to the same port. Throughout this project, we learned so
much. At the beginning, we had used modern day contain-
ers such as Docker, but had no idea how they were imple-
mented. Most of us weren’t familiar with Linux names-
paces before. Now we understand the Linux namespace
API and behavior. We read up on how Linux implemented
the various namespace types and then designed our own
implementation that worked well with xv6. During the
process we also learned more about operating systems;
we’re now mini xv6 experts. On top of all this we also
got more familiar with the E1000 driver manual and IwIP
source code than we ever wanted to. With this project
completed, we can finally start paying attention to the
movie plots again.

References

[1] Containers and Images
hitps : //docs.openshift.org/latest/architecture/
core_concepts/containers_and_images.html.

[2] Linux Namespace Overview
hitps : //www.toptal.com/linux
/separation — anziety — isolating — your —

system — with — linux — namespaces

Linux Kernel
hitps : //github.com/torvalds/linux

xv6, a simple, Unix-like teaching operating system

[6] xv6-networking-stack
https //github.com Jvibhorvatsa/xv6 —
networking — stack

[7] hv6
https : /[github.com/locore/hv6

[8] light weight IP wiki
http = / [lwip.wikia.com/wiki/Lwl P_Wiki

[9] E1000 driver manual
hitps : //courses.cs.washington.edu/courses/
csed51/16au/readings/e1000.pdf

[10] light weight IP, IwIP
www.nongnu.org/lwip/

[11] CSE 4511J0S
hitps : //courses.cs.washington.edu/courses/
csedb1/16au/index.html

[12] QEMU
hitps : | /www.qemu.org/

[13] lvisor repository
hitps : //gitlab.cs.washington.edu/
csed8la/lvisor — 18wi

hitps : //pdos.csail . mit.edu/6.828 /2012 /206 /book—

rev?.pdf

[5] xv6plus
hitps : //github.com/HenryHu/xv6plus

