
Cool Container Crew

GROUP MEMBERS

Alexander Lent [lenta@uw.edu]

Garrett Marconet [gmarco@uw.edu]

Carmen Hanish [carmenyh@uw.edu]

Thomas Nguyen [tomn@uw.edu]

Vadim Eksarevskiy [veksarev@uw.edu]

ABSTRACT
This work describes adding containers to xv6, an open

source operating system designed for teaching

fundamentals and showing the inner workings of an OS.

xv6 is simple enough to be relatively straightforward to

reason about, and allows the demonstration of what

containers are and how they can be implemented. At the

same time, it is robust enough to allow a full-fledged

implementation and can allow others to reason about

parts that can be further improved and added on in the

future, making it the perfect platform to demonstrate a

container implementation. In this paper, we address the

benefits of containers, how we implemented them in

xv6, what different variations of them exist, and how

containers can be expanded upon.

1. INTRODUCTION
This paper discusses our container implementation for

xv6, which aims to allow groups to be created with

process isolation, memory limiting, and CPU priorities.

This was implemented through adding a notion of

pgroups. Pgroups are essentially a mix between

namespaces and cgroups, providing both in one.

Specifically, they add process isolation, by preventing

processes in different pgroups from interacting with or

seeing each other, except for the root pgroup.

Additionally, they also provide I/O isolation for the

console, preventing multiple shells running

simultaneously in different pgroups from interfering

from each other. Throughout this paper, the terms

group, pgroup, and container are used interchangeably.

As far as the aspects of pgroups that were implemented,

this project added memory limiting, making it possible

to limit how much memory a single pgroup can use.

Dynamic CPU time distribution based on pgroup

settings was attempted initially, but we ran into issues

implementing it and ended up giving each container an

equal portion of CPU time.

Our implementation supports multi-core configurations,

while preserving the integrities guaranteed by our

definition of pgroups. Specifically, we support up to 8

cores.

The rest of the paper is organized as follows. §2 gives

the background for this project, including linux

namespaces and cgroups. §3 details the related work of

other implementations of containers, both in xv6 and in

linux. §4 discusses the details of our project, including

the initial design and final implementation. §5 presents

experimental results, primarily performance effects of

our implementation. §6 notes ways to improve this

work, including bugs that could be fixed and possible

additional features. Finally, §7 describes what lessons

we learned during this project, and §8 provides our

conclusion from it.

2. BACKGROUND

Containers are a notion similar to that of Virtual

Machines. They are made primarily for the purposes of

providing isolation and allowing multiple potentially

adversarial processes to share a single physical

machine. As cloud computing becomes more

widespread, guaranteeing a given cloud instance is

isolated from others running on the same machine is

becoming more important.

Modern Linux containers work by creating

namespaces and cgroups that provide different levels

of isolation and resource limiting for each container.

Namespaces allow each container to have multiple or

all of: isolated processes, file system, memory, I/O,

etc. They attach each process to a certain container,

and only allow that process to access and see things in

a way consistent with the view presented by the

container.

Cgroups, on the other hand, provide a way to limit the

resources used by each container. They do not provide

isolation by themselves but set a limit in the amount of

memory and/or CPU usage that a single container can

consume. This is useful for systems where fair

allocation is important, such as cloud systems with

multiple users, who may be requesting different

amounts of memory and/or CPU usage.

While Virtual Machines, when implemented properly,

can provide near complete security and isolation, they

incur a large overhead by having multiple guest

operating systems running at the same time. When

running multiple VM instances of the same guest OS,

many of the resources stored by the hypervisor are

duplicated and redundant. Additionally, extra overhead

is added due to a guest OS having to go through the

underlying hypervisor whenever they need to

communicate with the hardware. All of this combined

introduces a large amount of overhead to simple

operations such as disk access, therefore inevitably

slowing down the system.

Containers as implemented are inherently less secure

than VMs but are good enough for most purposes.

They are also more efficient than VMs. They are

especially useful in cases such a single user running

multiple programs that have different dependencies,

relying on different versions of some code. In this case,

the user is not concerned about the security, but needs

isolation in order to allow both programs to run

simultaneously. While VMs can provide this, they do

so with a large amount of overhead. In the case of

containers, however, this overhead is much lower,

while still allowing the programs to be run in tandem

due to both seeing their necessary dependency code.

Therefore, it is easy to see the particular applications

of containers, and why it is interesting to build them in

a system like xv6, in order to make it easier for others

to understand the basics behind containers and to see

how they are implemented in a relatively

straightforward system.

3. RELATED WORK
On GitHub, there is a repository that adds container

support to xv6 [1]. This work is based on adding a

container struct in container.h. The container struct is

similar to our pgroup one, but also has a disk use limit,

a maximum number of processes for each container, and

a map to every process. This repository does memory

limiting through modifying kalloc and kfree. This

allows them to have control over memory allocation for

pages outside of the user virtual memory for each

process.

In order to better gain an understanding of container

isolation, our group did not look at the existing xv6c

implementation before our implementation of pgroups

was completed.

4. IMPLEMENTATION

4.1 Initial Design

4.1.1 Building ps
The first portion to implement is a simplified version of

the unix command ps which lists information about all

processes running on a machine at a given time. This is

necessary to show process isolation and resource

limiting later on.

To implement ps, a getprocs() system call is

implemented that returns a list of all running processes

in the environment and information about them. This

system call is then used to implement the rudimentary

version of ps that prints information about all running

processes.

4.1.2 Namespace Data Structure
The next part of implementing containerization is

adding support for a basic form of namespaces. This

allows processes to be grouped together and for

resources to be managed independently between groups.

The main portion of adding namespaces is adding a field

to the proc struct that is used as an index into an array

of namespaces. The existing system calls and kernel

exit/entries will be verified to ensure that the kernel

operates with namespaces in mind. Furthermore, the rest

of the kernel will need to be verified to ensure that other

operations (such as process initialization and forking)

are done with the knowledge of namespaces in mind.

To create a new namespace, a user will use a

createns() system call, which will need to be

implemented. This system call would create a new

namespace object.

4.1.3 Process Isolation
Processes will need to be isolated between containers so

that different containers do not see each other’s’

processes unless the process was from the root where

the container was spawned. This isolation should be

able to be verified quickly by getprocs() and is the

basic root of the containerization to be implemented.

4.1.4 CPU Resource Limiting
The goal with CPU Resource limiting is to allow for

lower and higher priority containers based on the logical

importance of their tasks. The CPU should be optimally

utilized and kept as busy as possible if work is needed

to be done.

The preliminary idea on how to implement this is to use

something akin to a standard OS scheduler. It could use

something as simple as timed interrupts to ensure every

container gets to run for an equal amount of time,

cycling between containers. In an attempt to design a

scheduler more from the ground up, the scheduler

algorithm for these pgroups was to be designed without

looking at scheduler algorithms online.

The initial idea for implementation was to give all

processes a ticker to see how long the process has been

waiting and bump the ticker by the process’ group

priority each time the process is skipped by the

scheduler, so tasks waiting longer with a higher priority

are more likely to be ran by the scheduler next time. This

also in theory helps ensure that so long as ridiculous

priority ratios are not given to different pgroups,

different processes will not starve.

4.1.5 Memory Resource Limiting
To limit access to memory resources, sbrk() will be

modified to limit the memory allocated to each

namespace and processes within it. The amount of

memory used by each namespace will be the sum of the

number of physical pages used by each of of its

processes. The limits will be set on creation of the

namespace.

4.2 Final Implementation

4.2.1 pgroup Creation
A pgroup struct is created through the user program

pgroupcreate. pgroupcreate takes two

optional parameters: the maximum number of pages that

can be allocated for this group and the CPU priority

given to the group for scheduling purposes. These

variables are then stored with the pgroup struct and the

defaults for them are the maximum number of pages for

the memory limit, and the highest CPU priority.

By default, xv6 launches a shell on startup. Therefore,

it also makes sense for each new container to

immediately start a new shell for interacting with that

container. This shell is a fully-fledged shell that is

identical to that of the original one, with the caveat of

only being able to see console I/O when the console has

the shell’s group_id as the current active container. This

will be described more in detail later.

This changed from the initial design in the name change

from “namespace” to “pgroup,” which was to indicate

that this implementation falls somewhere between the

cgroups and namespaces of the Linux kernel

implementation.

4.2.2 Console Isolation
Console isolation is a concept we added to xv6 that was

not in our initial design document. Once we began

experimenting with the other features, it became

apparent that an intuitive way to direct input and output

to a particular process or container would be invaluable.

Our implementation of console isolation is essentially a

special case of I/O isolation. Specifically, we modified

two methods in console.c: consoleread and

consolewrite. For reading input from the console,

we check if the running process is within the active

pgroup and if it is not, we yield the CPU and continue

execution at the start of the input loop.

For isolating console output, we had more options. The

first option was to maintain a buffer of output for each

pgroup. However, we felt that the storage overhead

required was not worth it and we were weary of output

possibly being truncated if a process printed too much.

Another option for output isolation was to print all lines

from any group to the console but prepend the pgroup

ID to any line printed from outside of the active group.

We decided against this as well, since it would be messy

and yield output that is hard to follow and breaks up the

running program’s output. The solution we ultimately

decided to go with was similar to our solution for

handling input. If a process in a non-active group

attempts to print something, it will return to the start of

the output loop and yield the CPU. While this solution

limits the amount of background computation a printing

process can do, we figured such a solution would be best

for our implementation of xv6 as a research operating

system since it resulted in the simplest and cleanest

codebase.

With that in mind, if xv6 were focused more on an

efficient user experience, a variation on the first option

would be ideal. In this variation, we would maintain a

linked-list of strings that each represent a call to

consolewrite while the associated pgroup is in the

background. As soon as the pgroup became active, we

would iterate through this linked list, printing each item.

This solution would still allow for applications that print

to the console to run in the background without dirtying

the console while another pgroup is running.

The next steps for I/O isolation is to implement a general

solution on xv6. Such an implementation would be

remarkably similar to our solution for console isolation,

in that it would modify the read and write calls from all

inodes on xv6 to be aware of pgroups and operate in a

way that does not break isolation.

4.2.3 Process Isolation
In order to support process isolation, each proc struct,

which stores information about a given process, was

modified to add a group_id to it. This is used throughout

the whole implementation to support pgroups. It is

worth noting that currently it is impossible to change a

process’s container after it has started running, although

this should not be needed. This also has a workaround

in the form of forking the current process into a different

container, and killing the parent process, which

effectively achieves the goal of change a process’s

container. In a future iteration of our containers in xv6,

we intend to fix this bug.

Process isolation takes multiple forms, with the most

fundamental one being the inability of processes in

different containers to interact with each other.

Specifically, all the system calls are modified to check

that the operation is valid, in the sense that the process

doing the operation is not trying to perform it on a

process in a container which it should not be able to

interact with. This includes the newly added ps

command, which if it is run from a process within a

group, is only able to see and list processes that are in

that group.

In addition to this, process creation was modified to

ensure that processes in different containers had

separate pid counters. This was implemented through

modifying the function that creates a new process to

instead give each process a pid based on the counter for

that specific pgroup, rather than a global counter. Any

functions that created new processes before the OS

finished booting and set up containers now used a

default group_id of 0 for the purpose of pid creation.

4.2.4 CPU Resource Limiting
The hope for allowing priorities to different pgroups

was to let certain groups use more processor time in

relation to other groups and finish tasks quicker. The

caveat to allowing more processor time is that a good

scheduler should ensure scheduling is still relatively

fair, and that processes do not starve or have an

extremely long response time.

After implementing the scheduler algorithm designed

out in the initial implementation section that was

supposed to prioritize processes based on their pgroup

priority, multiple testing programs were written. One

approach was to time how long it took to compute a

large amount of primes numbers starting from one, and

the other was to time and count how many times the

scheduler picked a certain process that consistently

yielded in relation to other similar processes that were

given different priorities.

The testing programs revealed that the scheduler

implementation and design did not work well. When

there weren’t many processes, the scheduler would

schedule everything fairly and give equal CPU time.

Occasionally with the right number of processes and

setup the scheduler would work correctly, giving

different amounts of CPU time to different processes

based on their group priority, but overall the slight

slowdown was not worthwhile and the scheduling was

simply not correct. The scheduler may have given equal

time to each process because the initial design did not

account for such a small number of processes being

switched between so quickly, so the counting of wait

times did not work correctly. The second attempt at

designing the scheduler over produced dramatically

different results and did give different CPU times to

different processes, but did not prioritize based on the

group priority.

The original xv6 scheduler cycled through all the

processes and picked the first runnable one in the table.

In the end, the original xv6 scheduler was reverted to

and slightly modified to pick the first runnable process

after the last one ran so that each process would be given

a similar priority.

4.2.5 Memory Limiting
Memory limiting is implemented through changes to

allocuvm, deallocuvm, and pipe. As such, it does

not take into account memory used to set up the kernel

portion of each process, but does not any changes to a

process’ heap. The memory limit for a given group is set

at the time of its creation, through the second parameter

to the createpgroup call. This sets the limit of the

number of pages. When any of the affected methods

then attempt to allocate pages for a process’s use, they

call change_mem_used to request the amount of

pages desired. This method then checks how many

pages the current group has used, compared with the

maximum amount it may use, and from there returns the

number of pages that the given method is allowed to use.

The changes to the initial design were namely that, as

part of testing this feature, a user program memleak was

added. This attempts to allocate as much memory as

possible in the current group, going into an infinite loop

when the maximum is allocated. Another change was to

have memory requests go through allocuvm,

deallocuvm, and pipe rather than sbrk, because

these methods had the code to allocate or deallocate

memory at the page level.

5. EXPERIMENTAL RESULTS
Our implementation of containers in xv6 has relatively

few places that could serve as a bottleneck for

performance. All added features or either O(1) or O(n)

for n < 64 worst case runtime and memory complexity.

That said, we decided to include brief benchmarks and

summaries of all user-facing programs and operations.

 Runtime Memory

Usage

pgroupcreate ~0ms sh overhead

pgrouplist ~2ms 164 bytes +

normal user

program

overhead

Group switching ~0ms 4 bytes

ps ~1ms 94 bytes +

normal user

program

overhead

As one can see from the experimental runtimes, there is

near-negligible time added by our container

implementation.

5.1 Cost from Modification and Addition

of Global Variables
We added a global data structure and expanded one

other. The data structure we added was the

grouptable, which holds a spinlock and 8 pgroups.

The pgroup struct is currently 20 bytes, and the

grouptable is 212 bytes.

The structure we expanded was the ptable, which we

did by adding 2 additional fields, or 8 bytes, to the proc

struct. This then causes an additional usage of 512 bytes

through the ptable.

6. NEXT STEPS

6.1 Known Bugs
As with any operating system, our implementation of

containers in xv6 has its fair share of bugs. For one,

pgroupcreate will fail if run repeatedly without

switching to the new groups. We have two ideas for why

this bug may be happening. Our first intuition is that it

has something to do with too much data being pushed to

the stack at once, so new data is going over the edge and

causing an issue. Another possible explanation is that

our scheduler is faulty and for some reason is not

working properly once we get to a certain number of

runnable processes. This is supported by the fact that the

number of times we can run pgroupcreate without

it failing (and without switching to the new groups)

fluctuates between 3 and 5. Further, we have issues with

a shell seemingly randomly crashing when running

pgroupcreate multiple times in quick succession.

We believe this is a symptom of the same underlying

bug.

6.2 Desired Features
As was discussed in the introduction to this paper, there

are many different types of isolation that can be offered

by containers, some of which we chose not to implement

for the project. The most useful one that we could later

add would be file system isolation, as this would bring

containers closer to what VMs offer in terms of

functionality. This could be implemented through a file

system similar to copy-on-write fork. Such a file system

would copy any directory or file that has a change from

the root copy into a container. This would essentially

achieve a state where all of the containers have their

own file system state.

In addition to this, I/O isolation could be expanded to

encompass other forms of I/O besides the console (such

as network and other devices). However, it is worth

noting that currently xv6 lacks network support, so this

would first need to be implemented for network

isolation to become meaningful.

Finally, dynamic CPU limiting based on variable

parameters would also be a useful feature of our groups.

This was originally part of the design, but was cut due

to an impractical scheduler design. Implementing this

would require advanced knowledge of CPU schedulers.

Traditional linux containers often allow the choice of

what to isolate, rather than doing it all at once. For this

paper, it was a conscious choice to do it all at once, as

this makes reasoning about the model easier and

provides a more VM-like level of isolation. However,

for purposes where only a single type of isolation might

be required, it would be beneficial to split pgroups into

different namespaces and cgroups so that a user has

more control over the system.

7. LESSONS LEARNED
In working on allowing different priorities to different

groups, the scheduler was designed and written without

looking at other scheduler implementations. The

implementation of the new scheduler algorithm did not

work, but a massive amount was learned about the

scheduler along the way. In summary, going in blind

and trying to design and implement an algorithm using

only previous knowledge is not the best way to approach

a new topic always. A lot of time was spent between the

design and implementation, and a quick check may have

revealed how the scheduler did not work the way we had

originally thought. That’s not to say designing on your

own code is bad, but sinking a lot of time into something

to not produce results visible by other people is

occasionally frowned upon if they did not see the work

put in.

The implementation of the scheduler feels similar to

hashcodes, where you should not go and write your

hashcode algorithm blind but rather read a book first on

how to do so, then go and implement said algorithm.

8. CONCLUSION
The intent of this project was to design and implement

containers within xv6. Process ID isolation was

achieved, and multiple pgroups could be launched to run

simultaneously on xv6. In our implementation,

processes cannot see other processes running in

different pgroups. In addition, each pgroup starts

initially with a dedicated shell. Furthermore, memory

limiting was implemented so that pgroups can be

constrained to not take up all of the available memory

from the underlying shared resources. Designing this

project without looking at previous implementations

allowed for a deeper understanding about how isolation

of resources works.

9. REFERENCES
[1] https://github.com/kierangilliam/xv6c

https://github.com/kierangilliam/xv6c

