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ABSTRACT 
This work describes adding containers to xv6, an open 

source operating system designed for teaching 

fundamentals and showing the inner workings of an OS. 

xv6 is simple enough to be relatively straightforward to 

reason about, and allows the demonstration of what 

containers are and how they can be implemented. At the 

same time, it is robust enough to allow a full-fledged 

implementation and can allow others to reason about 

parts that can be further improved and added on in the 

future, making it the perfect platform to demonstrate a 

container implementation. In this paper, we address the 

benefits of containers, how we implemented them in 

xv6, what different variations of them exist, and how 

containers can be expanded upon. 

1. INTRODUCTION 
This paper discusses our container implementation for 

xv6, which aims to allow groups to be created with 

process isolation, memory limiting, and CPU priorities. 

This was implemented through adding a notion of 

pgroups. Pgroups are essentially a mix between 

namespaces and cgroups, providing both in one. 

Specifically, they add process isolation, by preventing 

processes in different pgroups from interacting with or 

seeing each other, except for the root pgroup. 

Additionally, they also provide I/O isolation for the 

console, preventing multiple shells running 

simultaneously in different pgroups from interfering 

from each other. Throughout this paper, the terms 

group, pgroup, and container are used interchangeably. 

As far as the aspects of pgroups that were implemented, 

this project added memory limiting, making it possible 

to limit how much memory a single pgroup can use. 

Dynamic CPU time distribution based on pgroup 

settings was attempted initially, but we ran into issues 

implementing it and ended up giving each container an 

equal portion of CPU time.  

Our implementation supports multi-core configurations, 

while preserving the integrities guaranteed by our 

definition of pgroups. Specifically, we support up to 8 

cores. 

The rest of the paper is organized as follows. §2 gives 

the background for this project, including linux 

namespaces and cgroups. §3 details the related work of 

other implementations of containers, both in xv6 and in 

linux. §4 discusses the details of our project, including 

the initial design and final implementation. §5 presents 

experimental results, primarily performance effects of 

our implementation. §6 notes ways to improve this 

work, including bugs that could be fixed and possible 

additional features. Finally, §7 describes what lessons 

we learned during this project, and §8 provides our 

conclusion from it. 

2. BACKGROUND 

Containers are a notion similar to that of Virtual 

Machines. They are made primarily for the purposes of 

providing isolation and allowing multiple potentially 

adversarial processes to share a single physical 

machine. As cloud computing becomes more 

widespread, guaranteeing a given cloud instance is 

isolated from others running on the same machine is 

becoming more important. 

Modern Linux containers work by creating 

namespaces and cgroups that provide different levels 

of isolation and resource limiting for each container. 

Namespaces allow each container to have multiple or 

all of: isolated processes, file system, memory, I/O, 

etc. They attach each process to a certain container, 

and only allow that process to access and see things in 

a way consistent with the view presented by the 

container. 

Cgroups, on the other hand, provide a way to limit the 

resources used by each container. They do not provide 

isolation by themselves but set a limit in the amount of 

memory and/or CPU usage that a single container can 

consume. This is useful for systems where fair 

allocation is important, such as cloud systems with 

multiple users, who may be requesting different 

amounts of memory and/or CPU usage. 

While Virtual Machines, when implemented properly, 

can provide near complete security and isolation, they 

incur a large overhead by having multiple guest 

operating systems running at the same time. When 

running multiple VM instances of the same guest OS, 

many of the resources stored by the hypervisor are 

duplicated and redundant. Additionally, extra overhead 

is added due to a guest OS having to go through the 

underlying hypervisor whenever they need to 



communicate with the hardware. All of this combined 

introduces a large amount of overhead to simple 

operations such as disk access, therefore inevitably 

slowing down the system. 

Containers as implemented are inherently less secure 

than VMs but are good enough for most purposes. 

They are also more efficient than VMs. They are 

especially useful in cases such a single user running 

multiple programs that have different dependencies, 

relying on different versions of some code. In this case, 

the user is not concerned about the security, but needs 

isolation in order to allow both programs to run 

simultaneously. While VMs can provide this, they do 

so with a large amount of overhead. In the case of 

containers, however, this overhead is much lower, 

while still allowing the programs to be run in tandem 

due to both seeing their necessary dependency code. 

Therefore, it is easy to see the particular applications 

of containers, and why it is interesting to build them in 

a system like xv6, in order to make it easier for others 

to understand the basics behind containers and to see 

how they are implemented in a relatively 

straightforward system. 

3. RELATED WORK 
On GitHub, there is a repository that adds container 

support to xv6 [1]. This work is based on adding a 

container struct in container.h. The container struct is 

similar to our pgroup one, but also has a disk use limit, 

a maximum number of processes for each container, and 

a map to every process. This repository does memory 

limiting through modifying kalloc and kfree. This 

allows them to have control over memory allocation for 

pages outside of the user virtual memory for each 

process. 

In order to better gain an understanding of container 

isolation, our group did not look at the existing xv6c 

implementation before our implementation of pgroups 

was completed. 

4. IMPLEMENTATION 

4.1 Initial Design 

4.1.1 Building ps 
The first portion to implement is a simplified version of 

the unix command ps which lists information about all 

processes running on a machine at a given time. This is 

necessary to show process isolation and resource 

limiting later on. 

To implement ps, a getprocs() system call is 

implemented that returns a list of all running processes 

in the environment and information about them. This 

system call is then used to implement the rudimentary 

version of ps that prints information about all running 

processes.  

4.1.2 Namespace Data Structure  
The next part of implementing containerization is 

adding support for a basic form of namespaces. This 

allows processes to be grouped together and for 

resources to be managed independently between groups. 

The main portion of adding namespaces is adding a field 

to the proc struct that is used as an index into an array 

of namespaces. The existing system calls and kernel 

exit/entries will be verified to ensure that the kernel 

operates with namespaces in mind. Furthermore, the rest 

of the kernel will need to be verified to ensure that other 

operations (such as process initialization and forking) 

are done with the knowledge of namespaces in mind. 

To create a new namespace, a user will use a 

createns() system call, which will need to be 

implemented. This system call would create a new 

namespace object. 

4.1.3 Process Isolation 
Processes will need to be isolated between containers so 

that different containers do not see each other’s’ 

processes unless the process was from the root where 

the container was spawned. This isolation should be 

able to be verified quickly by getprocs() and is the 

basic root of the containerization to be implemented. 

4.1.4 CPU Resource Limiting 
The goal with CPU Resource limiting is to allow for 

lower and higher priority containers based on the logical 

importance of their tasks. The CPU should be optimally 

utilized and kept as busy as possible if work is needed 

to be done. 

The preliminary idea on how to implement this is to use 

something akin to a standard OS scheduler. It could use 

something as simple as timed interrupts to ensure every 

container gets to run for an equal amount of time, 

cycling between containers. In an attempt to design a 

scheduler more from the ground up, the scheduler 

algorithm for these pgroups was to be designed without 

looking at scheduler algorithms online. 

The initial idea for implementation was to give all 

processes a ticker to see how long the process has been 

waiting and bump the ticker by the process’ group 

priority each time the process is skipped by the 

scheduler, so tasks waiting longer with a higher priority 

are more likely to be ran by the scheduler next time. This 

also in theory helps ensure that so long as ridiculous 

priority ratios are not given to different pgroups, 

different processes will not starve. 



4.1.5 Memory Resource Limiting  
To limit access to memory resources, sbrk() will be 

modified to limit the memory allocated to each 

namespace and processes within it. The amount of 

memory used by each namespace will be the sum of the 

number of physical pages used by each of of its 

processes. The limits will be set on creation of the 

namespace. 

4.2 Final Implementation 

4.2.1 pgroup Creation 
A pgroup struct is created through the user program 

pgroupcreate. pgroupcreate takes two 

optional parameters: the maximum number of pages that 

can be allocated for this group and the CPU priority 

given to the group for scheduling purposes. These 

variables are then stored with the pgroup struct and the 

defaults for them are the maximum number of pages for 

the memory limit, and the highest CPU priority.  

By default, xv6 launches a shell on startup. Therefore, 

it also makes sense for each new container to 

immediately start a new shell for interacting with that 

container. This shell is a fully-fledged shell that is 

identical to that of the original one, with the caveat of 

only being able to see console I/O when the console has 

the shell’s group_id as the current active container. This 

will be described more in detail later. 

This changed from the initial design in the name change 

from “namespace” to “pgroup,” which was to indicate 

that this implementation falls somewhere between the 

cgroups and namespaces of the Linux kernel 

implementation. 

4.2.2 Console Isolation 
Console isolation is a concept we added to xv6 that was 

not in our initial design document. Once we began 

experimenting with the other features, it became 

apparent that an intuitive way to direct input and output 

to a particular process or container would be invaluable.  

Our implementation of console isolation is essentially a 

special case of I/O isolation. Specifically, we modified 

two methods in console.c: consoleread and 

consolewrite. For reading input from the console, 

we check if the running process is within the active 

pgroup and if it is not, we yield the CPU and continue 

execution at the start of the input loop.  

For isolating console output, we had more options. The 

first option was to maintain a buffer of output for each 

pgroup. However, we felt that the storage overhead 

required was not worth it and we were weary of output 

possibly being truncated if a process printed too much. 

Another option for output isolation was to print all lines 

from any group to the console but prepend the pgroup 

ID to any line printed from outside of the active group. 

We decided against this as well, since it would be messy 

and yield output that is hard to follow and breaks up the 

running program’s output. The solution we ultimately 

decided to go with was similar to our solution for 

handling input. If a process in a non-active group 

attempts to print something, it will return to the start of 

the output loop and yield the CPU. While this solution 

limits the amount of background computation a printing 

process can do, we figured such a solution would be best 

for our implementation of xv6 as a research operating 

system since it resulted in the simplest and cleanest 

codebase.  

With that in mind, if xv6 were focused more on an 

efficient user experience, a variation on the first option 

would be ideal. In this variation, we would maintain a 

linked-list of strings that each represent a call to 

consolewrite while the associated pgroup is in the 

background. As soon as the pgroup became active, we 

would iterate through this linked list, printing each item. 

This solution would still allow for applications that print 

to the console to run in the background without dirtying 

the console while another pgroup is running. 

The next steps for I/O isolation is to implement a general 

solution on xv6. Such an implementation would be 

remarkably similar to our solution for console isolation, 

in that it would modify the read and write calls from all 

inodes on xv6 to be aware of pgroups and operate in a 

way that does not break isolation. 

4.2.3 Process Isolation 
In order to support process isolation, each proc struct, 

which stores information about a given process, was 

modified to add a group_id to it. This is used throughout 

the whole implementation to support pgroups. It is 

worth noting that currently it is impossible to change a 

process’s container after it has started running, although 

this should not be needed. This also has a workaround 

in the form of forking the current process into a different 

container, and killing the parent process, which 

effectively achieves the goal of change a process’s 

container. In a future iteration of our containers in xv6, 

we intend to fix this bug. 

Process isolation takes multiple forms, with the most 

fundamental one being the inability of processes in 

different containers to interact with each other. 

Specifically, all the system calls are modified to check 

that the operation is valid, in the sense that the process 

doing the operation is not trying to perform it on a 

process in a container which it should not be able to 

interact with. This includes the newly added ps 

command, which if it is run from a process within a 

group, is only able to see and list processes that are in 

that group. 



In addition to this, process creation was modified to 

ensure that processes in different containers had 

separate pid counters. This was implemented through 

modifying the function that creates a new process to 

instead give each process a pid based on the counter for 

that specific pgroup, rather than a global counter. Any 

functions that created new processes before the OS 

finished booting and set up containers now used a 

default group_id of 0 for the purpose of pid creation. 

4.2.4 CPU Resource Limiting 
The hope for allowing priorities to different pgroups 

was to let certain groups use more processor time in 

relation to other groups and finish tasks quicker. The 

caveat to allowing more processor time is that a good 

scheduler should ensure scheduling is still relatively 

fair, and that processes do not starve or have an 

extremely long response time. 

After implementing the scheduler algorithm designed 

out in the initial implementation section that was 

supposed to prioritize processes based on their pgroup 

priority, multiple testing programs were written. One 

approach was to time how long it took to compute a 

large amount of primes numbers starting from one, and 

the other was to time and count how many times the 

scheduler picked a certain process that consistently 

yielded in relation to other similar processes that were 

given different priorities. 

The testing programs revealed that the scheduler 

implementation and design did not work well. When 

there weren’t many processes, the scheduler would 

schedule everything fairly and give equal CPU time. 

Occasionally with the right number of processes and 

setup the scheduler would work correctly, giving 

different amounts of CPU time to different processes 

based on their group priority, but overall the slight 

slowdown was not worthwhile and the scheduling was 

simply not correct. The scheduler may have given equal 

time to each process because the initial design did not 

account for such a small number of processes being 

switched between so quickly, so the counting of wait 

times did not work correctly. The second attempt at 

designing the scheduler over produced dramatically 

different results and did give different CPU times to 

different processes, but did not prioritize based on the 

group priority. 

The original xv6 scheduler cycled through all the 

processes and picked the first runnable one in the table. 

In the end, the original xv6 scheduler was reverted to 

and slightly modified to pick the first runnable process 

after the last one ran so that each process would be given 

a similar priority. 

4.2.5 Memory Limiting 
Memory limiting is implemented through changes to 

allocuvm, deallocuvm, and pipe. As such, it does 

not take into account memory used to set up the kernel 

portion of each process, but does not any changes to a 

process’ heap. The memory limit for a given group is set 

at the time of its creation, through the second parameter 

to the createpgroup call. This sets the limit of the 

number of pages. When any of the affected methods 

then attempt to allocate pages for a process’s use, they 

call change_mem_used to request the amount of 

pages desired. This method then checks how many 

pages the current group has used, compared with the 

maximum amount it may use, and from there returns the 

number of pages that the given method is allowed to use.  

 

The changes to the initial design were namely that, as 

part of testing this feature, a user program memleak was 

added. This attempts to allocate as much memory as 

possible in the current group, going into an infinite loop 

when the maximum is allocated. Another change was to 

have memory requests go through allocuvm, 

deallocuvm, and pipe rather than sbrk, because 

these methods had the code to allocate or deallocate 

memory at the page level. 

5. EXPERIMENTAL RESULTS 
Our implementation of containers in xv6 has relatively 

few places that could serve as a bottleneck for 

performance. All added features or either O(1) or O(n) 

for n < 64 worst case runtime and memory complexity. 

That said, we decided to include brief benchmarks and 

summaries of all user-facing programs and operations. 

 Runtime Memory 

Usage 

pgroupcreate ~0ms sh overhead 

pgrouplist ~2ms 164 bytes + 

normal user 

program 

overhead 

Group switching  ~0ms 4 bytes 

ps ~1ms 94 bytes + 

normal user 

program 

overhead  

 

As one can see from the experimental runtimes, there is 

near-negligible time added by our container 

implementation. 



5.1 Cost from Modification and Addition 

of Global Variables 
We added a global data structure and expanded one 

other. The data structure we added was the 

grouptable, which holds a spinlock and 8 pgroups. 

The pgroup struct is currently 20 bytes, and the 

grouptable is 212 bytes. 

The structure we expanded was the ptable, which we 

did by adding 2 additional fields, or 8 bytes, to the proc 

struct. This then causes an additional usage of 512 bytes 

through the ptable. 

6. NEXT STEPS 

6.1 Known Bugs 
As with any operating system, our implementation of 

containers in xv6 has its fair share of bugs. For one, 

pgroupcreate will fail if run repeatedly without 

switching to the new groups. We have two ideas for why 

this bug may be happening. Our first intuition is that it 

has something to do with too much data being pushed to 

the stack at once, so new data is going over the edge and 

causing an issue. Another possible explanation is that 

our scheduler is faulty and for some reason is not 

working properly once we get to a certain number of 

runnable processes. This is supported by the fact that the 

number of times we can run pgroupcreate without 

it failing (and without switching to the new groups) 

fluctuates between 3 and 5. Further, we have issues with 

a shell seemingly randomly crashing when running 

pgroupcreate multiple times in quick succession. 

We believe this is a symptom of the same underlying 

bug. 

6.2 Desired Features 
As was discussed in the introduction to this paper, there 

are many different types of isolation that can be offered 

by containers, some of which we chose not to implement 

for the project. The most useful one that we could later 

add would be file system isolation, as this would bring 

containers closer to what VMs offer in terms of 

functionality. This could be implemented through a file 

system similar to copy-on-write fork. Such a file system 

would copy any directory or file that has a change from 

the root copy into a container. This would essentially 

achieve a state where all of the containers have their 

own file system state. 

In addition to this, I/O isolation could be expanded to 

encompass other forms of I/O besides the console (such 

as network and other devices). However, it is worth 

noting that currently xv6 lacks network support, so this 

would first need to be implemented for network 

isolation to become meaningful. 

Finally, dynamic CPU limiting based on variable 

parameters would also be a useful feature of our groups. 

This was originally part of the design, but was cut due 

to an impractical scheduler design. Implementing this 

would require advanced knowledge of CPU schedulers. 

Traditional linux containers often allow the choice of 

what to isolate, rather than doing it all at once. For this 

paper, it was a conscious choice to do it all at once, as 

this makes reasoning about the model easier and 

provides a more VM-like level of isolation. However, 

for purposes where only a single type of isolation might 

be required, it would be beneficial to split pgroups into 

different namespaces and cgroups so that a user has 

more control over the system. 

7. LESSONS LEARNED 
In working on allowing different priorities to different 

groups, the scheduler was designed and written without 

looking at other scheduler implementations. The 

implementation of the new scheduler algorithm did not 

work, but a massive amount was learned about the 

scheduler along the way. In summary, going in blind 

and trying to design and implement an algorithm using 

only previous knowledge is not the best way to approach 

a new topic always. A lot of time was spent between the 

design and implementation, and a quick check may have 

revealed how the scheduler did not work the way we had 

originally thought. That’s not to say designing on your 

own code is bad, but sinking a lot of time into something 

to not produce results visible by other people is 

occasionally frowned upon if they did not see the work 

put in.  

The implementation of the scheduler feels similar to 

hashcodes, where you should not go and write your 

hashcode algorithm blind but rather read a book first on 

how to do so, then go and implement said algorithm. 

8. CONCLUSION 
The intent of this project was to design and implement 

containers within xv6. Process ID isolation was 

achieved, and multiple pgroups could be launched to run 

simultaneously on xv6. In our implementation, 

processes cannot see other processes running in 

different pgroups. In addition, each pgroup starts 

initially with a dedicated shell. Furthermore, memory 

limiting was implemented so that pgroups can be 

constrained to not take up all of the available memory 

from the underlying shared resources. Designing this 

project without looking at previous implementations 

allowed for a deeper understanding about how isolation 

of resources works. 
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