
Booting Linux Within lvisor
Nicholas Lunceford and Xinyu Sui
luncenic@uw.edu, suix2@uw.edu

University of Washington

ABSTRACT
This paper outlines the implementation of a Linux
bootloader inside the lvisor hypervisor. Although this is not
a novel task, it does give the chance to inspect how exactly
Linux boots, as well as how to perform the handoff from
the hypervisor into a production kernel. Additionally, since
the existing documentation of Linux’s long mode boot
protocol is difficult to both find and understand, we will
give a breakdown of the exact process necessary to boot
Linux in 64-bit mode.

1. INTRODUCTION
lvisor was provided as a minimal hypervisor, capable of
running a virtual machine with a single core, but restricted
to a few toy operating systems. While the minimalism does
make reading and comprehending the source code
significantly easier than digging through a more fully
featured hypervisor, it means that the practical usefulness
of lvisor is almost nonexistent. As a result, we decided to
add a Linux bootloader to lvisor capable of running
Buildroot Linux kernels.

Although Linux has been successfully virtualized many
times before, creating a bootloader, even one based on
existing code, is not easy. As a result, a significant amount
of this paper will be dedicated to describing the steps we
found necessary in creating our bootloader, as well as steps
we chose to omit for various reasons.

Aside from the Linux boot protocol itself, we will also go
over the specific transition from lvisor to Linux using our
bootloader. While this is less applicable to other
implementations, whether they be based in other
hypervisors or as a standalone bootloader, it does give an
reference for how the specific platform affects a
bootloader’s implementation.

The reset of this paper is organized as follows. Section 2
discusses background and previous work and resources
about booting Linux kernel in long mode. Section 3 gives
an overview on lvisor. Section 4, as a concise interpretation
of the long mode Linux boot protocol, goes through
requirements and eliminates unnecessities for booting
Linux. Section 5 presents our implementation in detail.
Section 6 discusses the result of our implementation and
some limitations we are still facing. Section 7 discusses

some possible exploration in the future. Section 8
concludes.

2. RELATED WORK
2.1 Linux Boot Process

The official Linux boot documentation that we found
focuses primarily on the real mode boot protocol. Although
the 32- and 64-bit protocols are mentioned, they are not
described in such detail [1]. However, much of the real
mode documentation also applies to the 64-bit boot
protocol, most notably the setup header described in section
4.2. While we will briefly describe the most important
elements in this header, as well as the basics of booting
Linux, the official documentation should be used as a
reference or for additional detail.

2.2 bzImage Kernel
Linux kernel image is provided as a bzImage file. Since the
Linux kernel itself is large compared to the real mode
address space, the main kernel itself is compressed within
the bzImage file [2]. Thus, the bzImage file contains the
setup headers for booting Linux (described in more detail
in section 4.2), real mode code, protected mode code to
decompress the kernel proper, and then the compressed
kernel itself [2].

2.3 Existing Hypervisors
Since Linux has been booted in a hypervisor before, one of
our strongest reference points was another hypervisor.
lguest64. While it is a 64-bit port of the lguest hypervisor,
the bootloader it uses is still a protected-mode bootloader.
However, it did provide a skeleton of code for us to work
with in creating our bootloader, and it proved to be the
foundation for our final efforts in creating the Linux
bootloader.

3. LVISOR OVERVIEW
lvisor is run through QEMU on a Linux platform. After
booting, it first initializes itself as the hypervisor,
leveraging Intel’s VT-x implementation. Once it is fully
initialized, it instantiates and transfers control to its guest,
which initially runs lvisor’s own firmware code. As lvisor’s
initialization mentioned above is not the focus of this
project, we will not go into more detail about it; instead, we
will focus on lvisor’s firmware, and the firmware’s handoff
to the actual guest OS. However, the host lvisor is
responsible for creating the guest_params struct for use in

mailto:luncenic@uw.edu
mailto:suix2@uw.edu

the firmware. This struct contains the critical information
needed to boot the guest OS, including the location of the
guest OS in memory, the e820 table that informs the guest
of valid regions of memory, and the command line with
which to initialize the guest OS.

3.1 Firmware Initialization
Since the firmware is the first code that runs as the guest,
its first duty is to setup the virtualized processor and
transition it from the initial real mode to the 64-bit long
mode. This is done in assembly, and is located in
firmware/head.S. Once the transition is done, the main
function in firmware/main.c is executed. This function
simply outputs some informational text, and calls the
bootloaders implemented in lvisor.

3.2 Multiboot Bootloader
Although the multiboot loader plays no part in booting
Linux itself, it served as a starting example for our efforts
in creating a Linux bootloader. The multiboot bootloader’s
primary responsibility is to serve as the bridge between the
lvisor host and the multiboot guest. While it naturally must
actually hand execution off to the guest, it also must
provide the information from lvisor to the guest by
populating the multiboot headers. Finally, since the
multiboot OSes for lvisor are 32-bit, the multiboot
bootloader steps back into assembly to transition the
processor back to 32-bit mode before finally jumping into
the guest kernel. Once this is done, the guest kernel runs
normally.

4. LINUX BOOTLOADER OVERVIEW
The Linux kernel contains a designated entry point for an
x86 system already in 64-bit mode, but does have some
requirements for the bootloader to fulfill before entering the
kernel. The largest of these is the boot parameters structure,
but the kernel also requires a valid Global Descriptor Table
(GDT), as well as a few other miscellaneous mode
requirements.

4.1 Boot Parameters
Linux defines a boot_params structure, also known as the
“zero page”, that must be utilized by the bootloader to boot
Linux successfully. The default boot_params structure is
located at the very beginning of the kernel image.

Some of the fields in this structure, such as the size of the
setup code in the setup header, are intended to be read for
information about the kernel image. And others, such as the
commandline's location, are settings that can be specified
by the bootloader. The fields we are interested in this
project for booting Linux kernel are ext_ramdisk_image,
ext_ramdisk_size, ext_cmd_line_ptr, e820_entries,
e820_table, and the setup header (hdr).

ext_ramdisk_image, ext_ramdisk_size, and
ext_cmd_line_ptr are the high 32 bits for ramdisk_image,
ramdisk_size, and cmd_line_ptr in the setup header
(discussed in 4.2), for compatibility with 64-bit mode and
such that all components needed to boot the kernel can be
loaded in memory at an address above 4G. e820_entries
and e820_table, let the bootloader to pass e820 mapping
information to the OS.

4.2 Setup Header
Linux boot protocol [2] discussed the setup header in detail.
Linux setup header was originally intended for real mode
and then expanded to be compatible with protected mode.
Therefore, there are some unnecessary or incomplete fields
when the kernel is booted directly in long mode. Examples
of fields that are unnecessary in the 64-bit protocol are
heap_end_ptr (offset 0x224) and loadflags (offset 0x211).
While not all fields are explored for their necessity, we will
mostly discuss fields we consider minimally required to
boot the kernel, and leave full exploration as a future work.
As discussed in previous section, although required,
ramdisk_image (offset 0x218), ramdisk_size (offset 0x21c),
and cmd_line_ptr (offset 0x228) in the setup header are
incomplete and only contains the low 32 bits when the
kernel is booted in long mode. ramdisk_image and
ramdisk_size, along with their extensions, contain the
address and size respectively of the initial ramdisk, and
must be filled out if a ramdisk is to be provided. Similarly,
cmd_line_ptr and its extension contain a pointer to the
string command line for the kernel. Even if a command line
is not provided, this variable should point to either a null
terminator, or, preferably, “auto”.

Several fields in the header provide necessary information
about the kernel image back to the bootloader. In particular,
header (offset 0x202) contains magic number “HdrS”,
which can be used to identify that the file is a Linux kernel.
Similarly, version (offset 0x206) identifies the Linux boot
protocol version. Finally, setup_sects (offset 0x1f1) is the
size of the setup code in 512-byte sectors, after which the
protected mode code starts.

4.3 Other Requirements
Linux also requires a valid GDT to be loaded. Specifically,
the code and data segments must be at least 4GB in size,
with the code segment loaded at 0x10 in the GDT, and the
data segment at 0x18 in the GDT. Additionally, the code
segment must be read/execute, and the data segment must
be read/write. Next, the CS register must be set to the code
segment value, and the DS, ES, and SS registers must be
set to the data segment value. Finally, interrupts must be
disabled, and rsi must point to the prepared boot_params
struct. Once this is done, the bootloader can jump to the
64-bit entry point, which is the beginning of the protected

mode code, calculable from the setup_sects value in the
setup header, adding 0x200.

5. IMPLEMENTATION
The majority of development time was spent researching
and looking through documentation related to the Linux
booting process. The actual code written for this project
was only a few tens of lines, and is wholly contained within
the linux.c file within lvisor. This code is invoked when the
multiboot loader already in lvisor fails to load a kernel, and
the Linux bootloader is specifically designed to load
bzImage files.

Bootloader works as follows. First, the boot parameters
structure is allocated, and the existing headers within the
bzImage are read into it. Then the magical number “HdrS”
is checked to make sure the image file is valid for this
bootloader. Next, the required boot parameters are filled in
as necessary, including e820 mapping, ramdisk
information, and command line pointer. Finally, the
bootloader uses assembly to disable interrupts and jump to
the kernel's entry point. Because lvisor’s firmware
automatically sets up a valid GDT, we do not need to set up
our own GDT. Additionally, since the firmware code is in
64-bit mode, it can be written in C rather than assembly.
While it would certainly be possible to initialize everything
necessary in assembly, it would be significantly more
difficult. For this reason, if one is writing a bootloader
starting from real mode, they would need to decide whether
they would rather perform the transition to 64-bit mode and
boot Linux as described above, or instead follow the real
mode boot protocol not included in this paper.

6. RESULTS
The bootloader successfully starts and runs Buildroot Linux
kernels within lvisor. We have found a few limitations,
however. First, while Linux will successfully execute
commands from installed packages, we are unable to get it
to execute arbitrary programs provided from other sources,
such as simply located within the file system. Second,
Linux is unable to use any networking. Adding these two
capabilities would most likely require reconfiguring the
Linux kernel. Finally, the Linux kernel has no persistent
disk - while the initial file system can be loaded and
functions correctly, any modifications to the file system
will be lost if lvisor is restarted.

7. FUTURE WORK
For the bootloader, as discussed in previous sections, there
are a few areas to be explored in the future, such as fully
identifying the usage of each field in the setup header.
Additionally, backwards compatibility would be an
important addition to the bootloader, as it currently only
support modern Linux boot protocols in 64-bit mode.

lvisor itself can be expanded in the future to provide more
functionality to Linux. This may include changes in the
configurations used to build Linux kernel. One function we
explored is to add multiprocessor support to lvisor. We
modified lvisor to let Linux kernel run natively on physical
CPUs. We changed the limit on supported number of
CPUs, NR_CORE, from 1 to 64 to be compatible with our
Linux kernel configuration, and let all writes to the MSR
pass through lvisor to physical CPUs, so that the guest
system can wake CPUs up. Although this method allows
the guest to use multiple processors, it presents a security
risk as lvisor does not manage these cores. Modifying
lvisor with multicore support would make it much more
secure.

Finally, the issues outlined in section 6 could be remedied.

8. CONCLUSION
In this paper, we discussed necessary setup and procedure
for a bootloader to boot Linux in long mode. While our
implementation was based in lvisor, the same protocol with
the same steps are required for even a standard bootloader.
By collecting and condensing the information necessary to
create a Linux bootloader, we hope that we can make future
research on booting Linux less difficult.

9. REFERENCES
[1] 0xAX, "Linux Inside", GitBook, 2018. [Online].

Available:
https://0xax.gitbooks.io/linux-insides/content/.
[Accessed: 11- Mar- 2018].

[2] L. Torvalds, "Linux Repository", GitHub, 2018.
[Online]. Available: https://github.com/torvalds/linux.
[Accessed: 11- Mar- 2018].

[3] psomas, "lguest64 Repository", GitHub, 2018. [Online].
Available: https://github.com/psomas/lguest64.
[Accessed: 11- Mar- 2018].

https://0xax.gitbooks.io/linux-insides/content/
https://github.com/torvalds/linux
https://github.com/psomas/lguest64

