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ABSTRACT 
This paper outlines the implementation of a Linux        
bootloader inside the lvisor hypervisor. Although this is not         
a novel task, it does give the chance to inspect how exactly            
Linux boots, as well as how to perform the handoff from           
the hypervisor into a production kernel. Additionally, since        
the existing documentation of Linux’s long mode boot        
protocol is difficult to both find and understand, we will          
give a breakdown of the exact process necessary to boot          
Linux in 64-bit mode. 
 

1. INTRODUCTION 
lvisor was provided as a minimal hypervisor, capable of         
running a virtual machine with a single core, but restricted          
to a few toy operating systems. While the minimalism does          
make reading and comprehending the source code       
significantly easier than digging through a more fully        
featured hypervisor, it means that the practical usefulness        
of lvisor is almost nonexistent. As a result, we decided to           
add a Linux bootloader to lvisor capable of running         
Buildroot Linux kernels. 
 
Although Linux has been successfully virtualized many       
times before, creating a bootloader, even one based on         
existing code, is not easy. As a result, a significant amount           
of this paper will be dedicated to describing the steps we           
found necessary in creating our bootloader, as well as steps          
we chose to omit for various reasons. 
 
Aside from the Linux boot protocol itself, we will also go           
over the specific transition from lvisor to Linux using our          
bootloader. While this is less applicable to other        
implementations, whether they be based in other       
hypervisors or as a standalone bootloader, it does give an          
reference for how the specific platform affects a        
bootloader’s implementation. 
 
The reset of this paper is organized as follows. Section 2           
discusses background and previous work and resources       
about booting Linux kernel in long mode. Section 3 gives          
an overview on lvisor. Section 4, as a concise interpretation          
of the long mode Linux boot protocol, goes through         
requirements and eliminates unnecessities for booting      
Linux. Section 5 presents our implementation in detail.        
Section 6 discusses the result of our implementation and         
some limitations we are still facing. Section 7 discusses         

some possible exploration in the future. Section 8        
concludes. 
 

2. RELATED WORK 
2.1 Linux Boot Process 

The official Linux boot documentation that we found        
focuses primarily on the real mode boot protocol. Although         
the 32- and 64-bit protocols are mentioned, they are not          
described in such detail [1]. However, much of the real          
mode documentation also applies to the 64-bit boot        
protocol, most notably the setup header described in section         
4.2. While we will briefly describe the most important         
elements in this header, as well as the basics of booting           
Linux, the official documentation should be used as a         
reference or for additional detail. 
 

2.2 bzImage Kernel 
Linux kernel image is provided as a bzImage file. Since the           
Linux kernel itself is large compared to the real mode          
address space, the main kernel itself is compressed within         
the bzImage file [2]. Thus, the bzImage file contains the          
setup headers for booting Linux (described in more detail         
in section 4.2), real mode code, protected mode code to          
decompress the kernel proper, and then the compressed        
kernel itself [2]. 
 

2.3 Existing Hypervisors 
Since Linux has been booted in a hypervisor before, one of           
our strongest reference points was another hypervisor.       
lguest64. While it is a 64-bit port of the lguest hypervisor,           
the bootloader it uses is still a protected-mode bootloader.         
However, it did provide a skeleton of code for us to work            
with in creating our bootloader, and it proved to be the           
foundation for our final efforts in creating the Linux         
bootloader. 
 

3. LVISOR OVERVIEW 
lvisor is run through QEMU on a Linux platform. After          
booting, it first initializes itself as the hypervisor,        
leveraging Intel’s VT-x implementation. Once it is fully        
initialized, it instantiates and transfers control to its guest,         
which initially runs lvisor’s own firmware code. As lvisor’s         
initialization mentioned above is not the focus of this         
project, we will not go into more detail about it; instead, we            
will focus on lvisor’s firmware, and the firmware’s handoff         
to the actual guest OS. However, the host lvisor is          
responsible for creating the guest_params struct for use in         
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the firmware. This struct contains the critical information        
needed to boot the guest OS, including the location of the           
guest OS in memory, the e820 table that informs the guest           
of valid regions of memory, and the command line with          
which to initialize the guest OS. 
 

3.1 Firmware Initialization 
Since the firmware is the first code that runs as the guest,            
its first duty is to setup the virtualized processor and          
transition it from the initial real mode to the 64-bit long           
mode. This is done in assembly, and is located in          
firmware/head.S. Once the transition is done, the main        
function in firmware/main.c is executed. This function       
simply outputs some informational text, and calls the        
bootloaders implemented in lvisor. 
 

3.2 Multiboot Bootloader 
Although the multiboot loader plays no part in booting         
Linux itself, it served as a starting example for our efforts           
in creating a Linux bootloader. The multiboot bootloader’s        
primary responsibility is to serve as the bridge between the          
lvisor host and the multiboot guest. While it naturally must          
actually hand execution off to the guest, it also must          
provide the information from lvisor to the guest by         
populating the multiboot headers. Finally, since the       
multiboot OSes for lvisor are 32-bit, the multiboot        
bootloader steps back into assembly to transition the        
processor back to 32-bit mode before finally jumping into         
the guest kernel. Once this is done, the guest kernel runs           
normally. 
 

4. LINUX BOOTLOADER OVERVIEW 
The Linux kernel contains a designated entry point for an          
x86 system already in 64-bit mode, but does have some          
requirements for the bootloader to fulfill before entering the         
kernel. The largest of these is the boot parameters structure,          
but the kernel also requires a valid Global Descriptor Table          
(GDT), as well as a few other miscellaneous mode         
requirements. 
 

4.1 Boot Parameters 
Linux defines a boot_params structure, also known as the         
“zero page”, that must be utilized by the bootloader to boot           
Linux successfully. The default boot_params structure is       
located at the very beginning of the kernel image. 
 
Some of the fields in this structure, such as the size of the             
setup code in the setup header, are intended to be read for            
information about the kernel image. And others, such as the          
commandline's location, are settings that can be specified        
by the bootloader. The fields we are interested in this          
project for booting Linux kernel are ext_ramdisk_image,       
ext_ramdisk_size, ext_cmd_line_ptr, e820_entries,   
e820_table, and the setup header (hdr).      

ext_ramdisk_image, ext_ramdisk_size, and   
ext_cmd_line_ptr are the high 32 bits for ramdisk_image,        
ramdisk_size, and cmd_line_ptr in the setup header       
(discussed in 4.2), for compatibility with 64-bit mode and         
such that all components needed to boot the kernel can be           
loaded in memory at an address above 4G. e820_entries         
and e820_table, let the bootloader to pass e820 mapping         
information to the OS. 
 

4.2 Setup Header 
Linux boot protocol [2] discussed the setup header in detail.          
Linux setup header was originally intended for real mode         
and then expanded to be compatible with protected mode.         
Therefore, there are some unnecessary or incomplete fields        
when the kernel is booted directly in long mode. Examples          
of fields that are unnecessary in the 64-bit protocol are          
heap_end_ptr (offset 0x224) and loadflags (offset 0x211).       
While not all fields are explored for their necessity, we will           
mostly discuss fields we consider minimally required to        
boot the kernel, and leave full exploration as a future work.           
As discussed in previous section, although required,       
ramdisk_image (offset 0x218), ramdisk_size (offset 0x21c),      
and cmd_line_ptr (offset 0x228) in the setup header are         
incomplete and only contains the low 32 bits when the          
kernel is booted in long mode. ramdisk_image and        
ramdisk_size, along with their extensions, contain the       
address and size respectively of the initial ramdisk, and         
must be filled out if a ramdisk is to be provided. Similarly,            
cmd_line_ptr and its extension contain a pointer to the         
string command line for the kernel. Even if a command line           
is not provided, this variable should point to either a null           
terminator, or, preferably, “auto”. 
 
Several fields in the header provide necessary information        
about the kernel image back to the bootloader. In particular,          
header (offset 0x202) contains magic number “HdrS”,       
which can be used to identify that the file is a Linux kernel.             
Similarly, version (offset 0x206) identifies the Linux boot        
protocol version. Finally, setup_sects (offset 0x1f1) is the        
size of the setup code in 512-byte sectors, after which the           
protected mode code starts. 
 

4.3 Other Requirements 
Linux also requires a valid GDT to be loaded. Specifically,          
the code and data segments must be at least 4GB in size,            
with the code segment loaded at 0x10 in the GDT, and the            
data segment at 0x18 in the GDT. Additionally, the code          
segment must be read/execute, and the data segment must         
be read/write. Next, the CS register must be set to the code            
segment value, and the DS, ES, and SS registers must be           
set to the data segment value. Finally, interrupts must be          
disabled, and rsi must point to the prepared boot_params         
struct. Once this is done, the bootloader can jump to the           
64-bit entry point, which is the beginning of the protected          



mode code, calculable from the setup_sects value in the         
setup header, adding 0x200. 
 

5. IMPLEMENTATION 
The majority of development time was spent researching        
and looking through documentation related to the Linux        
booting process. The actual code written for this project         
was only a few tens of lines, and is wholly contained within            
the linux.c file within lvisor. This code is invoked when the           
multiboot loader already in lvisor fails to load a kernel, and           
the Linux bootloader is specifically designed to load        
bzImage files. 
 
Bootloader works as follows. First, the boot parameters        
structure is allocated, and the existing headers within the         
bzImage are read into it. Then the magical number “HdrS”          
is checked to make sure the image file is valid for this            
bootloader. Next, the required boot parameters are filled in         
as necessary, including e820 mapping, ramdisk      
information, and command line pointer. Finally, the       
bootloader uses assembly to disable interrupts and jump to         
the kernel's entry point. Because lvisor’s firmware       
automatically sets up a valid GDT, we do not need to set up             
our own GDT. Additionally, since the firmware code is in          
64-bit mode, it can be written in C rather than assembly.           
While it would certainly be possible to initialize everything         
necessary in assembly, it would be significantly more        
difficult. For this reason, if one is writing a bootloader          
starting from real mode, they would need to decide whether          
they would rather perform the transition to 64-bit mode and          
boot Linux as described above, or instead follow the real          
mode boot protocol not included in this paper. 
 

6. RESULTS 
The bootloader successfully starts and runs Buildroot Linux        
kernels within lvisor. We have found a few limitations,         
however. First, while Linux will successfully execute       
commands from installed packages, we are unable to get it          
to execute arbitrary programs provided from other sources,        
such as simply located within the file system. Second,         
Linux is unable to use any networking. Adding these two          
capabilities would most likely require reconfiguring the       
Linux kernel. Finally, the Linux kernel has no persistent         
disk - while the initial file system can be loaded and           
functions correctly, any modifications to the file system        
will be lost if lvisor is restarted. 
 

7. FUTURE WORK 
For the bootloader, as discussed in previous sections, there         
are a few areas to be explored in the future, such as fully             
identifying the usage of each field in the setup header.          
Additionally, backwards compatibility would be an      
important addition to the bootloader, as it currently only         
support modern Linux boot protocols in 64-bit mode. 

 
lvisor itself can be expanded in the future to provide more           
functionality to Linux. This may include changes in the         
configurations used to build Linux kernel. One function we         
explored is to add multiprocessor support to lvisor. We         
modified lvisor to let Linux kernel run natively on physical          
CPUs. We changed the limit on supported number of         
CPUs, NR_CORE, from 1 to 64 to be compatible with our           
Linux kernel configuration, and let all writes to the MSR          
pass through lvisor to physical CPUs, so that the guest          
system can wake CPUs up. Although this method allows         
the guest to use multiple processors, it presents a security          
risk as lvisor does not manage these cores. Modifying         
lvisor with multicore support would make it much more         
secure. 
 
Finally, the issues outlined in section 6 could be remedied. 
 

8. CONCLUSION 
In this paper, we discussed necessary setup and procedure         
for a bootloader to boot Linux in long mode. While our           
implementation was based in lvisor, the same protocol with         
the same steps are required for even a standard bootloader.          
By collecting and condensing the information necessary to        
create a Linux bootloader, we hope that we can make future           
research on booting Linux less difficult. 
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