Autonomous Robotics

Winter 2026

Abhishek Gupta, Siddhartha Srinivasa
TAs: Carolina Higuera, Entong Su, Rishabh Jain

Recap

Problem 1: Two Room Challenge

Particles begin equally distributed, no motion or observation

All particles migrate to one room!

Reason: Resampling Increases Variance

50% prob. of resampling particle from Room 1 vs Room 2
31% prob. of preserving 50-50 particle split

L LG

All particles migrate to one room!

ldea 1: Judicious Resampling

s Key idea: resample less often! (e.g., if the robot is stopped,
don’t resample). Too often may lose particle diversity,

infrequently may waste particles

= Common approach: don’t resample if weights have low
variance

= Can be implemented in several ways: don’t resample when...

= ...all weights are equal
= ..weights have high entropy
= ..ratio of max to min weights is low

ldea 2: Low-Variance Resampling

Sample one random number r ~ [O, ﬁ]

Covers space of samples more systematically (and more
efficiently)

If all samples have same importance weight, won’t lose
particle diversity

Other Practical Concerns

= How many particles is enough?

= Typically need more particles at the beginning (to cover possible states)

= KLD Sampling (Fox, 2001) adaptively increases number of particles when state
uncertainty is high, reduces when state uncertainty is low

m Particle filtering with overconfident sensor models
= Squash sensor model prob. with power of 1/m

= Sample from better proposal distribution than motion model
=« Manifold Particle Filter (Koval et al., 2017) for contact sensors

= Particle starvation: no particles near current state

https://proceedings.neurips.cc/paper/2001/file/c5b2cebf15b205503560c4e8e6d1ea78-Paper.pdf
https://www.cs.cmu.edu/~kaess/pub/Koval17icra.pdf

MuSHR Localization Project

Implement kinematic car motion model

Implement different factors of single-beam sensor
model

Combine motion and sensor model with the Particle
Filter algorithm

Lecture Outline

Recap

Kalman Filtering

Can we get closed form updates for Bayesian Filtering?

Need to choose form of probability distributions

= Dynamics (Prediction)

Bel(xy) = /p(azt|ut,l,"lxt_1)Bel(:13t_1)da:t_l

= Measurement (Correction)

Bel(z,) = nP(z|x:)Bel(x;)

Tractable computation of Bayesian posteriors

Solution: Linear Gaussian Models

= Dynamics (Prediction)

B—el(azt) — /p(:ct|ut,xt_l)Bel(:zzt_l)dazt_l

= Measurement (Correction)

Bel(z,) = nP(z|x{)Bel(x;)

Model as Linear Gaussian

Let’s take a little Gaussian detour

Gaussians (1D)

= Gaussian with mean () and standard deviation (O)

X ~N(p,0?)

T — 2
p(x; p,0°) = G\/lﬂexp(—(205))

p(x; p, 0?)

34.1% | 34.1%

Gaussians (2D) — we won’t get too deep into this!

p(x) = N(1,%) y

A u?
\/'ul

(
xa ‘LLa Y2
X = , MU= U1
\ xb 'ub

(Ay/?
2 _ Zaa Z:ab])\1/2

2D examples

025.]:
02|

015!

[O; O]
[1 0;0 I]

7 TN
,,;z;;gz,fo,%f.g“‘}“\\m

(:/:III', ““‘\:\\\\

M <
I

6 0;0.6

025
02
0.15] B
0.1

0.05

i
SSISTS TS

e
e
B e e e
SIS

0; O]
[2 0; 0 2]

Important Identities: Gaussians

[X ~N(p,X)
Forward propagation ! Y=AX+B+e — YNN(A,LL+B,AEAT+Q)
e ~N(0,Q)

\

(X ~ N(p, %)
Conditioning Y =CX+B4+5§ — XY =yo~N(u+ K(yo— Cu),(I — KC)X)
5~ N0, R)

= Marginalization and conditioning in Gaussians results in Gaussians

= We stay in the “Gaussian world” as long as we start with Gaussians and perform
only linear transformations.

Discrete Kalman Filter

Kalman filter = Bayes filter with Linear Gaussian dynamics and sensor models

Lt—1 Tt Lt4+1

Discrete Kalman Filter: Scalar Version

Estimates the state x of a discrete-time controlled
process that is governed by the linear stochastic
difference equation

Ty = AQxi_1 + but —+ €4
e: ~ N(0,q) \
with a measurement Linear Gaussian

Zt:C.’L‘t—Fé’t‘ //

5tNN(O,T)

Discrete Kalman Filter: Matrix Version

Estimates the state x of a discrete-time controlled
process that is governed by the linear stochastic
difference equation

Lt — Ail?t_l -+ But —+ €4
e ~ N(0,Q) \
with a measurement Linear Gaussian

Zt:CfEt—|—5t ‘ /

575 NN(O,R)

Components of a Kalman Filter

A Matrix (n x n) that describes how the state evolves
from t-1 to t without controls or noise.

B Matrix (n x) that describes how the control u,,
changes the state from t-7to t

C Matrix (k x n) that describes how to map the state x, to
an observation z,.

€4 Random variables representing the process and
measurement noise that are assumed to be
5 independent and normally distributed with covariance
t R and Q respectively.

21 Goal of the Kalman Filter: Same as Bayes Filter

Belief

Q@ @ e

|dea: recursive update

_ L
Lt—1 Lt t+1 ocp(zt’ajt)/p(fb‘t‘ilﬁt_l,Ut)p(xt—l‘fzo:t—lauO:t—l)

}
1 3 Measurement
@ @ @ Dynamics
Recursive Belief

2 step process:

= Dynamics update (incorporate action)

= Measurement update (incorporate sensor reading)

Bayes Filters

Apply Markov to get a recursive update!

Step 0. Start with the belief at time step t-1
bel(xi_1)

Step 1: Prediction - push belief through dynamics given action

bel :Bt ZP wt|ut,$t 1)561(5’% 1)

Linear Gaussian

Step 2: Correction - apply Bayes rule given

bel(x) = nP(z|z:)bel(x;)

Linear Gaussian Systems: Initialization

= Initial belief is normally distributed:
Bel(ili()) — N(/LQ, ZO)

= Bel(x;) atany step tis: N (f¢)0.¢, 2¢(0:t)

= Bel(x;) atany step tis: N(:ut|0:t—17 Z15|():15—1)

Linear Gaussian Systems: Prediction

= Integrate the effect of one action under the dynamics, before measurement comes in

ri11 = Axy + Bugy1 + €141 err1 ~ N(0,Q¢i1)
p(Tig1|Te, upr1) = N(Azy + Bugyr, Qir1)

B—fil(ilft+1) Bel (xt)

p($t+1|20:t7u0:t—|—1) — /p(xt’UO:taZO:t)p($t+1‘ut+1axt)d$t

@ Gaussian, easy!

Linear Gaussian Systems: Prediction

Integrate the effect of one action under the dynamics, before measurement comes in

Ti+1 = Axy + Bug1 + €141

p(xeat|re, uer1) = N(Azy + Bugyr, Qeyn)

B—fil(ilft+1) Bel (xt)

€rr1 ~ N(0,Qi41)

p($t+1|20:tauozt+1) — /P(SUt’UO:t,Zozt)p(33t+1‘ut+1,fl3t)dﬂ3t

-

1

B

Y =AX +B+e¢ = Y ~N(Au+ B, ASA” + Q)
GNN(O7Q)

J

Gaussian, easy!

Linear Gaussian Systems: Prediction

Integrate the effect of one action under the dynamics, before measurement comes in

g A
p<xt‘u0:ta Zo:t) — N(:ut|0:t7 Z1&|0:t) rX ~ N(/L, E)
Tip1 = Axy + Bugyr + €441 (Y =AX+B+e = Y ~N(Au+ B,ASAT + Q)
€41~ N(0,Qey1) e~ N(0,C)

_

J

Previous belief p(xt ’UO:t, Zo;t) = N(/Ltyo;t, Et\ozt)

Belief Update (@1 |uoe41, 20:4) = N(Aut|o:t + Bugy1, A2t|0:tAT + Q1)

Intuition: Scale and shift the mean according to dynamics, uncertainty grows quadratically!

Linear Gaussian Systems: Prediction

Previous belief p(xe|uo:t, 20:¢) = N (thejo:4, Dejo:t)
Belief Update (T y1|Uoit1, 20:t) = N(A,uﬂo:t + Bugy1, AZt|OztAT + Qt11)

Intuition: Scale and shift the mean according to dynamics, uncertainty grows!

Valocify volocify

Intuition Behind Prediction Step

Previous belief p(xe|uo:t, 20:¢) = N (thejo:4, Dejo:t)
Belief Update P(Tiy1|vot41, 20:4) = N(A/Lﬂo;t + Bugy1, Azt|0:tAT + Qt11)

Intuition: Scale and shift the mean according to dynamics, uncertainty grows!

o‘ﬁ T T T T L} O'E

Belief at x; Belief post dynamics = shifted mean, scaled and shifted variance

Linear Gaussian Systems: Observations

= Integrate the effect of an observation using sensor model, after dynamics
21 = COTyyq1 + 011 Ot+1 ~ N(0, Ryy1)
pP(zi1|mi41) = N(Cxpyr, Reyr)

Bel(xt41) Bel(z411)
p($t+1 \Uozt+17 Zo:t+1) X p(zt+1 \$t+1)p($t+1 \uozt+1, Zo:t)

Gaussian, easy to normalize

@ Slightly harder than the dynamics step!

Linear Gaussian Systems: Observations

= Integrate the effect of an observation using sensor model, after dynamics

zt41 = Cwppq +0pp1

5t—|—1 ™~ N(07 Rt—|—1)

P(zeg1|Tis1) = N(Crpqr, Riyr)

Bel(zi11)

B—el(azH_l)

p($t+1 |U0:t+17 Zo:t+1) X p(zt+1 \$t+1)p($t+1 \uozt+1, Zo:t)

-

Conditioning

_

(X~ N(p, %)

5~ N(0,R)

K=xctczct +Rr)™

~

Y =CX+B+6 = X|Y=yo~Np+K(y—Cup),I - KC)X)

J

Linear Gaussian Systems: Observations

= Integrate the effect of an observation using sensor model, after dynamics

p(Tes1|Uot+1, 20:) = N(Mt+1|o:t, Yit41]0:) C (X ~ N(u, X))

zt41 = Cwpyr + 041 lY=CX+B+6§ — XIY=y~Np+ Ky —Cn),(I-KC))
K=xct(czct + rR)™

6t41 ~ N(0, Ryp1) L |0 ~N(0,R) (+R))

Previous belief p(xt+1 |u0;t+1, Zo;t) = N(Mt_|_1‘0:t, Zt+1|0:t) Computed from dynamics step

Updated belief P(Teg1|®0t41,5 20:t41)
= N (110t + Ki41(2e41 — Clig1jo:e)s (I — K1 C)Xi1110:t)

K = Et—|—1|0:tCT(Czt+1|0:tCT + R)_l

Linear Gaussian Systems: Observations

Previous belief p(:l?t+1 |u0;t+1, ZO:t) = N(Nt+1|0:t7 Et—|—1|0:t) Computed from dynamics step
Updated belief P(T41|U0:t41, 20:4+1)
= N(Mt+1|0:t + Kit1(ze41 — C,ut—l—1|0:t)a (- Kt+10)2t+1|0:t)

Intuition: Correct the update linearly according to measurement error from expectation,
shrink uncertainty accordingly

estimatc L
mwpr estimate 2

\mw covayiance

Intuition Behind Correction Step

0z T T T T T Az

B Previous belief]

ok

New Measurement

Q05 -

0

P(Te41|U0:t41, 20:041) = N(Mt+1|o:t + Kip1(2e41 — Cﬂt+1|0:t)7 (I - Kt+1c>zt+1|0:t> oz
K11 = 541110:C" (C8i41)04C" + R) ™!

For the sake of simplicity, let's say C = |

| “
Et—l—l|0:t a1l !
Kiiq =

Yir1)0:¢ T R \
Corrects belief based on measurement) | | ~

- Average between mean and measurement based on K T
—> Scale down uncertainty based on K T

Unpacking the Kalman Gain

Previous belief p(:l?t+1 \u0:t+1, Zo;t) = N(Mt+1|0:t; Zt+1|0:t) Computed from dynamics step

Updated belief P(T41|U0:t41, 20:441)
- N(:U’t—i—1|0:t + Kt—l—l(zt—{—l - C/JJt—i—1|O:t)7 (I - Kt—}—lc)zt—l—lm:t)

K11 = 2111)0:4C" (Cp41)02C" + R) ™!

Case 1: Very noisy sensor, R>>%

For the sake of simplicity, let's say C = |

Kt—l—l — Case 2: Deterministic sensor, R=0

Kalman Filter Algorithm

Initial Prior

p(CCO)

A

\ 4

Estimate B—el(ﬂft+1) A

Dynamics/Prediction P(eg1|uoi11, Z0:) = N (Apigjorr + Buegr, ASo A" + Qupa)
(given some u)

_ J

4)
Estimate Bel (CCt_|_1)

Measurement/Correction

P($t+1 |U0:t+1> Zo:t+1)

_ = N(pet110:¢ + Ker1(2e41 — Cpiggajone), (I — Ker1C) X 4100:4) y

(given some z)

Kalman Filter in Action

Thrust Intensities Centroidal Momentum
Left Arm Right Arm Linear x Component Linear y Component Linear z Component
1|)0" 100 ~- 30 ~— 30} ~ 30
— = G o C
= = =
£ ‘ £ =20 =20 =20
@ sof % so E £ £
3 S 5 5
2 g 10 = 10} =10
o - 3 < l €
=~ B S 0 30
of = z | — . I . - i Actal -t J 3 S S . : . J
15 -10 5 0 15 10 5 0 EXP jetaionnt. dym 15 10 5 0 15 10 5 0 15 10 S 0
EXF cont dyn only
Left Back Right Back Angular x Component * Angular y Component Angular z Component
150 } 150 ol - = ~I
g = € 05 £ 05} E 0s
Z 100} £ 100 = Z =
;‘ '5‘; !: 0 E ol $ g 0
E SO} £ 50 - = | <
= & 05 5 05| 505
c c <
0t 0 < \ < 1 < 1
15 10 S 0 15 10 5 0 15 10 5 0 : 15 10 5 0 15 10 5 0

Time [s] Time [s] Time [5] Time [s] Time [s]

Kalman Filter Summary

= Highly efficient: Polynomial in measurement
dimensionality k and state dimensionality n:
0(k2.376 + n2)

Matrix Inversion (Correction) Matrix Multiplication (Prediction)

Kyl = Et+1|0:tCT(Cthuuo:tCT + Rt—i—l)_l P(Tp41|20:45 Voit41) ~ N(A,Utm:t + Buy, A2t|0:tAT + Q)

s Optimal for linear Gaussian systems!

= Most robotics systems are nonlinear!

Why should we care?

Still a very widely used technique for estimation/localization/mapping in real problems

