w Autonomous Robotics

Winter 2026

Abhishek Gupta, Siddhartha Srinivasa
TAs: Carolina Higuera, Entong Su, Rishabh Jain

Class Outline

State Estimation Control
Robotic System Design ~UErnE Feedback Control PID Control
Localization SLAM MPC LQR
Planning -
Search Heuristic Search Imitation Learning Policy Gradient

Motion Planning

Lazy Search

Actor-Critic

Model-Based RL

Recap

Going from Bins to Particles

Mostly empty

Second

Dimension \\\\\
\\\\\

number of repeat instances proportional to probability

g
[Sll S1/ S2r S10s S4a0s S40r S40s Sssy S55]
//
2 Keep a list of only the states with likelihood, with
P

. Ed

Third /:::://///1§;;T
Dimension - -
Dimension No discretization per dimension!

s this even a useful/valid representation of belief?

Belief Distribution as Particles

Let’s consider the Bayesian filtering update

Bel(x;) = nP(zt|5L’t)/P(xt|ut,:ct_l)Bel(xt_l)dxt_l

\ /

Represent the belief with a set of particles! Each is a hypothesis of what the state might be.

Higher likelihood regions have more particles

How do we “propagate” belief across timesteps with particles?

Bayes Filter Bel(xy) = nP(z|xs) /P(33t|ut,$t—1)Bel(ﬂi‘t—1)dﬂit—1

Dynamics Update Bel(z;) = /p(xt\ut,a:t_l)Bel(xt_l)d:Et_l
\

Measurement Correction Bel(aft) — UP(ZtILCt)B—Gl(ZL’t)

How do we sample from the product of two distributions?

How do we compute conditioning/normalization with particles?

Propagating Belief Through Dynamics: Initial

Propagating Belief Through Dynamics: Robot Motion

Bel(x;) = / P(z¢|us_q,x¢—1)Bel(xs_1)dxy_1 Push samples forward according to dynamics

Take every x,; in previous belief, run motion model forward with x,; and u, to get new particles

& ——)>
pEs)

)
| LI T V1 [U U N WUMON [WUOON(Y 0 1 OV Lt 10 W W oy

Dynamics Update:

Bel(x;) = /P(xt\ut_l,a:t_l)Bel(xt_l)dajt_l

Sample forward using the dynamics model:
1. No gaussian requirement
2. No linearity requirement, just push forward distribution

- -
- -
- -
- -
- ~
~ <
~

A

- S< A
~
A Y
7
7
,
’
4
D N S
. O -~
\ -
\~~~_
T T T e e e __ /——
= = m e e e e e m e mo .>O
00000 =< f’ < >
» S~a - hal »
o=
————— S
O~ Q
p 4
~ - /
_________ ad
——————————— 7
7
~
\\
-
- - v

~
~ -
~ -
~ -
~ -
T~ -~ -
- -

How do we “propagate” belief across timesteps with particles?

Bayes Filter Bel(xy) = nP(z|xs) /P(SIZ‘t|Ut,ZEt—l)Bel(ﬂl‘t—ﬂdﬂ?t—l

Measurement Correction Bel(aj‘t) = nP(Zt |£Ut)B—€l(CIZ‘t)

How do we compute conditioning/normalization with particles?

Sensor Information: Measurement Update

Can no longer just push forward with evidence, need to normalize

Bel(z,) = nP(z|x;)Bel(x;)

———
— ~
z-

Weight each particle - Can compute a per sample weight. _
Distribution represented as set of weighted samples Z , P(
J

Not ad hoc! = exactly the same as importance sampling

Detour: What is Importance Sampling?

How can we sample from a
“complex” distribution p(x) using a simple distribution g(x)?

Importance Sampling

1. Sample from an (easy) proposal distribution
2. Reweight samples to match the target distribution

Importance Sampling

TARGET

Don’t know how to
sample from target!

ORI 1 L DI L LIRCL IR R NI AR L L Il |
A

Importance Sampling

1. Sample from an (easy) proposal distribution

Can sample from proposal
|mum‘|-ml.-m ‘muﬂr d|Str|but|On

Importance Sampling

1. Sample from an (easy) proposal distribution
2. Reweight samples to match the target distribution

ARGET PROPOSAL

T T T

nnnnnnnnnnnnnnnnnnnnnnnn

Importance Sampling

([(@)] = Y p(2)f ()
= > bl f@) L
=3 a@) 2 fla)
= Ezmq(a) :z(—g f(g;)- Expected value with g(x)
N r ; -
Mo Y AED1)] s

Measurement Update with Importance Sampling

Target Distribution: Posterior

Bel(x;) = nP(zt\xt)/P(xt|ut,a:t_l)Bel(xt_l)dxt_l

p(x)

Proposal Distribution: After applying motion model

Bel(x;) = /P(azt\ut,xt_l)Bel(:zzt_l)d:Et_l

q(x)

Measurement Update with Importance Sampling

0 Bel(xy) = nP(zt\aﬁt)/P(:z:t|ut,:Et_l)Bel(:vt_l)d:Et_l
) Bel(xy) = /P(wt\ut,xt_l)Bel(xt_l)dazt_l
Importance Weight (Ratio)

~ Bel(xy)
T Bel(ay)

= NP (z¢|7¢)

Sensor Information: Importance Sampling

Can compute a weighted set of samples by weighting by (normalized) evidence

Bel(xy) = nP(z¢|xy)Bel(xy) Wi = j

II
lllllllllllllllllllllllllllllllllllll
IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
lllllllllllllllllllllllllllllllllllll

p(s)
S {0 VM (VO o 1 TYMTVN S
4 P(ols)
A A A 5
$ p(s)
S

Measurement Update

Bel(x,) = nP(z|x;)Bel(x;) Pl

Bel(z,) = — L (#lz0) Bel(1) TS, Pl
Y [P(z)w) Bel(xy)day

© xp(z|x) O

O
o ‘ > e
o ° > O

Reweight particles according to measurement likelihood

Normalized Importance Sampling

1 2 M
xg—)l 3315—)1 xg—l) }

Normalized Importance Sampling

Normalized Importance Sampling

---=% 0.50 x 0.02 = 0.01

0.25 x 0.20 = 0.05

0.25 x 0.08 = 0.02

w® = Pz,)

Wy 4

Normalized Importance Sampling

Normalized Importance Sampling

27

Overall Particle Filter algorithm - v1

Dynamics/Prediction

Measurement/Correction

Initial Prior
p(CCO)

-

_

/

o

Estimate B—el(gjt) A
Sample particles from p(:ljt ‘iUt—la ut) propagating weights
/
v
Estimate Bel(xy))

1. Weight samples by p(z:|x¢)

2. Normalize weights

Lecture Outline

Particle Based Representations in Filtering

\4

Particle Filter

\4

Particle Filter w/ Resampling

v
Practical Considerations

What happens across multiple steps?

-

—_ -
- -~
-
-

~

, ~O
8 N T e
é O _________________________ ©
A O cmmmmmmmmmm T
__________ o 3
o O
X AN
= o p(z|z) o
5 © > e
>
B e

AN

Importance weights get multiplied at each step

Why might this be bad?

Importance weights get multiplied at each step

O A A @
O o
Q N

1. May blow up and get numerically unstable over many steps
2. Particles stay stuck in unlikely regions

TRUE POSTERIOR | TRUE POSTERIOR | TRUE POSTERIOR

Resampling

Given: Set S of weighted samples (from measurement step)
with weights w;

Wanted : unweighted random sample, where the probability
of drawing x; is given by w;.

Typically done n times with replacement to generate new
sample set §”.

Resampling

® Spin a roulette wheel

® Space according to weights

® Pick samples based on where it lands

Here are your random numbers:

0.97
0.26

col o)}

Resampling in a particle filter

Bel(xzy) = nP(2|2:) Bel(x) P(z|)

Bel(x:) = Pzila)Bel(zy) ™~ 2 P(z]a7)
Y [P(z|wy) Bel(xy)day

O csam >
esampling

o
OQ oo

Resample particles from weighted distribution to give unweighted set of particles

Original: Normalized Importance Sampling

) @) (M)
XL XL XL
Bel(z:) =4 1) o ()

New: Normalized Importance Sampling with Resampling

Here are your random numbers:

(L) (2) (3)
e L Wy 0026
0.72

o
| =
col o)
—t

New: Normalized Importance Sampling with Resampling

44

Overall Particle Filter algorithm — v2

Dynamics/Prediction

Measurement/Correction

Initial Prior
p(xo)

Estimate B—el(gjt)

Sample particles from p(z¢|xs 1, ur_1)

v

Estimate Bel(x¢)

1. Weight samples by p(zt|att)

2. Resample particles to get unweighted set

AN

Lecture Outline

Particle Based Representations in Filtering

\4

Particle Filter

\4

Particle Filter w/ Resampling

\ 4
Practical Considerations

Problem 1: Two Room Challenge

Particles begin equally distributed, no motion or observation

All particles migrate to one room!

Reason: Resampling Increases Variance

50% prob. of resampling particle from Room 1 vs Room 2
31% prob. of preserving 50-50 particle split

L LG

All particles migrate to one room!

ldea 1: Judicious Resampling

s Key idea: resample less often! (e.g., if the robot is stopped,
don’t resample). Too often may lose particle diversity,

infrequently may waste particles

= Common approach: don’t resample if weights have low
variance

= Can be implemented in several ways: don’t resample when...

= ...all weights are equal
= ..weights have high entropy
= ..ratio of max to min weights is low

ldea 2: Low-Variance Resampling

Sample one random number r ~ [O, ﬁ]

Covers space of samples more systematically (and more
efficiently)

If all samples have same importance weight, won’t lose
particle diversity

Other Practical Concerns

= How many particles is enough?

= Typically need more particles at the beginning (to cover possible states)

= KLD Sampling (Fox, 2001) adaptively increases number of particles when state
uncertainty is high, reduces when state uncertainty is low

m Particle filtering with overconfident sensor models
= Squash sensor model prob. with power of 1/m

= Sample from better proposal distribution than motion model
=« Manifold Particle Filter (Koval et al., 2017) for contact sensors

= Particle starvation: no particles near current state

https://proceedings.neurips.cc/paper/2001/file/c5b2cebf15b205503560c4e8e6d1ea78-Paper.pdf
https://www.cs.cmu.edu/~kaess/pub/Koval17icra.pdf

MuSHR Localization Project

Implement kinematic car motion model

Implement different factors of single-beam sensor
model

Combine motion and sensor model with the Particle
Filter algorithm

Can we get closed form updates for Bayesian Filtering?

Need to choose form of probability distributions

= Dynamics (Prediction)

Bel(xy) = /p(azt|ut,l,"lxt_1)Bel(:13t_1)da:t_l

= Measurement (Correction)

Bel(z,) = nP(z|x:)Bel(x;)

Tractable computation of Bayesian posteriors

Solution: Linear Gaussian Models

= Dynamics (Prediction)

B—el(azt) — /p(:ct|ut,xt_l)Bel(:zzt_l)dazt_l

= Measurement (Correction)

Bel(z,) = nP(z|x{)Bel(x;)

Model as Linear Gaussian

Let’s take a little Gaussian detour

Gaussians (1D)

= Gaussian with mean () and standard deviation (O)

X ~N(p,0?)

T — 2
p(x; p,0°) = G\/lﬂexp(—(205))

p(x; p, 0?)

34.1% | 34.1%

Gaussians (2D) — we won’t get too deep into this!

p(x) = N(1,%) y

A u?
\/'ul

(
xa ‘LLa Y2
X = , MU= U1
\ xb 'ub

(Ay/?
2 _ Zaa Z:ab])\1/2

Discrete Kalman Filter

Kalman filter = Bayes filter with Linear Gaussian dynamics and sensor models

Lt—1 Tt Lt4+1

Discrete Kalman Filter: Scalar Version

Estimates the state x of a discrete-time controlled
process that is governed by the linear stochastic
difference equation

Ty = AQxi_1 + but —+ €4
e: ~ N(0,q) \
with a measurement Linear Gaussian

Zt:C.’L‘t—Fé’t‘ //

5tNN(O,T)

Discrete Kalman Filter: Matrix Version

Estimates the state x of a discrete-time controlled
process that is governed by the linear stochastic
difference equation

Lt — Ail?t_l -+ But —+ €4
e ~ N(0,Q) \
with a measurement Linear Gaussian

Zt:CfEt—|—5t ‘ /

575 NN(O,R)

Components of a Kalman Filter

A Matrix (n x n) that describes how the state evolves
from t-1 to t without controls or noise.

B Matrix (n x) that describes how the control u,,
changes the state from t-7to t

C Matrix (k x n) that describes how to map the state x, to
an observation z,.

€4 Random variables representing the process and
measurement noise that are assumed to be
5 independent and normally distributed with covariance
t R and Q respectively.

61 Goal of the Kalman Filter: Same as Bayes Filter

Belief

Q@ @ e

|dea: recursive update

_ L
Lt—1 Lt t+1 ocp(zt’ajt)/p(fb‘t‘ilﬁt_l,Ut)p(xt—l‘fzo:t—lauO:t—l)

}
1 3 Measurement
@ @ @ Dynamics
Recursive Belief

2 step process:

= Dynamics update (incorporate action)

= Measurement update (incorporate sensor reading)

Class Outline

State Estimation Control
Robotic System Design Filtering Feedback Control PID Control
Localization SLAM MPC LQR
Planning -
Search Heuristic Search Imitation Learning Policy Gradient

Motion Planning

Lazy Search

Actor-Critic

Model-Based RL

