w Autonomous Robotics

Winter 2026

Abhishek Gupta, Siddhartha Srinivasa
TAs: Carolina Higuera, Entong Su, Rishabh Jain




Class Outline

State Estimation Control
Robotic System Design ~UErnE Feedback Control PID Control
Localization SLAM MPC LQR
Planning -
Search Heuristic Search Imitation Learning Policy Gradient

Motion Planning

Lazy Search

Actor-Critic

Model-Based RL




Recap



Going from Bins to Particles
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s this even a useful/valid representation of belief?




Belief Distribution as Particles

Let’s consider the Bayesian filtering update

Bel(x;) = nP(zt|5L’t)/P(xt|ut,:ct_l)Bel(xt_l)dxt_l

\ /

Represent the belief with a set of particles! Each is a hypothesis of what the state might be.

Higher likelihood regions have more particles




How do we “propagate” belief across timesteps with particles?

Bayes Filter Bel(xy) = nP(z|xs) /P(33t|ut,$t—1)Bel(ﬂi‘t—1)dﬂit—1

Dynamics Update Bel(z;) = /p(xt\ut,a:t_l)Bel(xt_l)d:Et_l
\

Measurement Correction Bel(aft) — UP(ZtILCt)B—Gl(ZL’t)

How do we sample from the product of two distributions?

How do we compute conditioning/normalization with particles?



Propagating Belief Through Dynamics: Initial




Propagating Belief Through Dynamics: Robot Motion

Bel(x;) = / P(z¢|us_q,x¢—1)Bel(xs_1)dxy_1 Push samples forward according to dynamics

Take every x,; in previous belief, run motion model forward with x,; and u, to get new particles
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Dynamics Update:

Bel(x;) = /P(xt\ut_l,a:t_l)Bel(xt_l)dajt_l

Sample forward using the dynamics model:
1. No gaussian requirement
2. No linearity requirement, just push forward distribution
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How do we “propagate” belief across timesteps with particles?

Bayes Filter Bel(xy) = nP(z|xs) /P(SIZ‘t|Ut,ZEt—l)Bel(ﬂl‘t—ﬂdﬂ?t—l

Measurement Correction Bel(aj‘t) = nP(Zt |£Ut)B—€l(CIZ‘t)

How do we compute conditioning/normalization with particles?



Sensor Information: Measurement Update

Can no longer just push forward with evidence, need to normalize

Bel(z,) = nP(z|x;)Bel(x;)

———
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z-

Weight each particle - Can compute a per sample weight. _
Distribution represented as set of weighted samples Z , P(
J

Not ad hoc! = exactly the same as importance sampling



Detour: What is Importance Sampling?

How can we sample from a
“complex” distribution p(x) using a simple distribution g(x)?



Importance Sampling

1. Sample from an (easy) proposal distribution
2. Reweight samples to match the target distribution



Importance Sampling

TARGET

Don’t know how to
sample from target!
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Importance Sampling

1.  Sample from an (easy) proposal distribution

Can sample from proposal
|mum‘|-ml.-m ‘muﬂr d|Str|but|On




Importance Sampling

1. Sample from an (easy) proposal distribution
2. Reweight samples to match the target distribution

ARGET PROPOSAL
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Importance Sampling
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Measurement Update with Importance Sampling

Target Distribution: Posterior

Bel(x;) = nP(zt\xt)/P(xt|ut,a:t_l)Bel(xt_l)dxt_l

p(x)

Proposal Distribution: After applying motion model

Bel(x;) = /P(azt\ut,xt_l)Bel(:zzt_l)d:Et_l

q(x)



Measurement Update with Importance Sampling

0 Bel(xy) = nP(zt\aﬁt)/P(:z:t|ut,:Et_l)Bel(:vt_l)d:Et_l
) Bel(xy) = /P(wt\ut,xt_l)Bel(xt_l)dazt_l
Importance Weight (Ratio)

~ Bel(xy)
T Bel(ay)

= NP (z¢|7¢)



Sensor Information: Importance Sampling

Can compute a weighted set of samples by weighting by (normalized) evidence

Bel(xy) = nP(z¢|xy)Bel(xy) Wi = j
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Measurement Update

Bel(x,) = nP(z|x;)Bel(x;) Pl

Bel(z,) = — L (#lz0) Bel(1) TS, Pl
Y [ P(z)w) Bel(xy)day
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Reweight particles according to measurement likelihood



Normalized Importance Sampling
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Normalized Importance Sampling




Normalized Importance Sampling

---=% 0.50 x 0.02 = 0.01

0.25 x 0.20 = 0.05

0.25 x 0.08 = 0.02

w® = Pz, )

Wy 4



Normalized Importance Sampling




Normalized Importance Sampling
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Overall Particle Filter algorithm - v1

Dynamics/Prediction

Measurement/Correction

Initial Prior
p(CCO)

-

\_

/

o

Estimate B—el(gjt) A
Sample particles from p(:ljt ‘iUt—la ut) propagating weights
/
v
Estimate Bel(xy) )

1. Weight samples by p(z:|x¢)

2. Normalize weights




Lecture Outline

Particle Based Representations in Filtering

\4

Particle Filter

\4

Particle Filter w/ Resampling

v
Practical Considerations



What happens across multiple steps?
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Importance weights get multiplied at each step



Why might this be bad?

Importance weights get multiplied at each step

O A A @
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1. May blow up and get numerically unstable over many steps
2. Particles stay stuck in unlikely regions

TRUE POSTERIOR | TRUE POSTERIOR | TRUE POSTERIOR




Resampling

Given: Set S of weighted samples (from measurement step)
with weights w;

Wanted : unweighted random sample, where the probability
of drawing x; is given by w;.

Typically done n times with replacement to generate new
sample set §”.



Resampling

® Spin a roulette wheel

® Space according to weights

® Pick samples based on where it lands

Here are your random numbers:

0.97
0.26

col o)}



Resampling in a particle filter

Bel(xzy) = nP(2|2:) Bel(x) P(z|)

Bel(x:) = Pzila)Bel(zy) ™~ 2 P(z]a7)
Y [ P(z|wy) Bel(xy)day

O csam >
esampling

o
OQ oo

Resample particles from weighted distribution to give unweighted set of particles



Original: Normalized Importance Sampling
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New: Normalized Importance Sampling with Resampling

Here are your random numbers:

(L) (2) (3)
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New: Normalized Importance Sampling with Resampling
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Overall Particle Filter algorithm — v2

Dynamics/Prediction

Measurement/Correction

Initial Prior
p(xo)

Estimate B—el(gjt)

Sample particles from p(z¢|xs 1, ur_1)

v

Estimate  Bel(x¢)

1. Weight samples by p(zt|att)

2. Resample particles to get unweighted set

AN




Lecture Outline

Particle Based Representations in Filtering

\4

Particle Filter

\4

Particle Filter w/ Resampling

\ 4
Practical Considerations



Problem 1: Two Room Challenge

Particles begin equally distributed, no motion or observation

All particles migrate to one room!



Reason: Resampling Increases Variance

50% prob. of resampling particle from Room 1 vs Room 2
31% prob. of preserving 50-50 particle split

L LG

All particles migrate to one room!



ldea 1: Judicious Resampling

s Key idea: resample less often! (e.g., if the robot is stopped,
don’t resample). Too often may lose particle diversity,

infrequently may waste particles

= Common approach: don’t resample if weights have low
variance

= Can be implemented in several ways: don’t resample when...

= ...all weights are equal
= ..weights have high entropy
= ..ratio of max to min weights is low



ldea 2: Low-Variance Resampling

Sample one random number r ~ [O, ﬁ]

Covers space of samples more systematically (and more
efficiently)

If all samples have same importance weight, won’t lose
particle diversity




Other Practical Concerns

= How many particles is enough?

= Typically need more particles at the beginning (to cover possible states)

= KLD Sampling (Fox, 2001) adaptively increases number of particles when state
uncertainty is high, reduces when state uncertainty is low

m Particle filtering with overconfident sensor models
= Squash sensor model prob. with power of 1/m

= Sample from better proposal distribution than motion model
=« Manifold Particle Filter (Koval et al., 2017) for contact sensors

= Particle starvation: no particles near current state


https://proceedings.neurips.cc/paper/2001/file/c5b2cebf15b205503560c4e8e6d1ea78-Paper.pdf
https://www.cs.cmu.edu/~kaess/pub/Koval17icra.pdf

MuSHR Localization Project

Implement kinematic car motion model

Implement different factors of single-beam sensor
model

Combine motion and sensor model with the Particle
Filter algorithm



Can we get closed form updates for Bayesian Filtering?

Need to choose form of probability distributions

= Dynamics (Prediction)

Bel(xy) = /p(azt|ut,l,"lxt_1)Bel(:13t_1)da:t_l

= Measurement (Correction)

Bel(z,) = nP(z|x:)Bel(x;)

Tractable computation of Bayesian posteriors



Solution: Linear Gaussian Models

= Dynamics (Prediction)

B—el(azt) — /p(:ct|ut,xt_l)Bel(:zzt_l)dazt_l

= Measurement (Correction)

Bel(z,) = nP(z|x{)Bel(x;)

Model as Linear Gaussian



Let’s take a little Gaussian detour



Gaussians (1D)

=  Gaussian with mean () and standard deviation (O)

X ~N(p,0?)

T — 2
p(x; p,0°) = G\/lﬂexp(—( 205) )

p(x; p, 0?)

34.1% | 34.1%




Gaussians (2D) — we won’t get too deep into this!

p(x) = N(1,%) y
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Discrete Kalman Filter

Kalman filter = Bayes filter with Linear Gaussian dynamics and sensor models

Lt—1 Tt Lt4+1




Discrete Kalman Filter: Scalar Version

Estimates the state x of a discrete-time controlled
process that is governed by the linear stochastic
difference equation

Ty = AQxi_1 + but —+ €4
e: ~ N(0,q) \
with a measurement Linear Gaussian

Zt:C.’L‘t—Fé’t‘ //

5tNN(O,T)




Discrete Kalman Filter: Matrix Version

Estimates the state x of a discrete-time controlled
process that is governed by the linear stochastic
difference equation

Lt — Ail?t_l -+ But —+ €4
e ~ N(0,Q) \
with a measurement Linear Gaussian

Zt:CfEt—|—5t ‘ /

575 NN(O,R)




Components of a Kalman Filter

A Matrix (n x n) that describes how the state evolves
from t-1 to t without controls or noise.

B Matrix (n x ) that describes how the control u,,
changes the state from t-7to t

C Matrix (k x n) that describes how to map the state x, to
an observation z,.

€4 Random variables representing the process and
measurement noise that are assumed to be
5 independent and normally distributed with covariance
t R and Q respectively.



61 Goal of the Kalman Filter: Same as Bayes Filter

Belief

Q@ @ e

|dea: recursive update

_ L
Lt—1 Lt t+1 ocp(zt’ajt)/p(fb‘t‘ilﬁt_l,Ut)p(xt—l‘fzo:t—lauO:t—l)

}
1 3 Measurement
@ @ @ Dynamics
Recursive Belief

2 step process:

= Dynamics update (incorporate action)

= Measurement update (incorporate sensor reading)
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