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Recap



So what do we need to define to instantiate this?

Apply Markov to get a recursive update!

Step 0. Start with the belief at time step t-1
bel(xi_1)

Step 1: Prediction - push belief through dynamics given action

@(xt) = ’ P(a:t|ut,a:t_1 Bl(ﬂjt_]_)

Step 2: Correction - apply Bayes rule given measurement

bel(xy) = el(a;t)



Motion Model
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Measurement Model
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Measurement Model
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LIDAR Model Algorithm

K
P(zi|xy, m) = H P(z} |z, m)
k=1

. Use robot state to compute the sensor’s pose on the map
. Ray-cast from the sensor to compute a simulated laser scan

. For each beam, compare ray-casted distance to real laser scan
distance

. Multiply all probabilities to compute the likelihood of that real laser
scan



Tuning Single Beam Parameters
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Tuning Single Beam Parameters

= Online: simulate a scan and plot the likelihood from different positions

Y

Actual scan Likelihood at various locations



Dealing with Overconfidence

K
P(zt|xe, m) = H |-Tt>

= Subsample laser scans: convert 180 beams to 18 beams
= Force the single beam model to be less confident

P(z;|ze, m) = P(27 |z, m)%, a < 1
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Why is the Bayes filter challenging to implement?

Key Idea: Apply Markov to get a recursive update!

Step 0. Start with the belief at time step t-1
bel(xi_1)

Step 1: Prediction - push belief through dynamics given action

Intractable due ___--"" Step 2: Correction - apply Bayes rule given measurement
to discretization @ T T T--—-o___



How does discretization work for Bayesian filters?

XL X-COORDINATE - Discretize into K bins
Yy Y-COORDINATE - Discretize into K bins Overall K3 bins
v

HEADING - Discretize into K bins

Exponentially expensive with dimension for
each summation

Many of these bins will be empty!

How can we do better?



Let’s change our way of thinking

Second
Dimension

Third
Dimension

e

Mostly empty

e

g
[Sll S1/ S2r S10s S4a0s S40r S40s Sssy S55]
//
2 Keep a list of only the states with likelihood, with
P

number of repeat instances proportional to probability

///// First
Dimension No discretization per dimension!

s this even a useful/valid representation of belief?



Let’s change our way of thinking

Target Distribution "Particle” Approximation

—

(0] (0]
(0]

(o)o]
O0O0O0O0

Is this even a useful/valid representation of belief?

U

Depends what we want to do with the probability distribution!

-> Typically we want to compute averages (expectations)



Downstream Usage of Estimated Probability Distributions

What do we actually intend to do with the belief bel(z41)?

- Often times we will be evaluating the expected value

E[f] = / F()bel () da

Mean position: f(ac) =X

Probability of collision: f(ac) = I[(QU c O)

Mean value / cost-to-go: f(:c) = V(a:)



Computing Expectations without Closed Form Likelihoods

Monte-Carlo Simulation

Ewael(xt) /f Bel )dZE NZf )Bel(x

Sample from the belief: x1,--- ,xn ~ Bel(x;)

V “x~ Bel(x;) [f Z f (Z)

Don’t require closed form distributions (Gaussian/Beta, etc), just samples (particles)!
—> Replace fancy math by brute force simulation!!



Examples of Monte Carlo Estimation

Ell(x € O)] = P(x € O) = % R %Zﬂ(x(i) c 0)

i n =100, 7~ 3.1600

1. Sample points uniformly
from unit square

2. Count number in quarter-
circle (i.e.|z;]| < 1)

3. Divide by N, multiply by 4

0 1

— Exercise: What are other practical problems where this is useful?

ADAPTED FROM WIKIPEDIA



Bringing this Back to Estimation — Belief Distribution

Let’s consider the Bayesian filtering update

Bel(x;) = nP(zt|xt)/P(:z:t|ut,xt_l)Bel(xt_l)dxt_l

\ /

Represent the belief with a set of particles! Each is a hypothesis of what the state might be.

Higher likelihood regions have more particles

J\




How do we “propagate” belief across timesteps with particles?

Bayes Filter Bel(xy) = nP(z|xs) /P(33t|ut,$t—1)Bel(ﬂi‘t—1)dﬂit—1

Dynamics Update Bel(z;) = /p(xt\ut,a:t_l)Bel(xt_l)d:Et_l
\

Measurement Correction Bel(aft) — UP(ZtILCt)B—Gl(ZL’t)

How do we sample from the product of two distributions?

How do we compute conditioning/normalization with particles?
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Dynamics Step: Propagating Belief Through Dynamics

Bayes Filter Bel(xy) = nP(z|xs) /P(33t|ut,$t—1)B€l(ﬂ3t—1)dﬂit—1

Dynamics Update Bel(xt) — /P(xt’ut—laxt—l)Bel(xt—l)dxt—l

How do we sample from the product of two distributions?

ﬂ I ) 272

Treat each particle as point estimate of actual state and propagate through the dynamics



Propagating Belief Through Dynamics: Initial




Propagating Belief Through Dynamics: Robot Motion

Bel(x;) = / P(z¢|us_q,x¢—1)Bel(xs_1)dxy_1 Push samples forward according to dynamics

Take every x,; in previous belief, run motion model forward with x,; and u, to get new particles
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Dynamics Update:

Bel(x;) = /P(xt\ut_l,a:t_l)Bel(xt_l)dajt_l

Sample forward using the dynamics model:
1. No gaussian requirement
2. No linearity requirement, just push forward distribution

- -
- -
- -
- -
- ~
~ <
~

A

- S< A
~
A Y
7
7
,
’
4
D N S
. O -~
\ -
\~~~_
T T T e e e __ /——
= = m e e e e e m e mo .>O
00000 =< f’ < >
» S~a - hal »
o=
————— S
O~ Q
p 4
~ - /
_________ ad
——————————— 7
7
~
\\
-
- - v

~
~ -
~ -
~ -
~ -
T~ -~ -
- -



How do we “propagate” belief across timesteps with particles?

Bayes Filter Bel(xy) = nP(z|xs) /P(SIZ‘t|Ut,ZEt—l)Bel(ﬂl‘t—ﬂdﬂ?t—l

Measurement Correction Bel(aj‘t) = nP(Zt |£Ut)B—€l(CIZ‘t)

How do we compute conditioning/normalization with particles?



Sensor Information: Measurement Update

Can no longer just push forward with evidence, need to normalize

Bel(z,) = nP(z|x;)Bel(x;)

———
— ~
z-

Weight each particle - Can compute a per sample weight. _
Distribution represented as set of weighted samples Z , P(
J

Not ad hoc! = exactly the same as importance sampling



Detour: What is Importance Sampling?

How can we sample from a
“complex” distribution p(x) using a simple distribution g(x)?



Importance Sampling

1. Sample from an (easy) proposal distribution
2. Reweight samples to match the target distribution



Importance Sampling

TARGET

Don’t know how to
sample from target!

ORI 1 L DI L LIRCL IR R NI AR L L Il |
A




Importance Sampling

1.  Sample from an (easy) proposal distribution

Can sample from proposal
|mum‘|-ml.-m ‘muﬂr d|Str|but|On




Importance Sampling

1. Sample from an (easy) proposal distribution
2. Reweight samples to match the target distribution

ARGET PROPOSAL

T T T
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Importance Sampling

([ (@)] = Y p(2)f ()
= > bl f@) L
=3 a@) 2 fla)
= Ezmq(a) :z(—g f(g;)- Expected value with g(x)
N r ; -
Mo Y AED1)] s




Measurement Update with Importance Sampling

Target Distribution: Posterior

Bel(x;) = nP(zt\xt)/P(xt|ut,a:t_l)Bel(xt_l)dxt_l

p(x)

Proposal Distribution: After applying motion model

Bel(x;) = /P(azt\ut,xt_l)Bel(:zzt_l)d:Et_l

q(x)



Measurement Update with Importance Sampling

0 Bel(xy) = nP(zt\aﬁt)/P(:z:t|ut,:Et_l)Bel(:vt_l)d:Et_l
) Bel(xy) = /P(wt\ut,xt_l)Bel(xt_l)dazt_l
Importance Weight (Ratio)

~ Bel(xy)
T Bel(ay)

= NP (z¢|7¢)



Sensor Information: Importance Sampling

Can compute a weighted set of samples by weighting by (normalized) evidence

Bel(xy) = nP(z¢|xy)Bel(xy) Wi = j
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Measurement Update

Bel(x,) = nP(z|x;)Bel(x;) Pl

Bel(z,) = — L (#lz0) Bel(1) TS, Pl
Y [ P(z)w) Bel(xy)day

© xp(z|x) O

O
o ‘ > e
o ° > O

Reweight particles according to measurement likelihood



Normalized Importance Sampling

1 2 M
xg—)l 3315—)1 xg—l) }



Normalized Importance Sampling




Normalized Importance Sampling

---=% 0.50 x 0.02 = 0.01

0.25 x 0.20 = 0.05

0.25 x 0.08 = 0.02

w® = Pz, )

Wy 4



Normalized Importance Sampling




Normalized Importance Sampling
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Overall Particle Filter algorithm - v1

Dynamics/Prediction

Measurement/Correction

Initial Prior
p(CCO)

-

\_

/

o

Estimate B—el(gjt) A
Sample particles from p(:ljt ‘iUt—la ut) propagating weights
/
v
Estimate Bel(xy) )

1. Weight samples by p(z:|x¢)

2. Normalize weights
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What happens across multiple steps?
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Importance weights get multiplied at each step



Why might this be bad?

Importance weights get multiplied at each step

O A A @
O o
Q N

1. May blow up and get numerically unstable over many steps
2. Particles stay stuck in unlikely regions

TRUE POSTERIOR | TRUE POSTERIOR | TRUE POSTERIOR




Resampling

Given: Set S of weighted samples (from measurement step)
with weights w;

Wanted : unweighted random sample, where the probability
of drawing x; is given by w;.

Typically done n times with replacement to generate new
sample set §”.



Resampling

® Spin a roulette wheel

® Space according to weights

® Pick samples based on where it lands

Here are your random numbers:

0.97
0.26

col o)}



Resampling in a particle filter

Bel(xzy) = nP(2|2:) Bel(x) P(z|)

Bel(x:) = Pzila)Bel(zy) ™~ 2 P(z]a7)
Y [ P(z|wy) Bel(xy)day

O csam >
esampling

o
OQ oo

Resample particles from weighted distribution to give unweighted set of particles



Original: Normalized Importance Sampling

) @) (M)
XL XL XL
Bel(z:) =4 1) o ()



New: Normalized Importance Sampling with Resampling

Here are your random numbers:

(L) (2) (3)
e L Wy 0026
0.72

o
| =
col o)
—t



New: Normalized Importance Sampling with Resampling
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Overall Particle Filter algorithm — v2

Dynamics/Prediction

Measurement/Correction

Initial Prior
p(xo)

Estimate B—el(gjt)

Sample particles from p(z¢|xs 1, ur_1)

v

Estimate  Bel(x¢)

1. Weight samples by p(zt|att)

2. Resample particles to get unweighted set

AN
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Problem 1: Two Room Challenge

Particles begin equally distributed, no motion or observation

All particles migrate to one room!



Reason: Resampling Increases Variance

50% prob. of resampling particle from Room 1 vs Room 2
31% prob. of preserving 50-50 particle split

L LG

All particles migrate to one room!



ldea 1: Judicious Resampling

s Key idea: resample less often! (e.g., if the robot is stopped,
don’t resample). Too often may lose particle diversity,

infrequently may waste particles

= Common approach: don’t resample if weights have low
variance

= Can be implemented in several ways: don’t resample when...

= ...all weights are equal
= ..weights have high entropy
= ..ratio of max to min weights is low



ldea 2: Low-Variance Resampling

Sample one random number r ~ [O, ﬁ]

Covers space of samples more systematically (and more
efficiently)

If all samples have same importance weight, won’t lose
particle diversity




Other Practical Concerns

= How many particles is enough?

= Typically need more particles at the beginning (to cover possible states)

= KLD Sampling (Fox, 2001) adaptively increases number of particles when state
uncertainty is high, reduces when state uncertainty is low

m Particle filtering with overconfident sensor models
= Squash sensor model prob. with power of 1/m (Lecture 3)

= Sample from better proposal distribution than motion model
=« Manifold Particle Filter (Koval et al., 2017) for contact sensors

= Particle starvation: no particles near current state


https://proceedings.neurips.cc/paper/2001/file/c5b2cebf15b205503560c4e8e6d1ea78-Paper.pdf
https://www.cs.cmu.edu/~kaess/pub/Koval17icra.pdf

MuSHR Localization Project

Implement kinematic car motion model

Implement different factors of single-beam sensor
model

Combine motion and sensor model with the Particle
Filter algorithm
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