

W

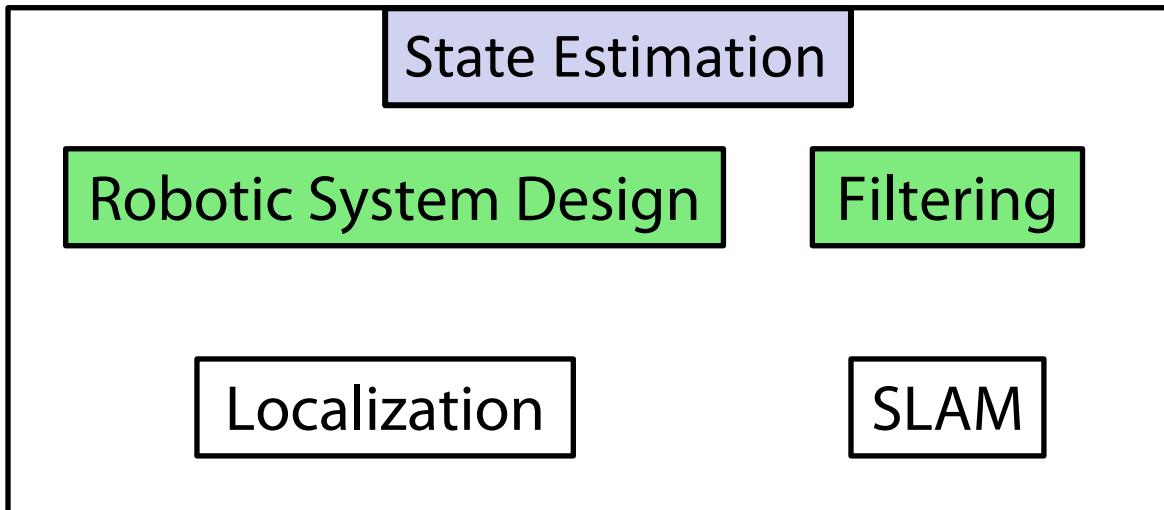
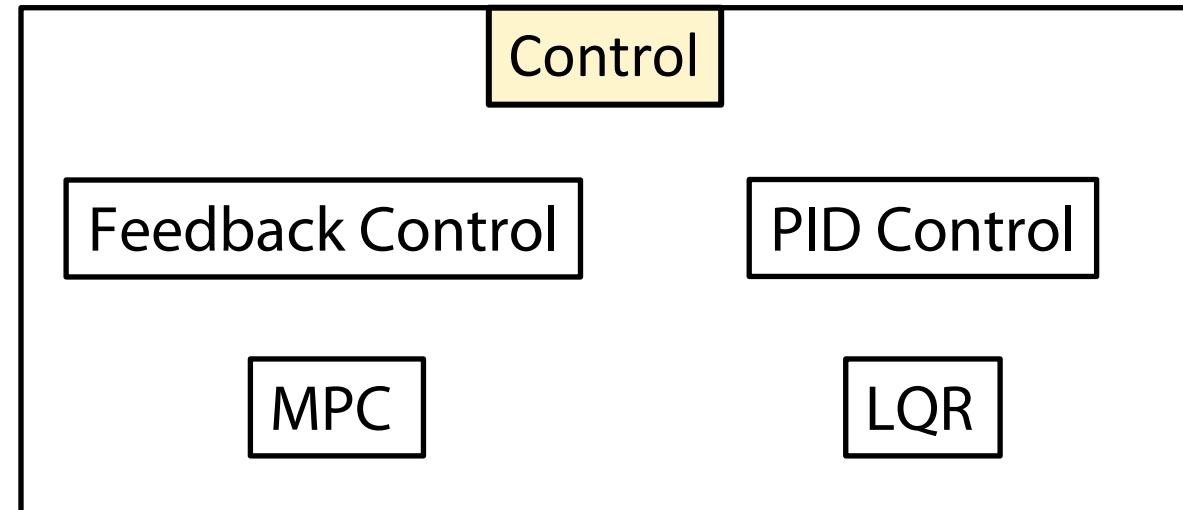
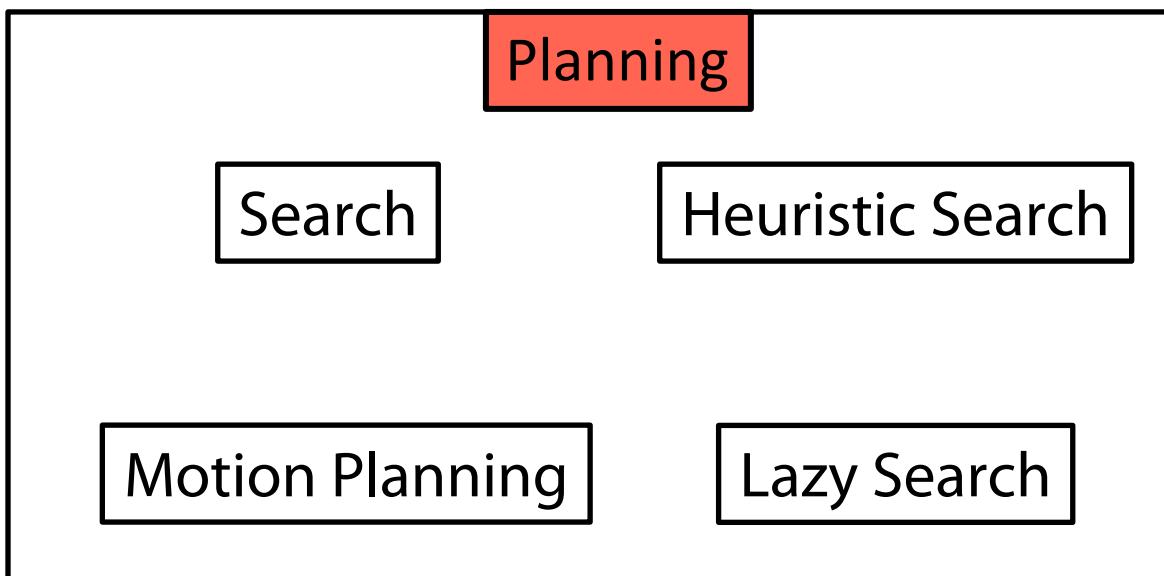
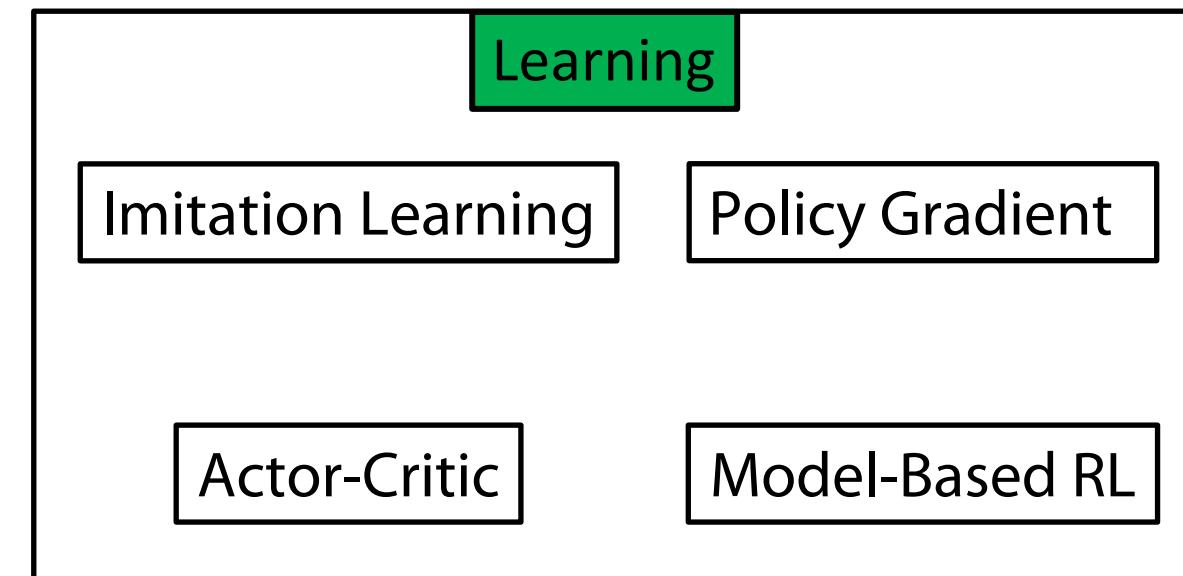
Autonomous Robotics

Winter 2026

Abhishek Gupta, Siddhartha Srinivasa

TAs: Carolina Higuera, Entong Su, Rishabh Jain

Class Outline



Recap

So what do we need to define to instantiate this?

Key Idea: Apply Markov to get a recursive update!

Step 0. Start with the belief at time step t-1

$$bel(x_{t-1})$$

Step 1: Prediction - push belief through dynamics given **action**

$$\overline{bel}(x_t) = \sum P(x_t | \mathbf{u}_t, x_{t-1}) bel(x_{t-1})$$

Step 2: Correction - apply Bayes rule given **measurement**

$$bel(x_t) = \eta P(\mathbf{z}_t | x_t) \overline{bel}(x_t)$$

Motion Model

$$\theta_t = \theta_{t-1} + \Delta\theta = \theta_{t-1} + \frac{v}{L} \tan \delta \Delta t$$

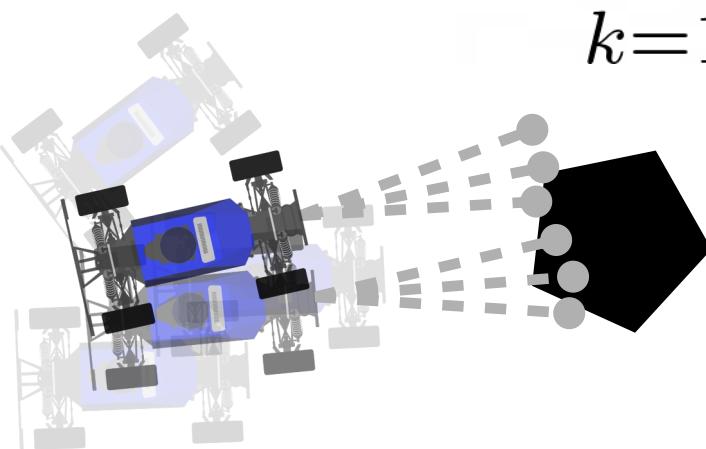
$$x_t = x_{t-1} + \Delta x = x_{t-1} + \frac{L}{\tan \delta} (\sin \theta_t - \sin \theta_{t-1})$$

$$y_t = y_{t-1} + \Delta y = y_{t-1} + \frac{L}{\tan \delta} (\cos \theta_{t-1} - \cos \theta_t)$$

Measurement Model

$$P(z_t|x_t, m) = P(z_t^1, z_t^2, \dots, z_t^K|x_t, m)$$

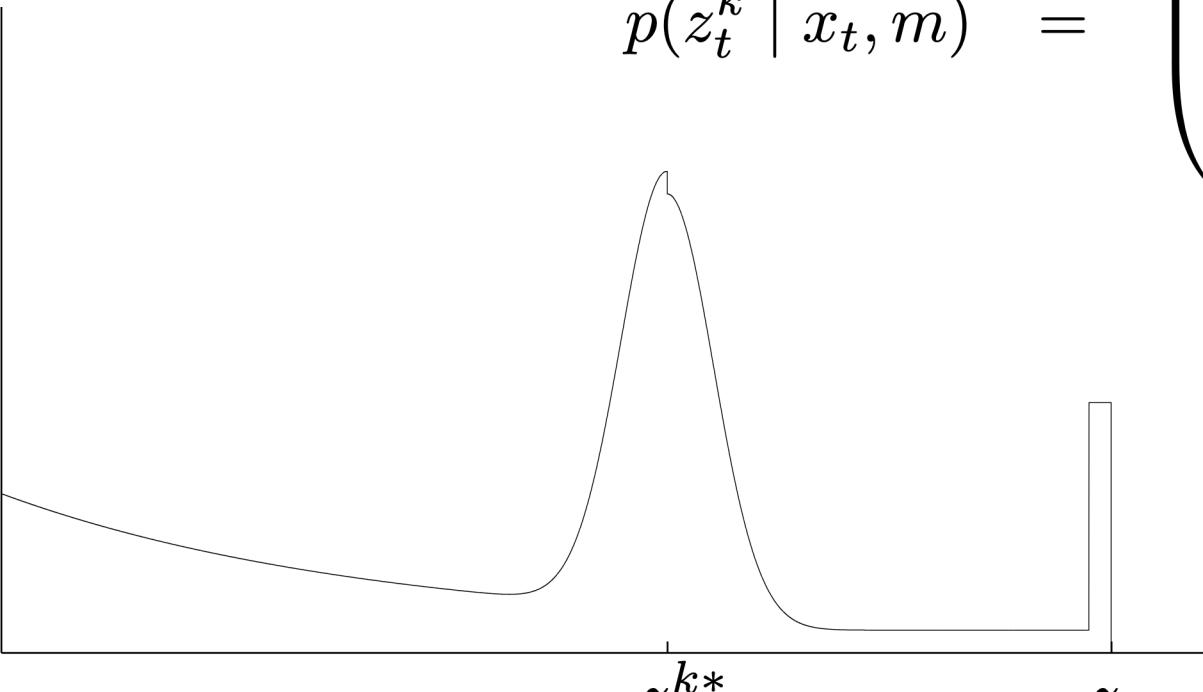
$$= \prod_{k=1}^K P(z_t^k|x_t, m)$$



Measurement Model

$$p(z_t^k | x_t, m) = \begin{pmatrix} z_{\text{hit}} \\ z_{\text{short}} \\ z_{\text{max}} \\ z_{\text{rand}} \end{pmatrix}^T \cdot \begin{pmatrix} p_{\text{hit}}(z_t^k | x_t, m) \\ p_{\text{short}}(z_t^k | x_t, m) \\ p_{\text{max}}(z_t^k | x_t, m) \\ p_{\text{rand}}(z_t^k | x_t, m) \end{pmatrix}$$

Weights sum to 1



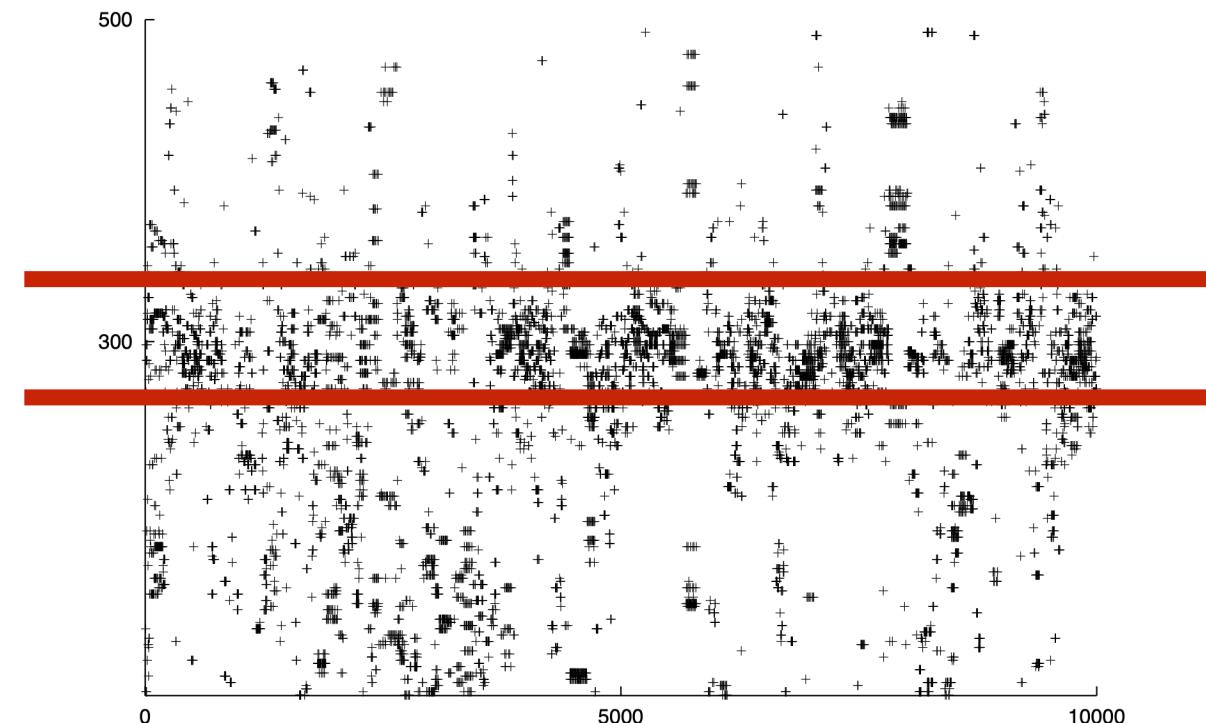
LIDAR Model Algorithm

$$P(z_t|x_t, m) = \prod_{k=1}^K P(z_t^k|x_t, m)$$

1. Use robot **state** to compute the sensor's pose on the **map**
2. Ray-cast from the sensor to compute a simulated laser scan
3. For each beam, compare ray-casted distance to **real laser scan distance**
4. Multiply all probabilities to compute the likelihood of that real laser scan

Tuning Single Beam Parameters

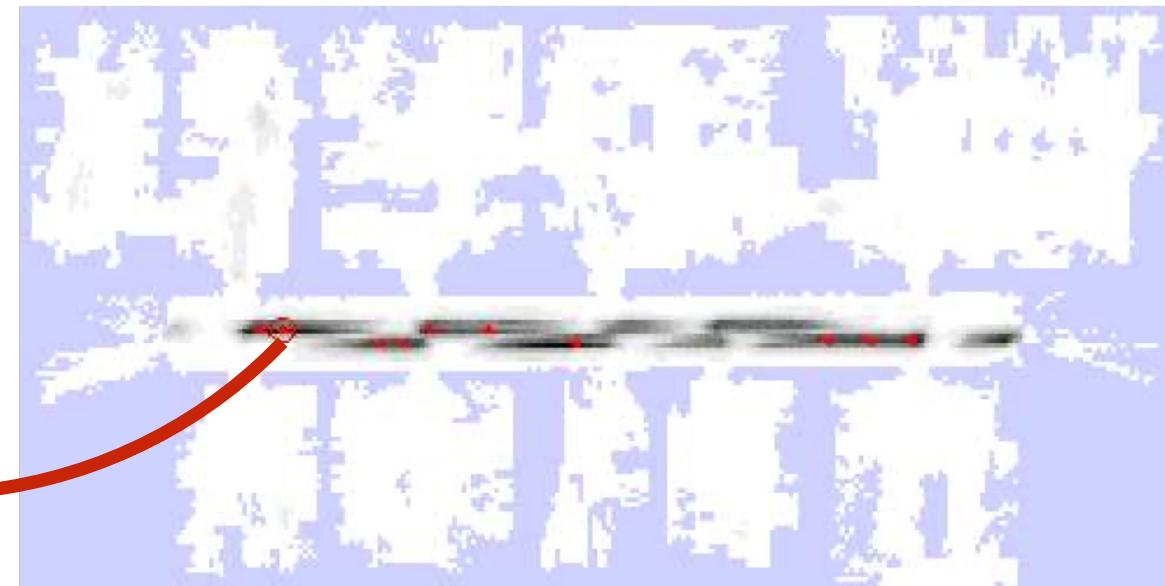
- Offline: collect lots of data and optimize parameters



Tuning Single Beam Parameters

- Online: simulate a scan and plot the likelihood from different positions

Actual scan



Likelihood at various locations

Dealing with Overconfidence

$$P(z_t|x_t, m) = \prod_{k=1}^K P(z_t^k|x_t, m)$$

- Subsample laser scans: convert 180 beams to 18 beams
- Force the single beam model to be less confident

$$P(z_t^k|x_t, m) \rightarrow P(z_t^k|x_t, m)^\alpha, \alpha < 1$$

Lecture Outline

Particle Based Representations in Filtering

Particle Filter

Particle Filter w/ Resampling

Practical Considerations

Why is the Bayes filter challenging to implement?

Key Idea: Apply Markov to get a recursive update!

Step 0. Start with the belief at time step t-1

$$bel(x_{t-1})$$

Step 1: Prediction - push belief through dynamics given **action**

$$\overline{bel}(x_t) = \sum P(x_t | \mathbf{u}_t, x_{t-1}) bel(x_{t-1})$$

Intractable due
to discretization

Step 2: Correction - apply Bayes rule given **measurement**

$$bel(x_t) = \eta P(\mathbf{z}_t | x_t) \overline{bel}(x_t)$$

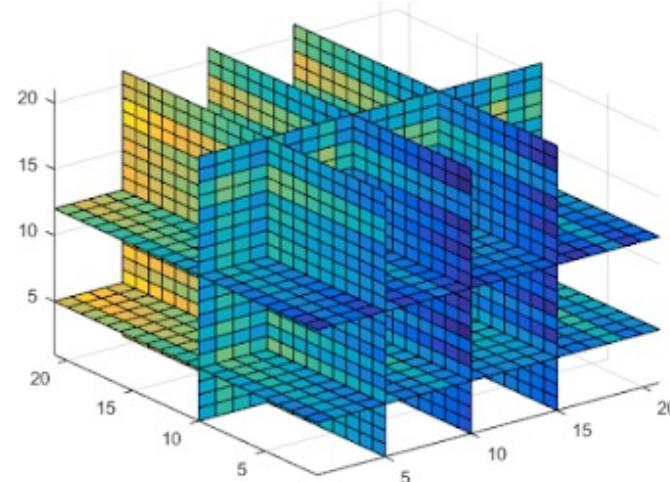
How does discretization work for Bayesian filters?

$$\begin{bmatrix} x \\ y \\ \theta \end{bmatrix}$$

X-COORDINATE - Discretize into K bins

Y-COORDINATE - Discretize into K bins Overall K^3 bins

HEADING - Discretize into K bins

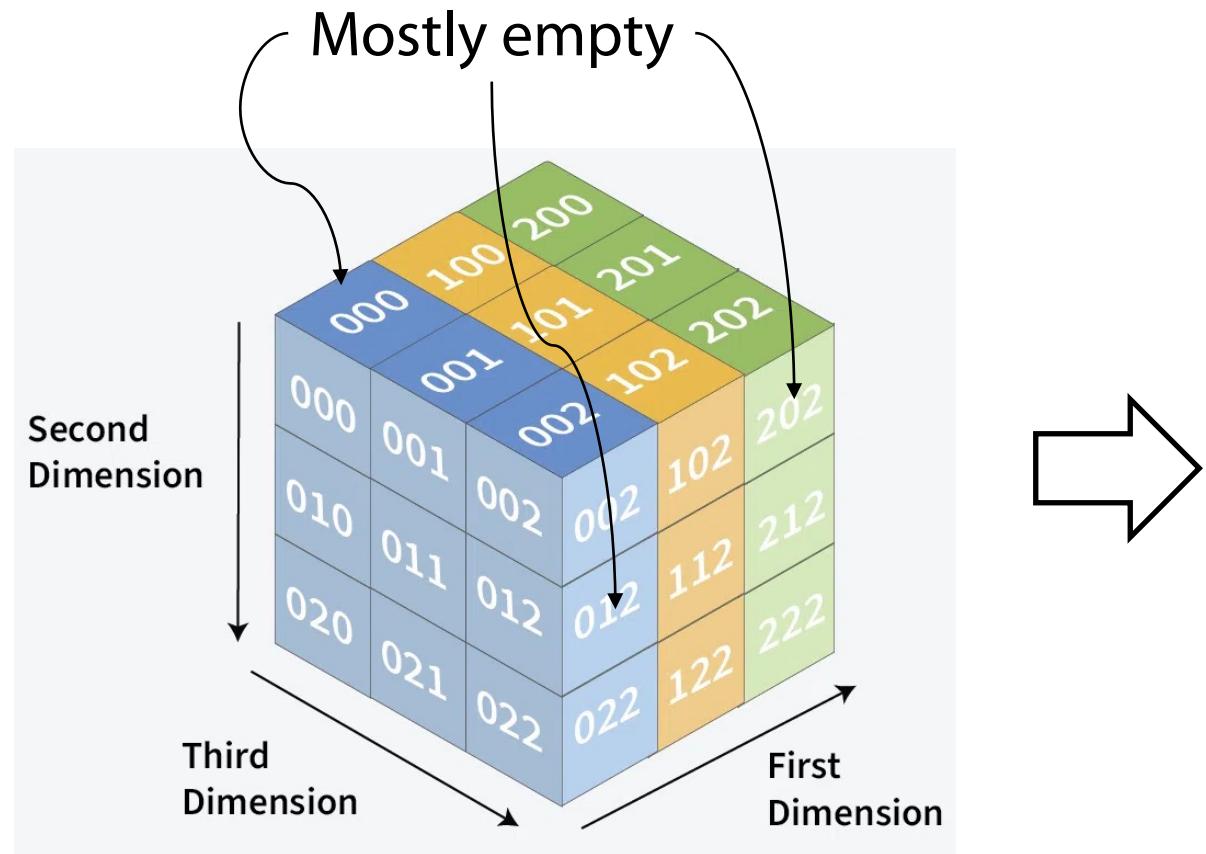
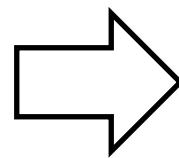


Exponentially expensive with dimension for each summation

Many of these bins will be empty!

How can we do better?

Let's change our way of thinking



$[s_1, s_1, s_2, s_{10}, s_{40}, s_{40}, s_{40}, s_{55}, s_{55}]$

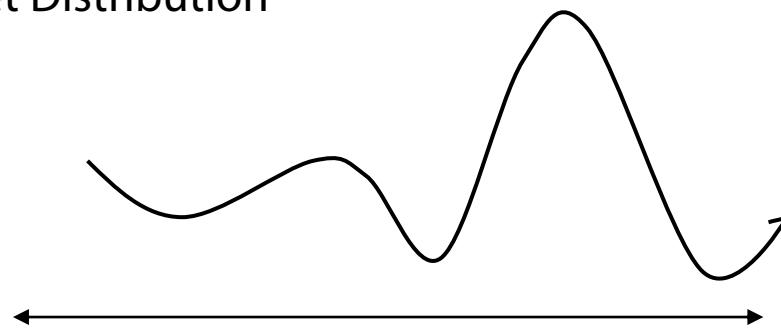
Keep a list of only the states with likelihood, with number of repeat instances proportional to probability

No discretization per dimension!

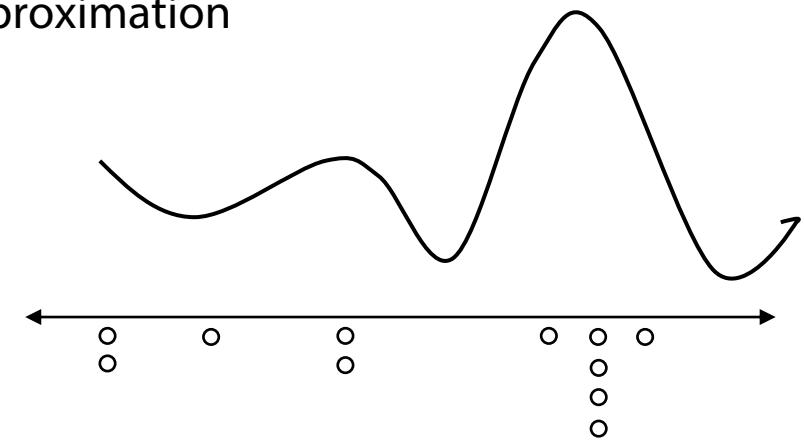
Is this even a useful/valid representation of belief?

Let's change our way of thinking

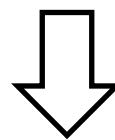
Target Distribution



"Particle" Approximation



Is this even a useful/valid representation of belief?



Depends what we want to do with the probability distribution!

→ Typically we want to compute averages (expectations)

Downstream Usage of Estimated Probability Distributions

What do we actually intend to do with the belief $bel(x_{t+1})$?

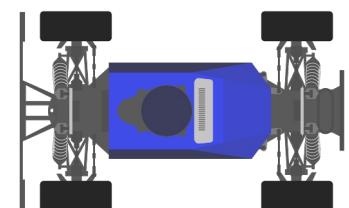
→ Often times we will be evaluating the expected value

$$\mathbb{E}[f] = \int_x f(x)bel(x)dx$$

Mean position: $f(x) \equiv x$

Probability of collision: $f(x) \equiv \mathbb{I}(x \in \mathcal{O})$

Mean value / cost-to-go: $f(x) \equiv V(x)$



Computing Expectations without Closed Form Likelihoods

Monte-Carlo Simulation

$$\mathbb{E}_{x \sim Bel(x_t)} [f(x)] = \int_x f(x) Bel(x) dx \approx \sum_x f(x) Bel(x)$$

Sample from the belief: $x_1, \dots, x_N \sim Bel(x_t)$

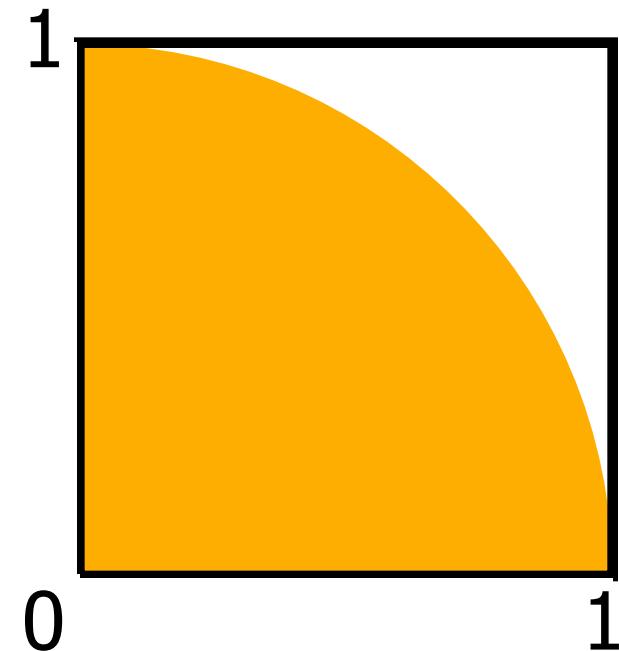
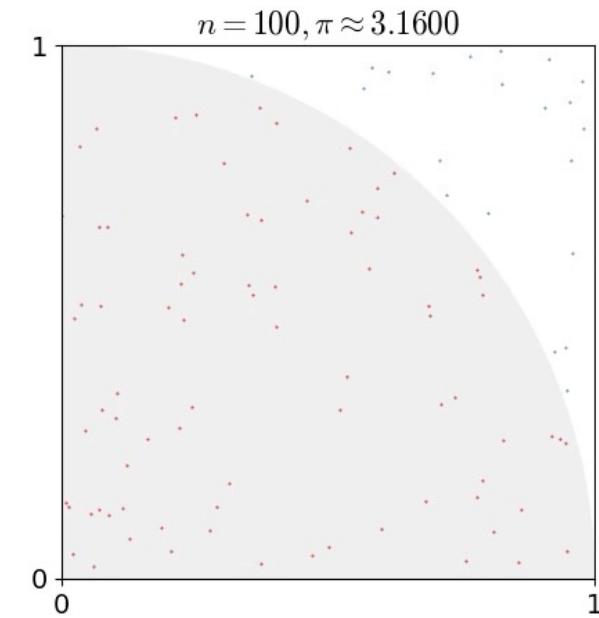
$$\mathbb{E}_{x \sim Bel(x_t)} [f(x)] \approx \frac{1}{N} \sum_i^N f(x^{(i)})$$

Don't require closed form distributions (Gaussian/Beta, etc), just samples (particles)!
→ Replace fancy math by brute force simulation!!

Examples of Monte Carlo Estimation

$$\mathbb{E}[\mathbb{I}(x \in \mathcal{O})] = P(x \in \mathcal{O}) = \frac{\pi}{4} \approx \frac{1}{N} \sum \mathbb{I}(x^{(i)} \in \mathcal{O})$$

1. Sample points uniformly from unit square
2. Count number in quarter-circle (i.e. $\|x_i\| \leq 1$)
3. Divide by N, multiply by 4



→ Exercise: What are other practical problems where this is useful?

ADAPTED FROM WIKIPEDIA

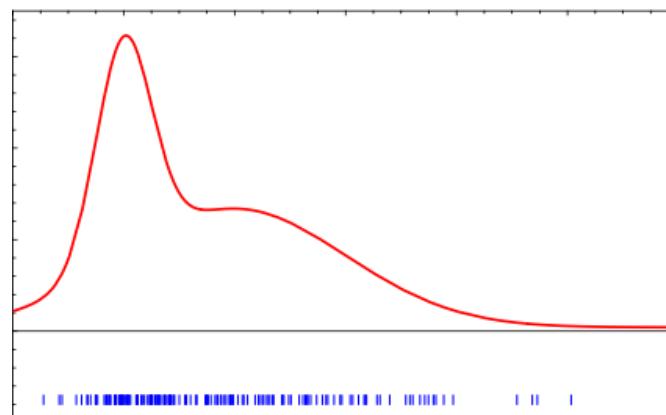
Bringing this Back to Estimation – Belief Distribution

Let's consider the Bayesian filtering update

$$Bel(x_t) = \eta P(z_t|x_t) \int P(x_t|u_t, x_{t-1}) Bel(x_{t-1}) dx_{t-1}$$

Represent the belief with a set of particles! Each is a hypothesis of what the state might be.

Higher likelihood regions have more particles



How do we “propagate” belief across timesteps with particles?

Bayes Filter

$$Bel(x_t) = \eta P(z_t|x_t) \int P(x_t|u_t, x_{t-1}) Bel(x_{t-1}) dx_{t-1}$$

Dynamics Update

$$\overline{Bel}(x_t) = \int p(x_t|u_t, x_{t-1}) Bel(x_{t-1}) dx_{t-1}$$

Measurement Correction

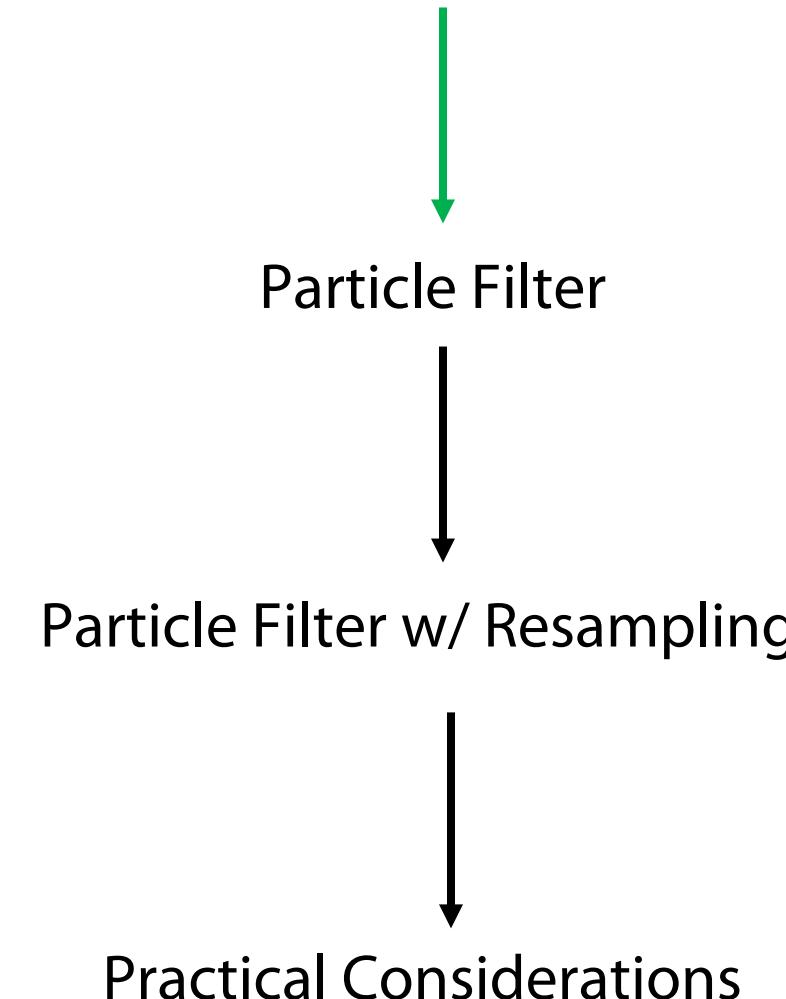
$$Bel(x_t) = \eta P(z_t|x_t) \overline{Bel}(x_t)$$

How do we sample from the product of two distributions?

How do we compute conditioning/normalization with particles?

Lecture Outline

Particle Based Representations in Filtering



Dynamics Step: Propagating Belief Through Dynamics

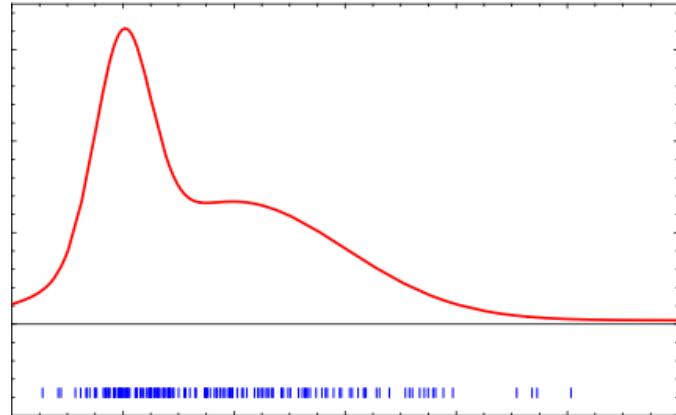
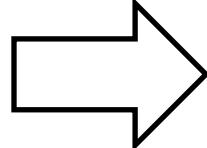
Bayes Filter

$$Bel(x_t) = \eta P(z_t|x_t) \int P(x_t|u_t, x_{t-1}) Bel(x_{t-1}) dx_{t-1}$$

Dynamics Update

$$\overline{Bel}(x_t) = \int P(x_t|u_{t-1}, x_{t-1}) Bel(x_{t-1}) dx_{t-1}$$

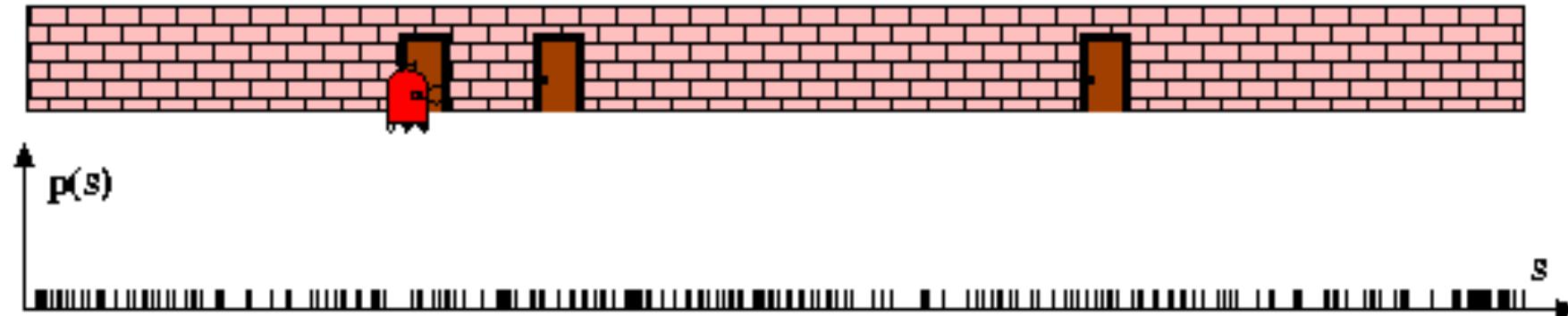
How do we sample from the product of two distributions?



???

Treat each particle as point estimate of actual state and propagate through the dynamics

Propagating Belief Through Dynamics: Initial

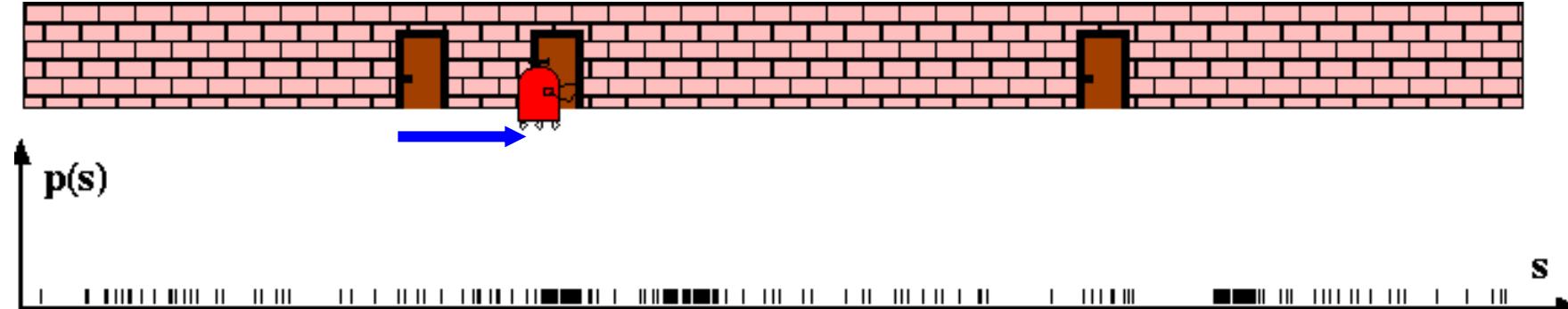


Propagating Belief Through Dynamics: Robot Motion

$$\overline{Bel}(x_t) = \int P(x_t|u_{t-1}, x_{t-1}) Bel(x_{t-1}) dx_{t-1}$$

Push samples forward according to dynamics

Take every x_{t-1} in previous belief, run motion model forward with x_{t-1} and u_t to get new particles

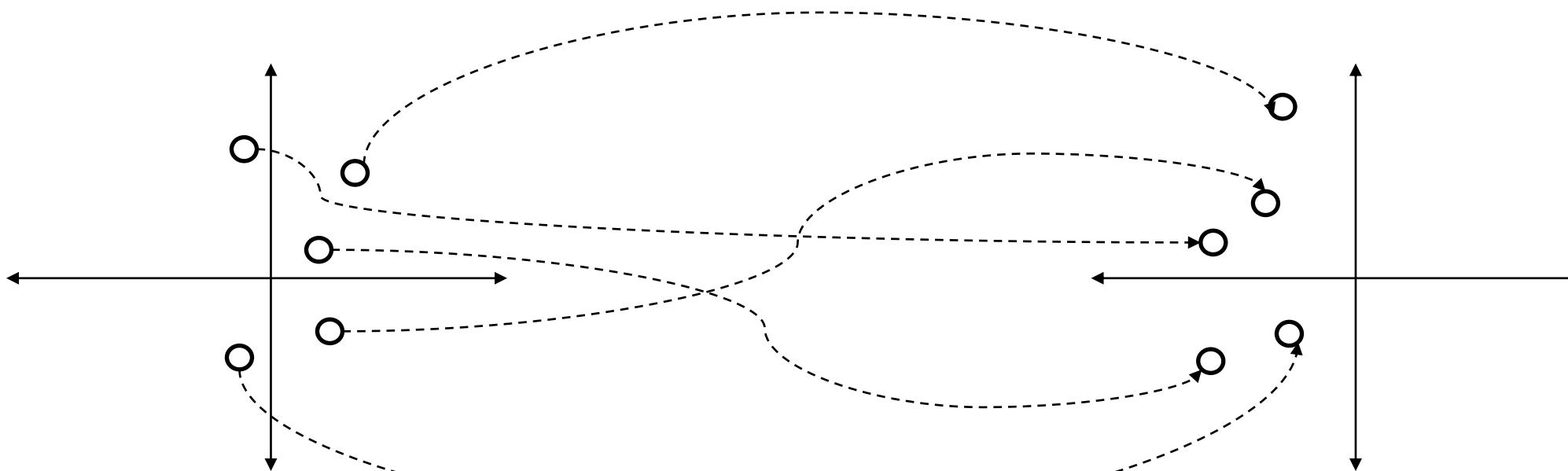


Dynamics Update:

$$\overline{Bel}(x_t) = \int P(x_t|u_{t-1}, x_{t-1}) Bel(x_{t-1}) dx_{t-1}$$

Sample forward using the dynamics model:

1. No gaussian requirement
2. No linearity requirement, just push forward distribution



How do we “propagate” belief across timesteps with particles?

Bayes Filter

$$Bel(x_t) = \eta P(z_t|x_t) \int P(x_t|u_t, x_{t-1}) Bel(x_{t-1}) dx_{t-1}$$

Measurement Correction

$$Bel(x_t) = \eta P(z_t|x_t) \overline{Bel}(x_t)$$

How do we compute conditioning/normalization with particles?

Sensor Information: Measurement Update

Can no longer just push forward with evidence, need to normalize

$$Bel(x_t) = \eta P(z_t|x_t) \overline{Bel}(x_t)$$

$$Bel(x_t) = \frac{P(z_t|x_t) \overline{Bel}(x_t)}{\int P(z_t|x_t) \overline{Bel}(x_t) dx_t}$$

Weight each particle - Can compute a per sample weight.
Distribution represented as set of weighted samples

$$w_i = \frac{P(z_t|x_t^i)}{\sum_j P(z_t|x_t^j)}$$

Not ad hoc! \rightarrow exactly the same as importance sampling

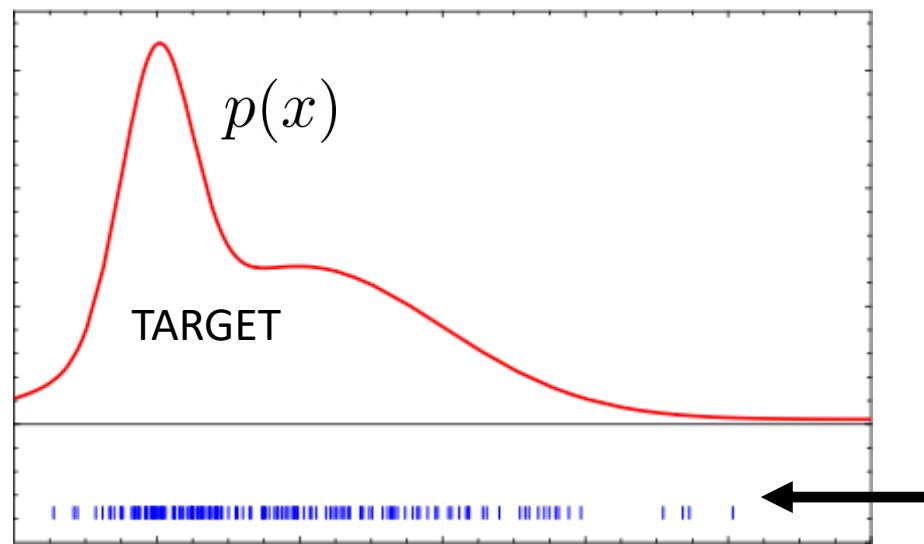
Detour: What is Importance Sampling?

How can we sample from a
“complex” distribution $p(x)$ using a simple distribution $q(x)$?

Importance Sampling

1. Sample from an (easy) proposal distribution
2. Reweight samples to match the target distribution

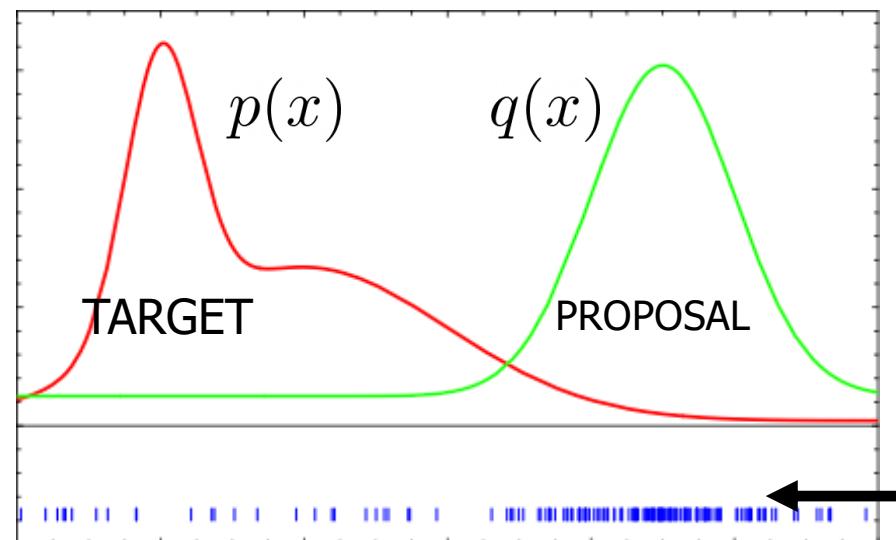
Importance Sampling



Don't know how to
sample from target!

Importance Sampling

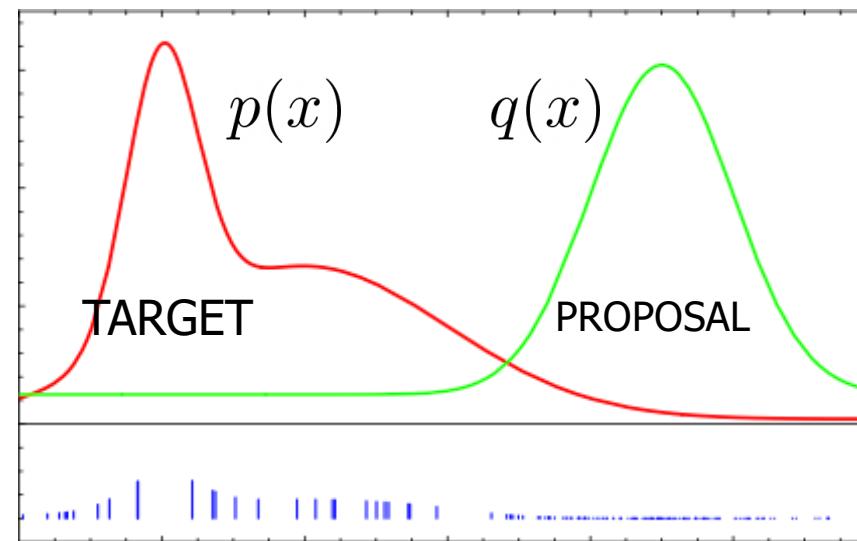
1. Sample from an (easy) proposal distribution



Can sample from proposal distribution

Importance Sampling

1. Sample from an (easy) proposal distribution
2. Reweight samples to match the target distribution



Importance Sampling

$$\begin{aligned}\mathbb{E}_{x \sim p(x)}[f(x)] &= \sum p(x)f(x) && \text{Expected value with } p(x) \\ &= \sum p(x)f(x) \frac{q(x)}{q(x)} \\ &= \sum q(x) \frac{p(x)}{q(x)} f(x) \\ &= \mathbb{E}_{x \sim q(x)} \left[\frac{p(x)}{q(x)} f(x) \right] && \text{Expected value with } q(x) \\ &\approx \frac{1}{N} \sum_{i=1}^N \left[\frac{p(x^{(i)})}{q(x^{(i)})} f(x^{(i)}) \right] && \text{Monte Carlo estimate}\end{aligned}$$

IMPORTANCE
WEIGHT

Measurement Update with Importance Sampling

Target Distribution: Posterior

$$Bel(x_t) = \eta P(z_t|x_t) \int_{p(x)} P(x_t|u_t, x_{t-1}) Bel(x_{t-1}) dx_{t-1}$$

Proposal Distribution: After applying motion model

$$\overline{Bel}(x_t) = \int_{q(x)} P(x_t|u_t, x_{t-1}) Bel(x_{t-1}) dx_{t-1}$$

Measurement Update with Importance Sampling

$$\begin{aligned} \text{p(x)} \quad Bel(x_t) &= \eta P(z_t|x_t) \int P(x_t|u_t, x_{t-1}) Bel(x_{t-1}) dx_{t-1} \\ \text{q(x)} \quad \overline{Bel}(x_t) &= \int P(x_t|u_t, x_{t-1}) Bel(x_{t-1}) dx_{t-1} \end{aligned}$$

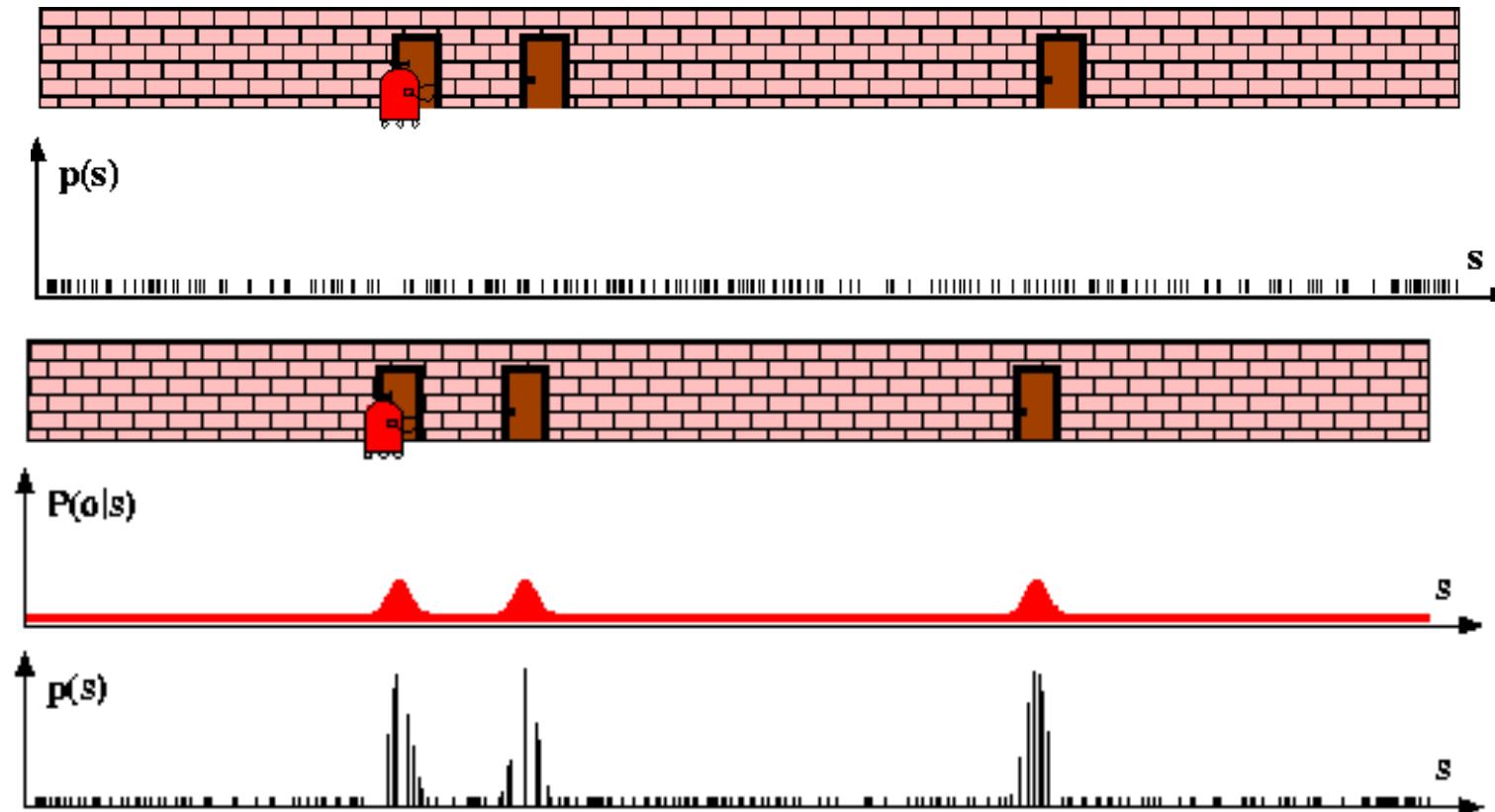
Importance Weight (Ratio)

$$w = \frac{Bel(x_t)}{\overline{Bel}(x_t)} = \eta P(z_t|x_t)$$

Sensor Information: Importance Sampling

Can compute a weighted set of samples by weighting by (normalized) evidence

$$Bel(x_t) = \eta P(z_t|x_t) \overline{Bel}(x_t) \quad w_i = \frac{P(z_t|x_t^i)}{\sum_j P(z_t|x_t^j)}$$

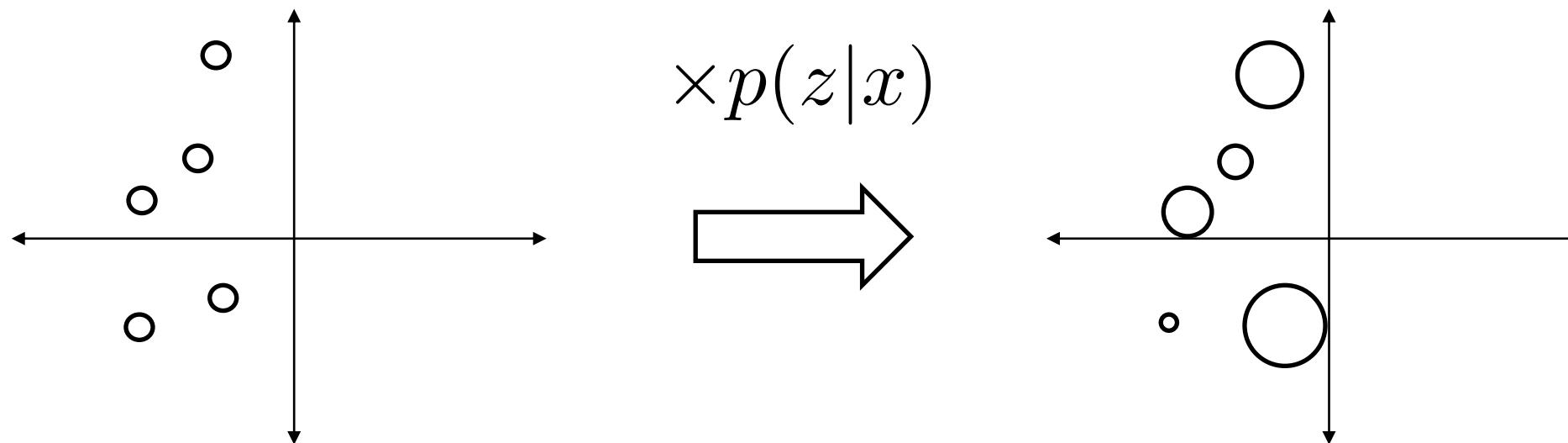


Measurement Update

$$Bel(x_t) = \eta P(z_t|x_t) \overline{Bel}(x_t)$$

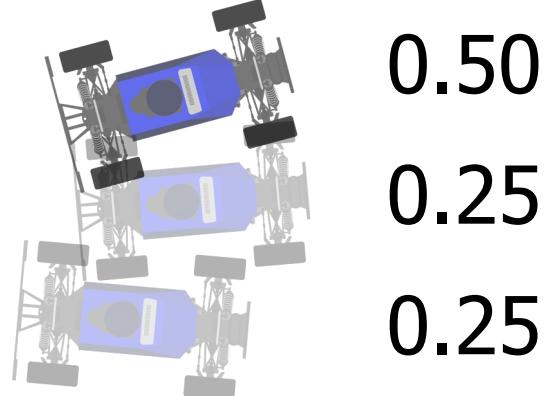
$$Bel(x_t) = \frac{P(z_t|x_t) \overline{Bel}(x_t)}{\int P(z_t|x_t) \overline{Bel}(x_t) dx_t}$$

$$w_i = \frac{P(z_t|x_t^i)}{\sum_j P(z_t|x_t^j)}$$



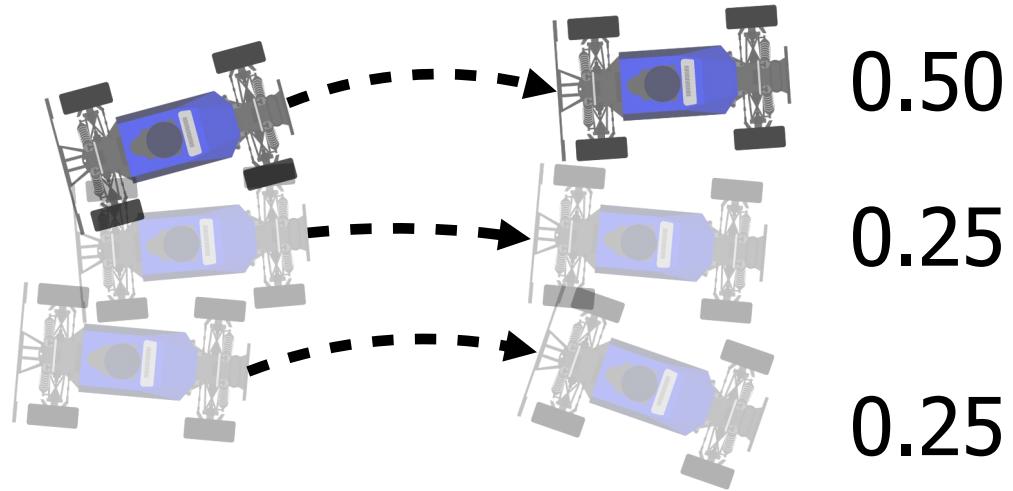
Reweight particles according to measurement likelihood

Normalized Importance Sampling



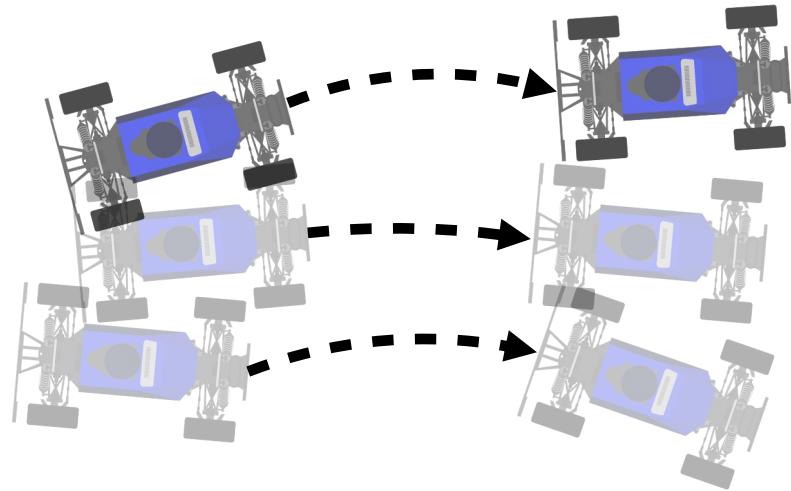
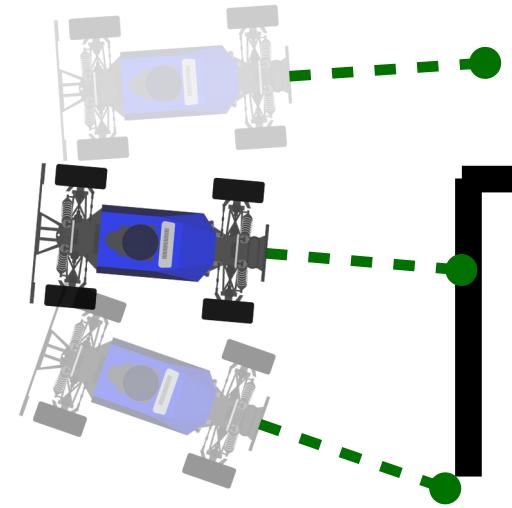
$$Bel(x_{t-1}) = \left\{ \begin{array}{cccc} x_{t-1}^{(1)} & x_{t-1}^{(2)} & \cdots & x_{t-1}^{(M)} \\ w_{t-1}^{(1)} & w_{t-1}^{(2)} & \cdots & w_{t-1}^{(M)} \end{array} \right\}$$

Normalized Importance Sampling



$$\bar{x}_t^{(i)} \sim P(x_t | u_t, x_{t-1})$$

Normalized Importance Sampling



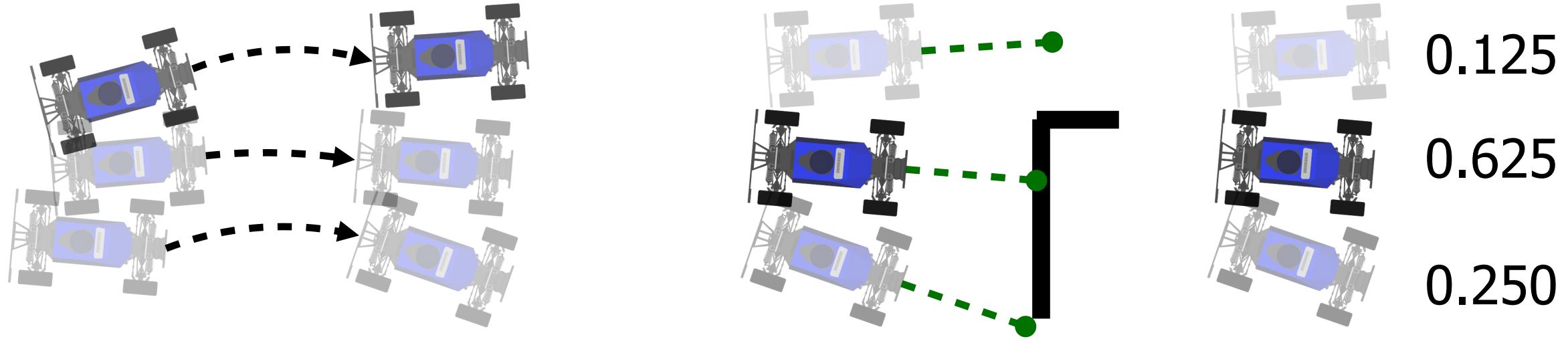
$$0.50 \times 0.02 = 0.01$$

$$0.25 \times 0.20 = 0.05$$

$$0.25 \times 0.08 = 0.02$$

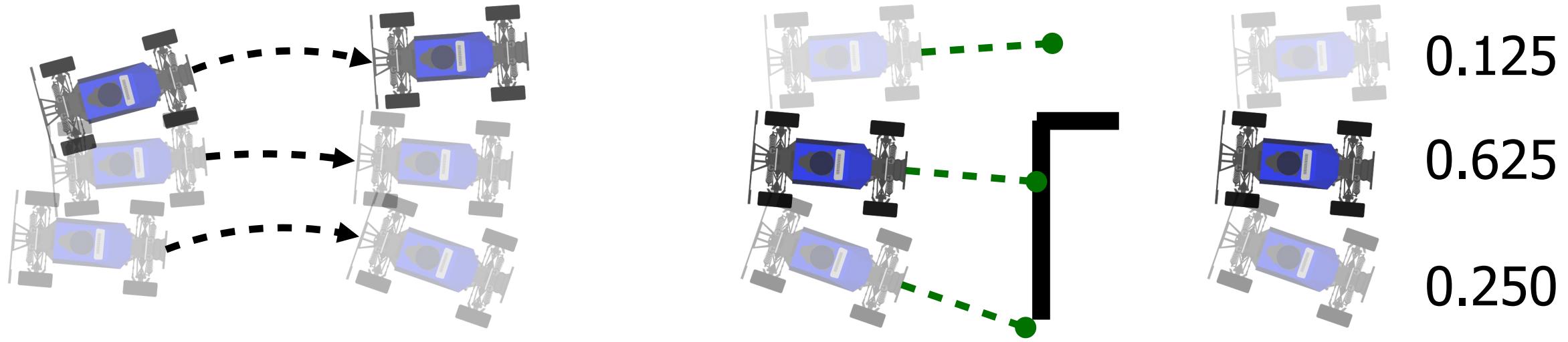
$$w_t^{(i)} = P(z_t | \bar{x}_t^{(i)}) w_{t-1}^{(i)}$$

Normalized Importance Sampling



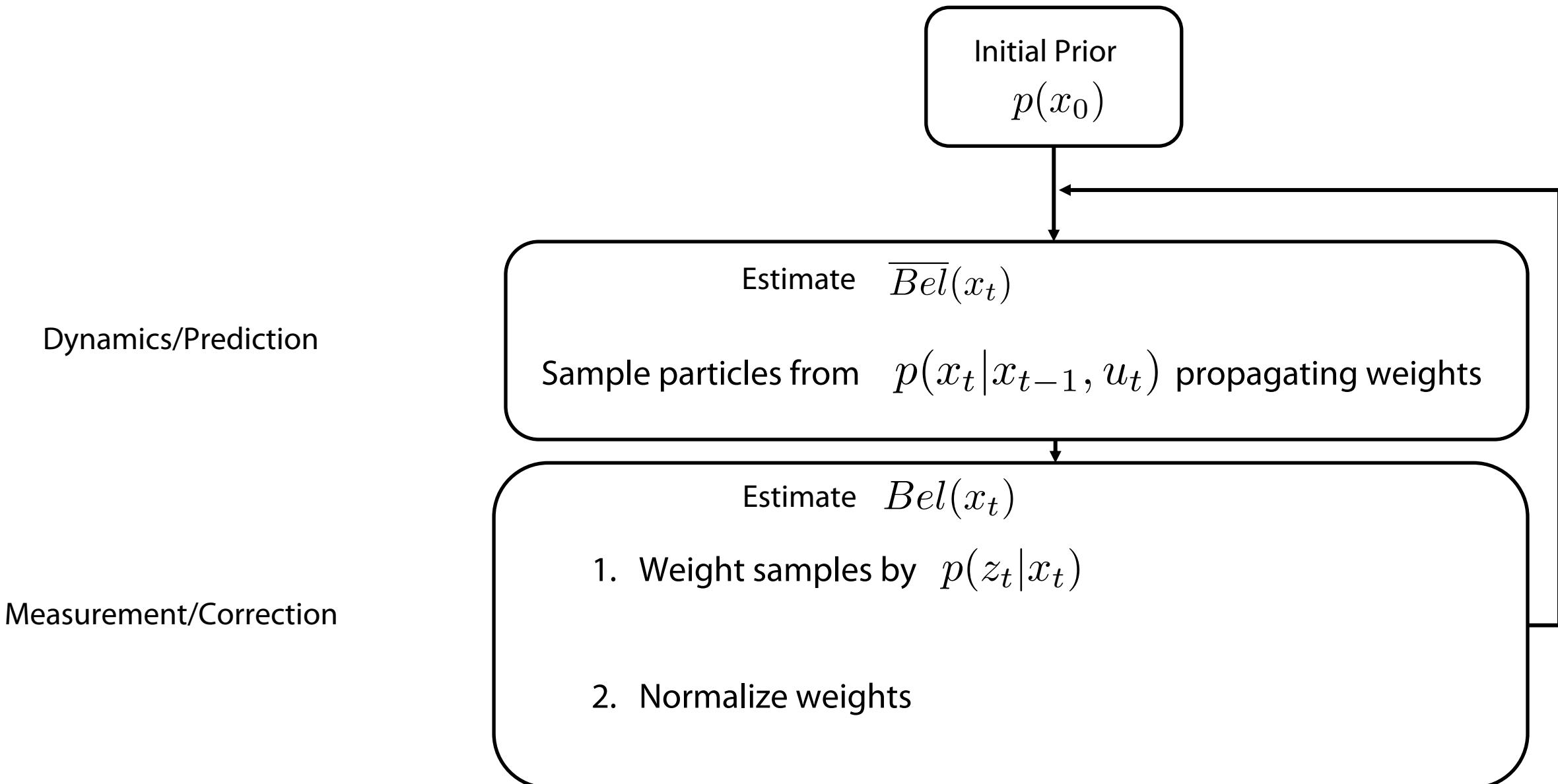
$$w_t^{(i)} = \frac{w_t^{(i)}}{\sum_i w_t^{(i)}}$$

Normalized Importance Sampling



$$Bel(x_t) = \left\{ \begin{array}{cccc} \bar{x}_t^{(1)} & \bar{x}_t^{(2)} & \dots & \bar{x}_t^{(M)} \\ w_t^{(1)} & w_t^{(2)} & \dots & w_t^{(M)} \end{array} \right\}$$

Overall Particle Filter algorithm – v1



Lecture Outline

Particle Based Representations in Filtering

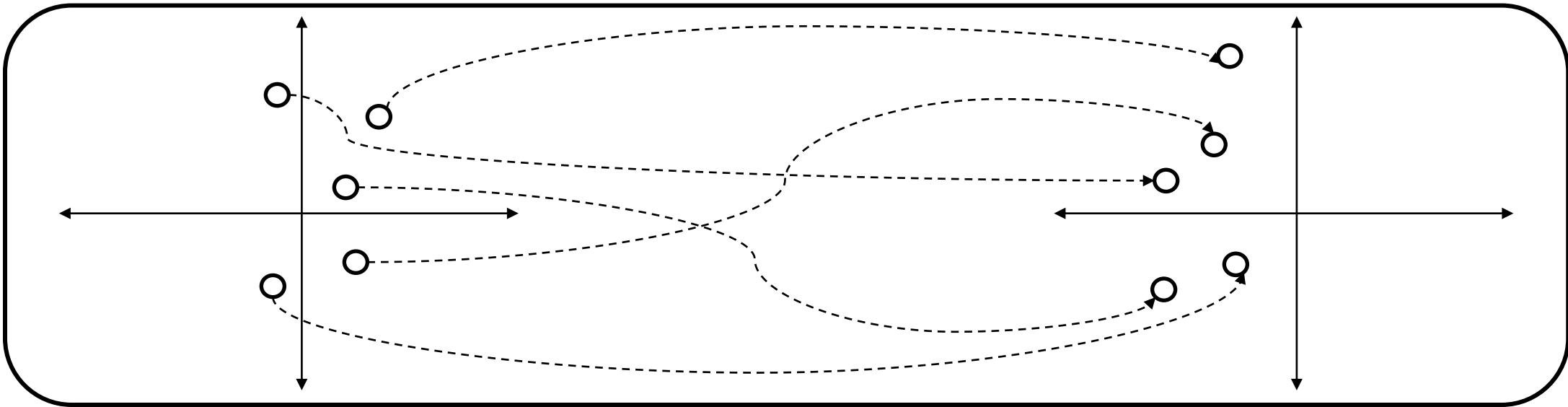
Particle Filter

Particle Filter w/ Resampling

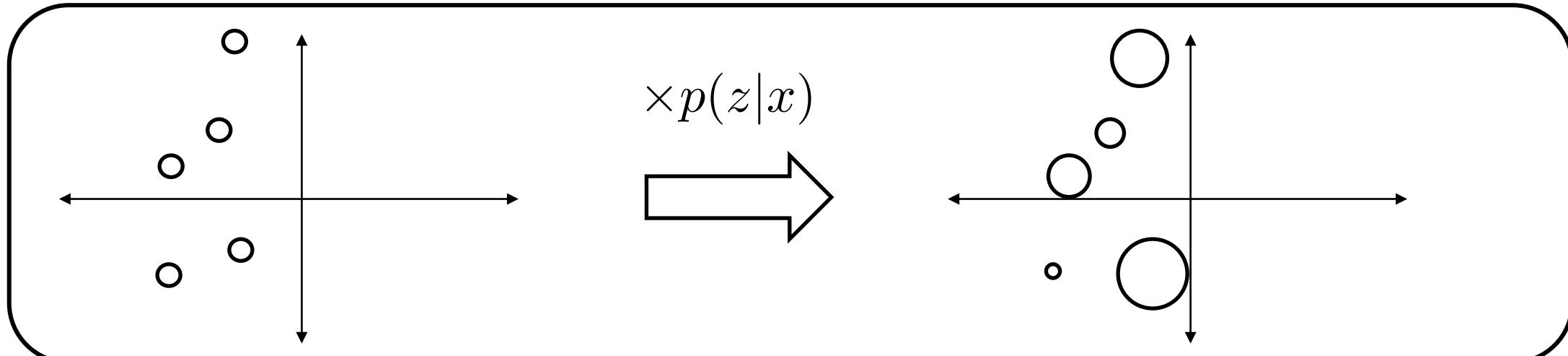
Practical Considerations

What happens across multiple steps?

Dynamics



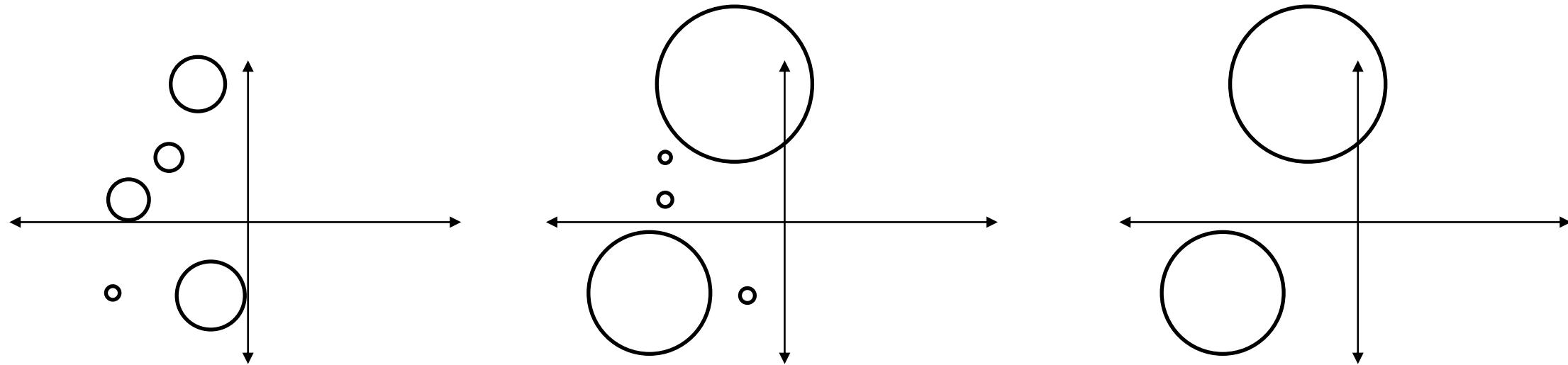
Measurement



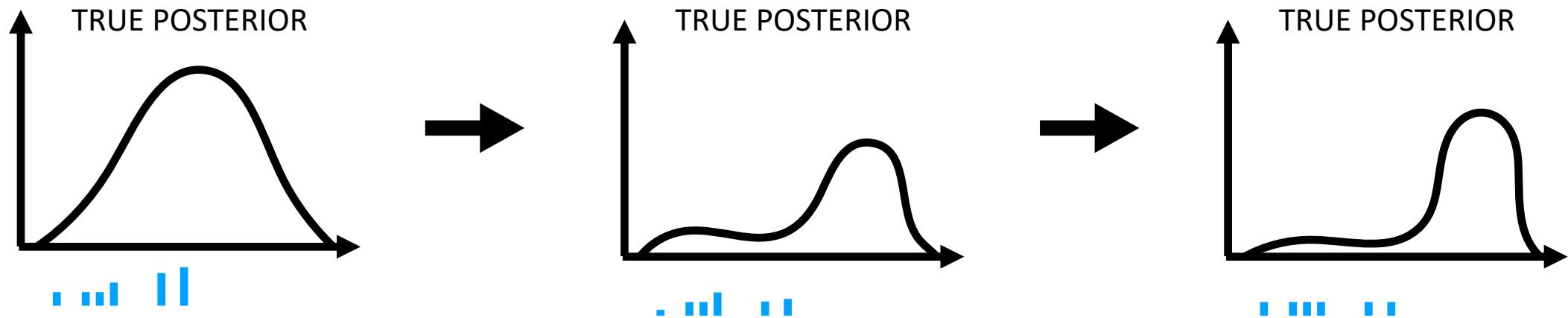
Importance weights get multiplied at each step

Why might this be bad?

Importance weights get multiplied at each step



1. May blow up and get numerically unstable over many steps
2. Particles stay stuck in unlikely regions



Resampling

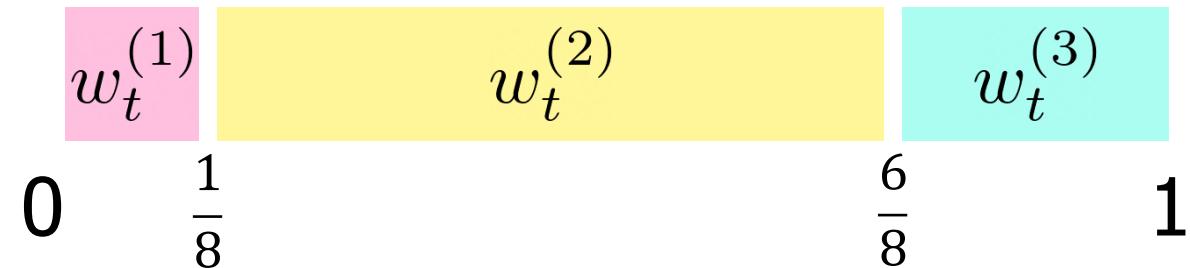
- **Given**: Set S of weighted samples (from measurement step) with weights w_i
- **Wanted** : unweighted random sample, where the probability of drawing x_i is given by w_i .
- Typically done n times with replacement to generate new sample set S' .

Resampling



Here are your random numbers:

0.97
0.26
0.72

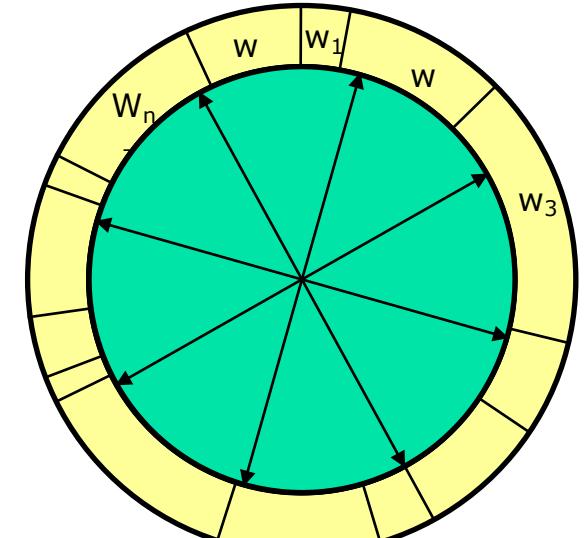
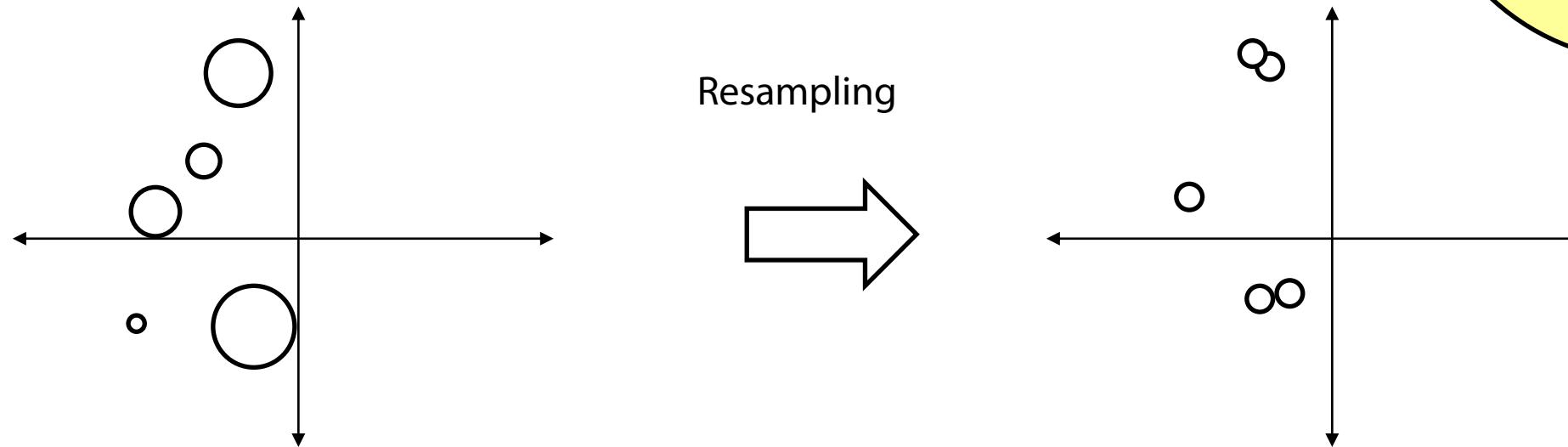


- Spin a roulette wheel
- Space according to weights
- Pick samples based on where it lands

Resampling in a particle filter

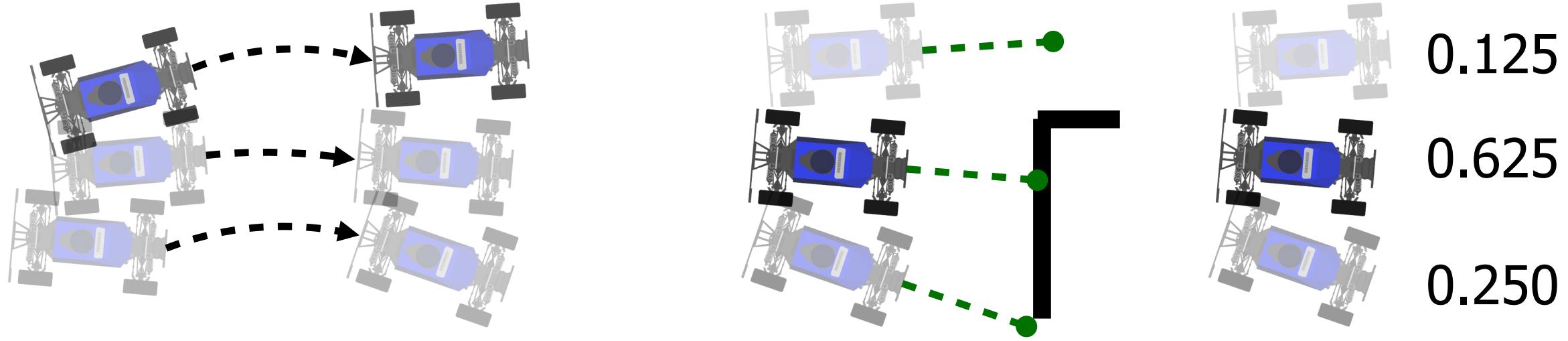
$$Bel(x_t) = \eta P(z_t|x_t) \overline{Bel}(x_t)$$

$$Bel(x_t) = \frac{P(z_t|x_t) \overline{Bel}(x_t)}{\int P(z_t|x_t) \overline{Bel}(x_t) dx_t} \quad w_i = \frac{P(z_t|x_t^i)}{\sum_j P(z_t|x_t^j)}$$



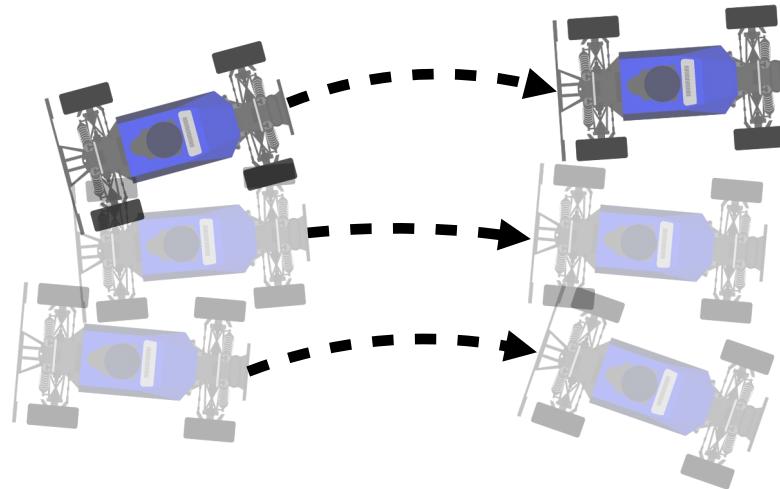
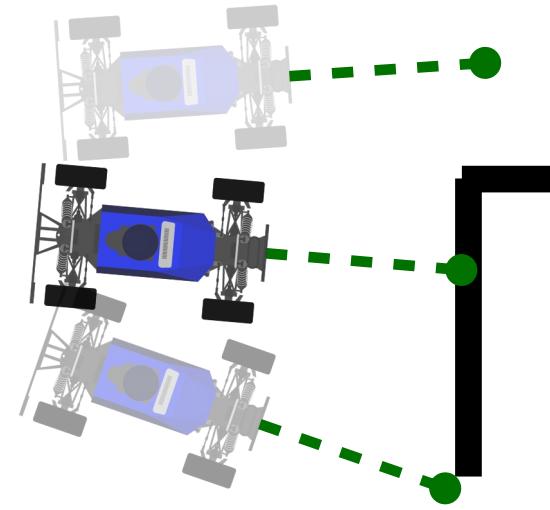
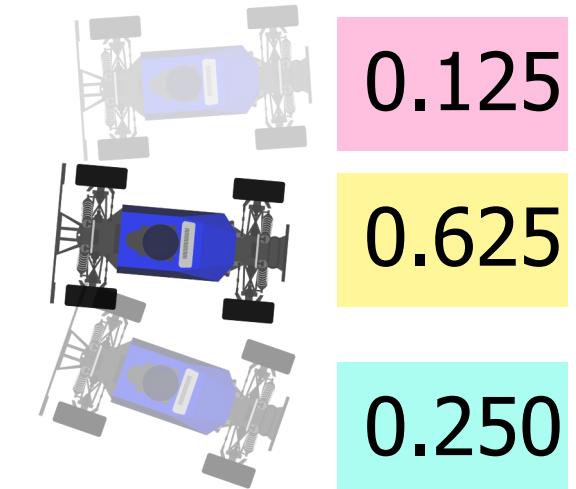
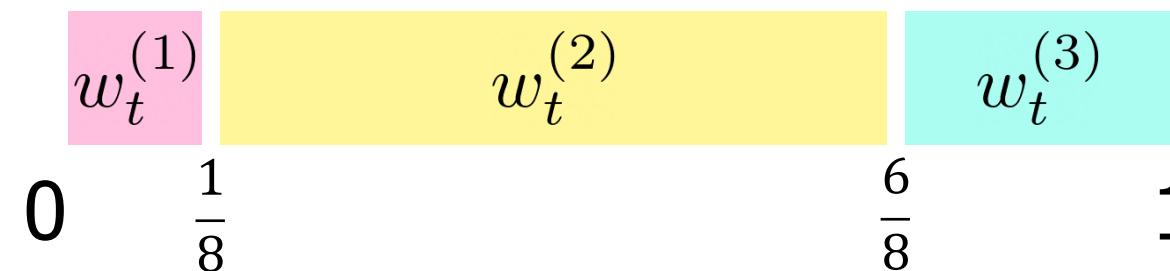
Resample particles from weighted distribution to give unweighted set of particles

Original: Normalized Importance Sampling



$$Bel(x_t) = \left\{ \begin{array}{cccc} \bar{x}_t^{(1)} & \bar{x}_t^{(2)} & \dots & \bar{x}_t^{(M)} \\ w_t^{(1)} & w_t^{(2)} & \dots & w_t^{(M)} \end{array} \right\}$$

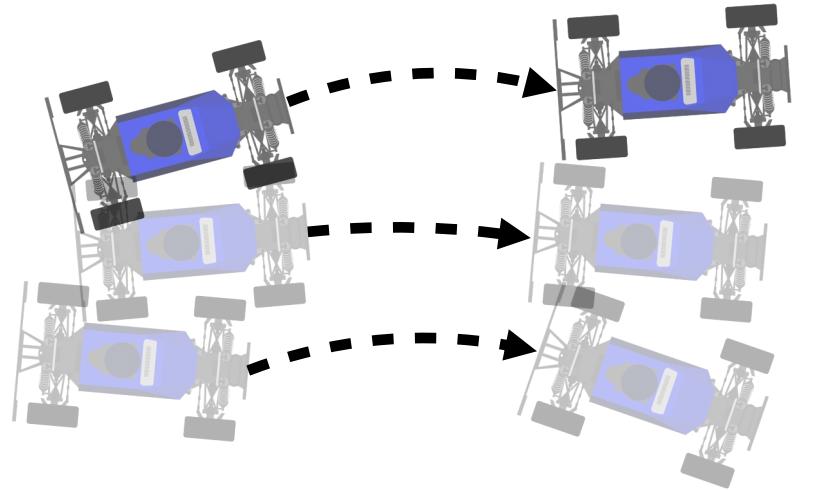
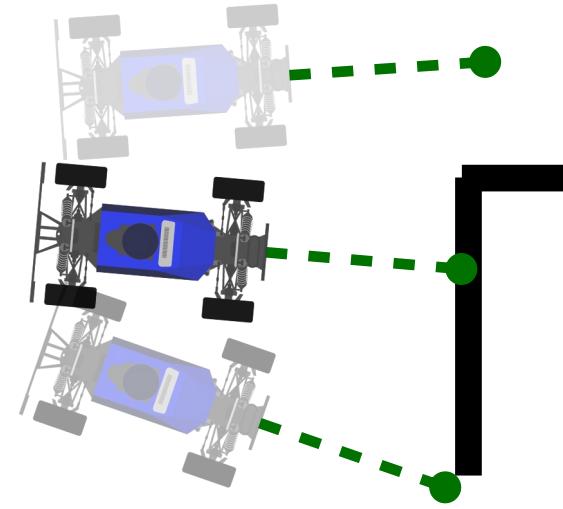
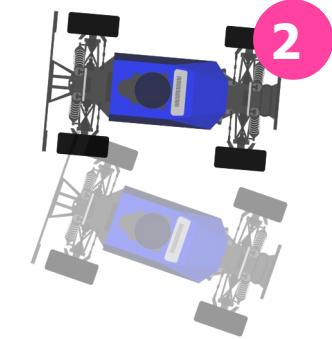
New: Normalized Importance Sampling with Resampling



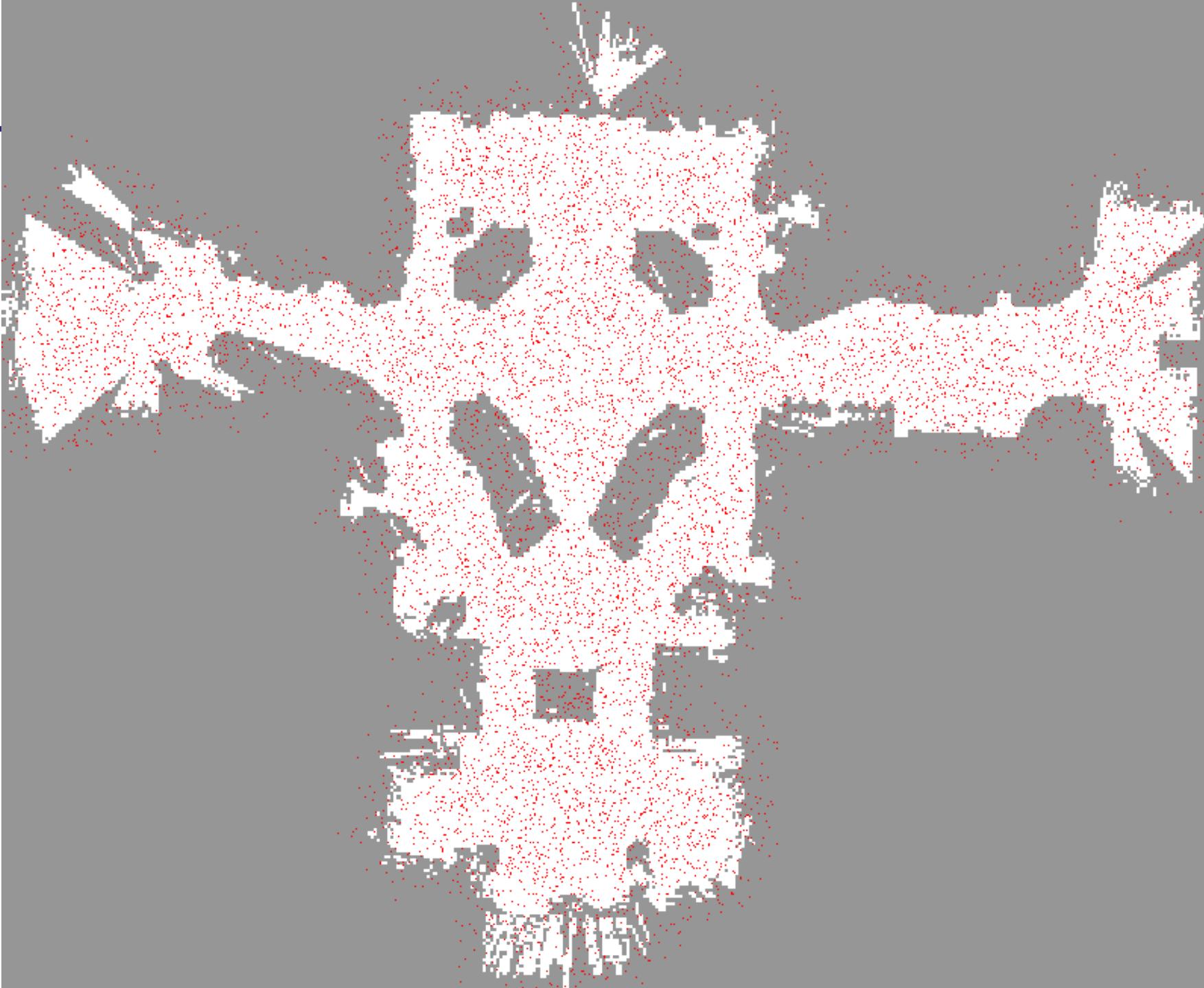
Here are your random numbers:

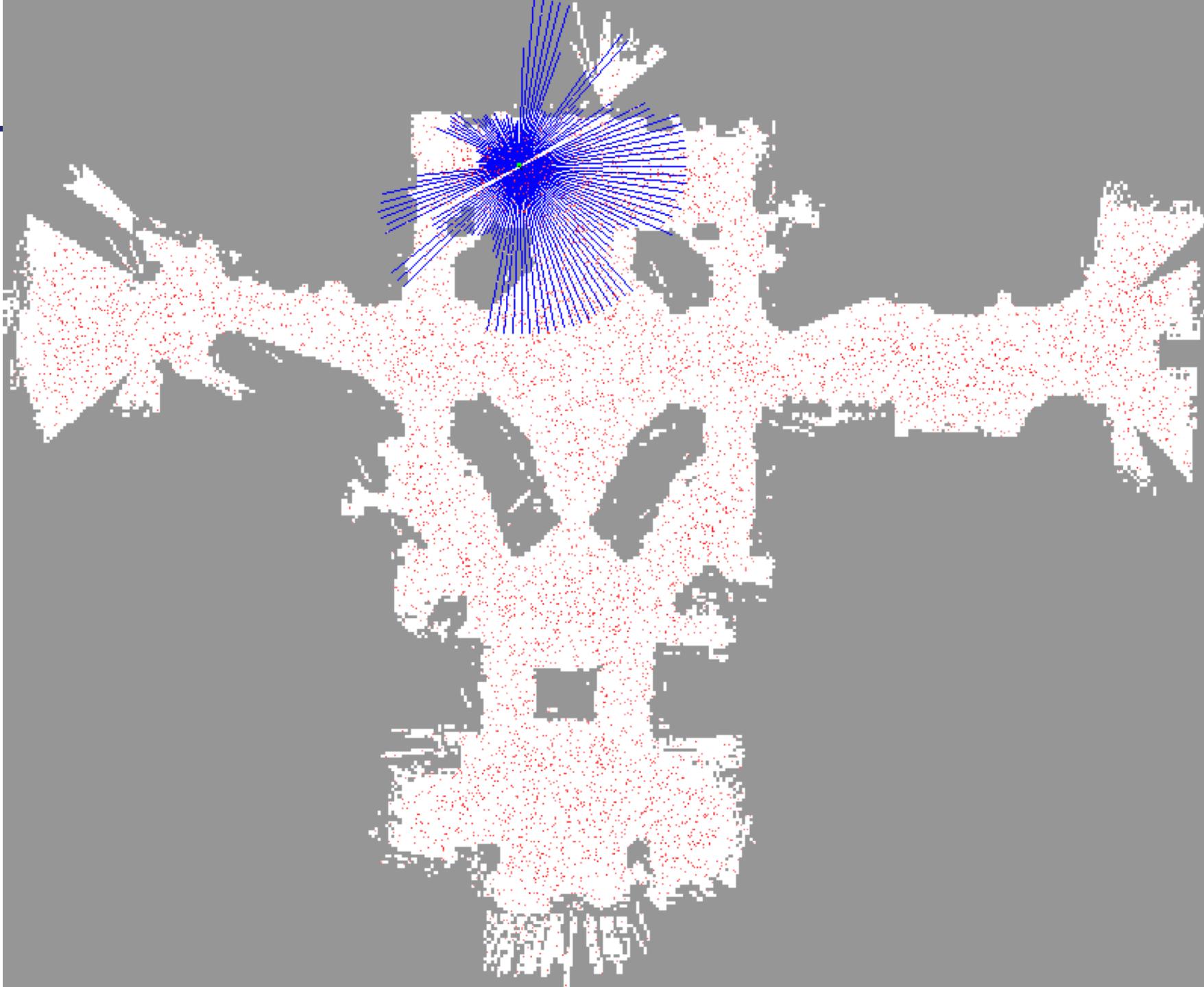
0.97
0.26
0.72

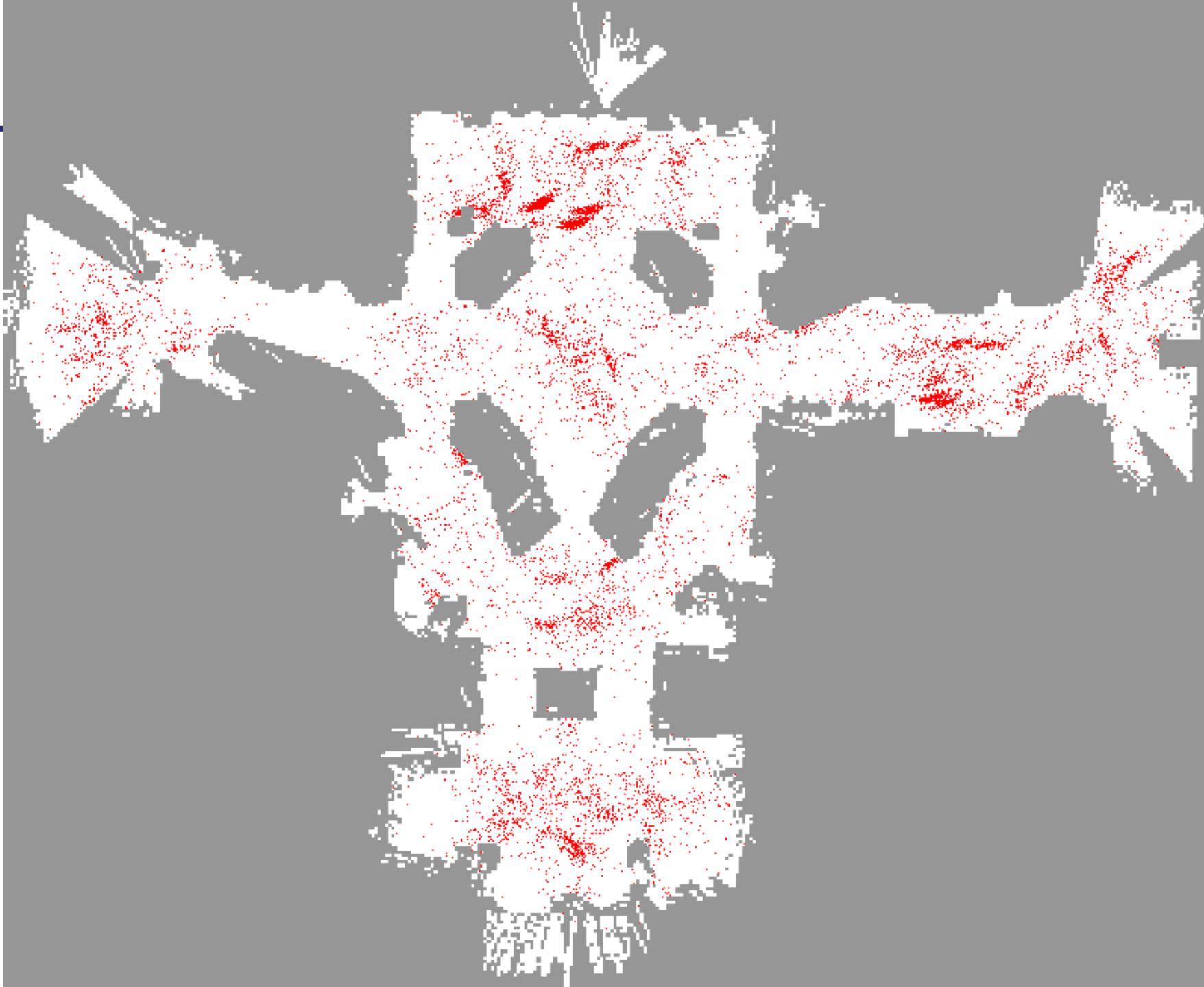
New: Normalized Importance Sampling with Resampling

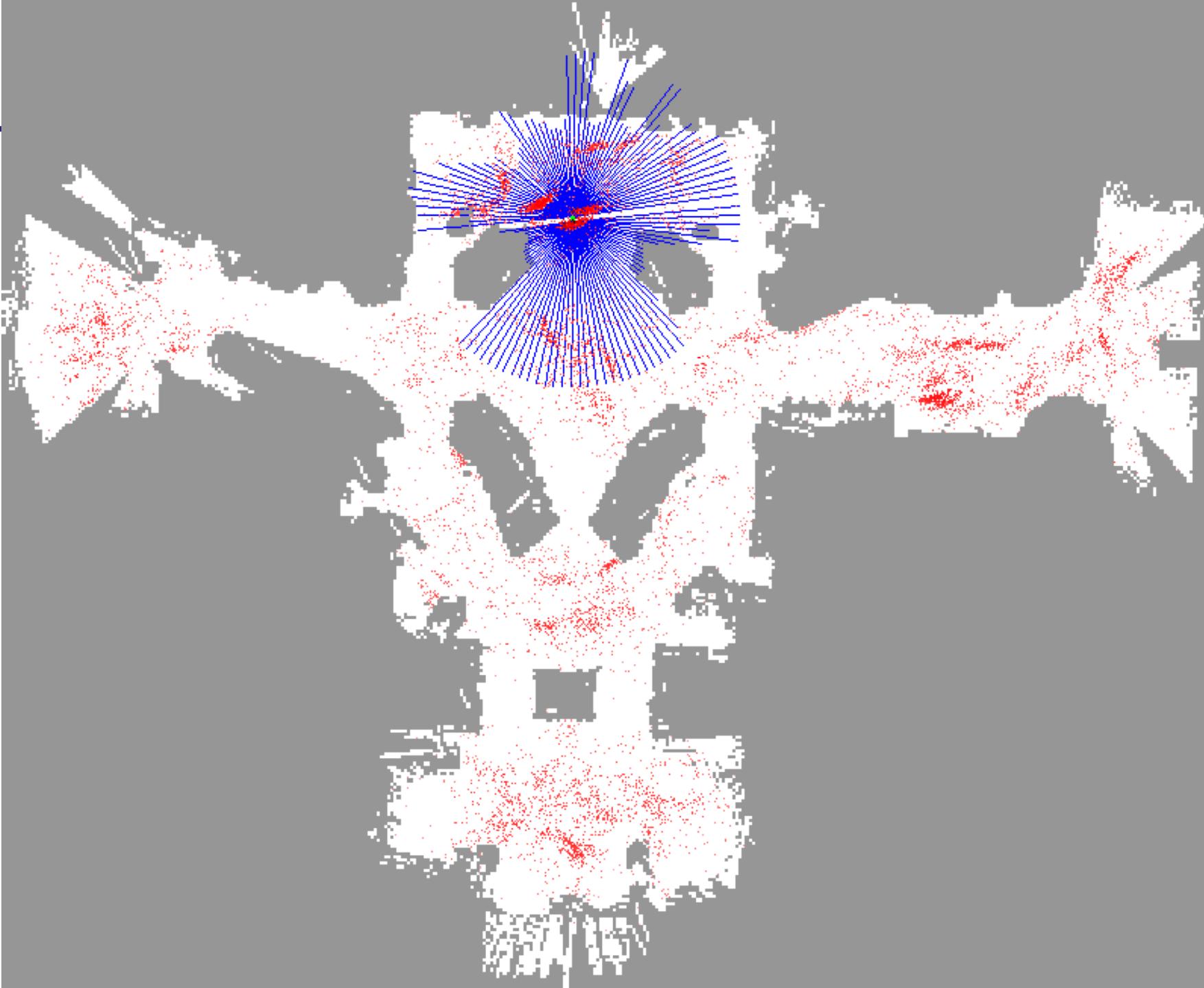


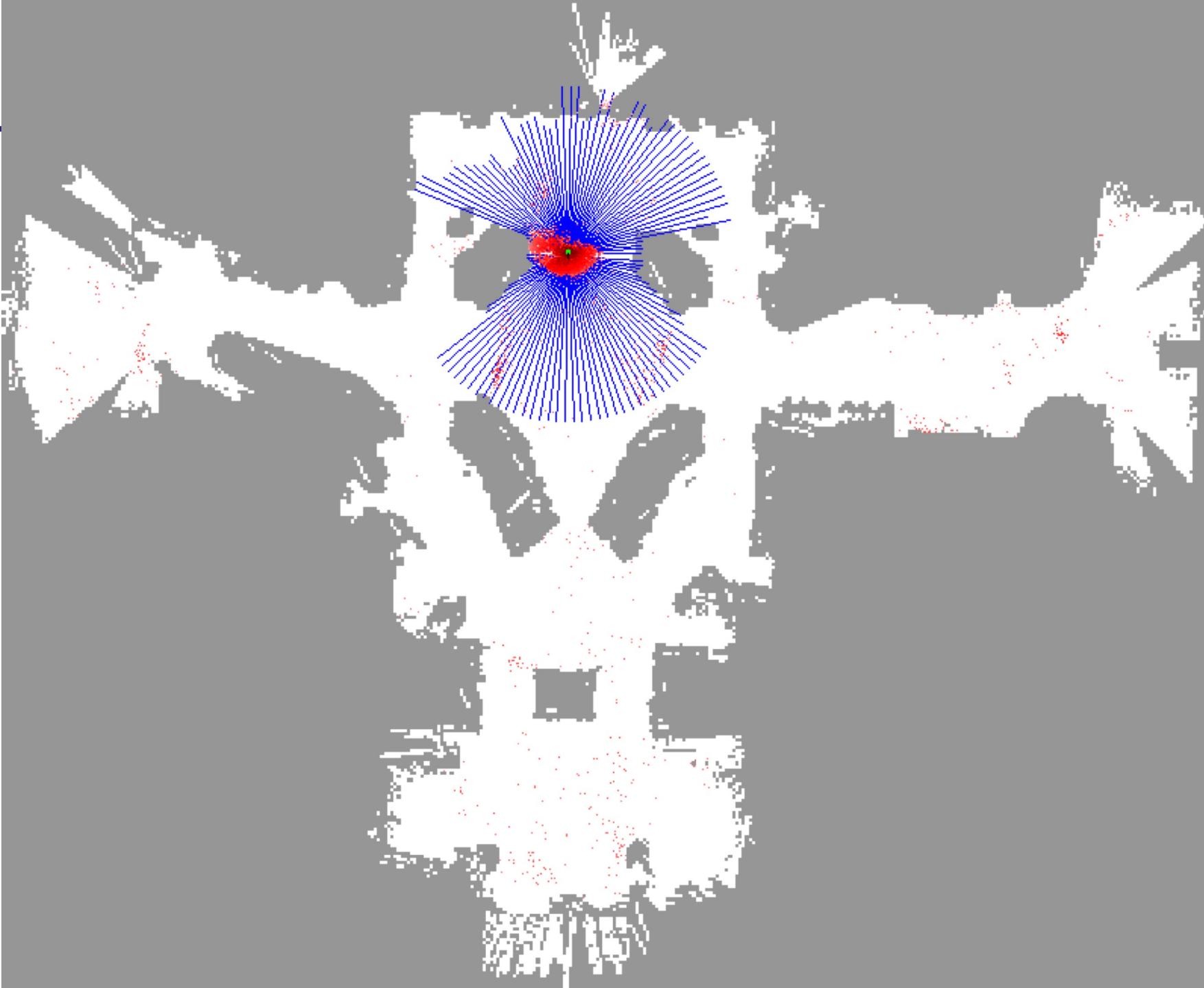
$$x_t^{(i)} \sim w_t^{(i)}, \quad Bel(x_t) = \left\{ \begin{array}{cccc} x_t^{(1)} & \cdots & x_t^{(M)} \\ \frac{1}{M} & \cdots & \frac{1}{M} \end{array} \right\}$$

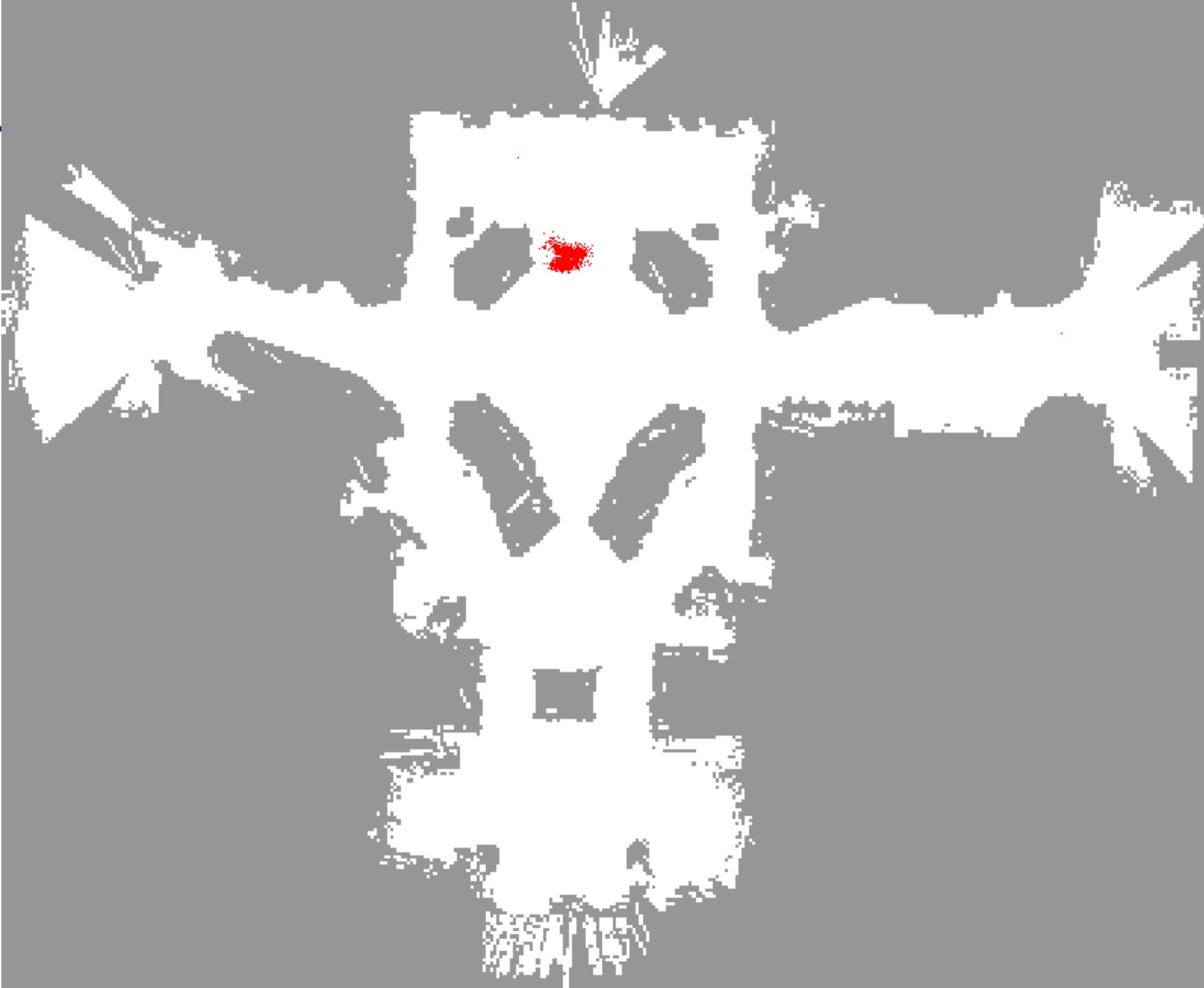




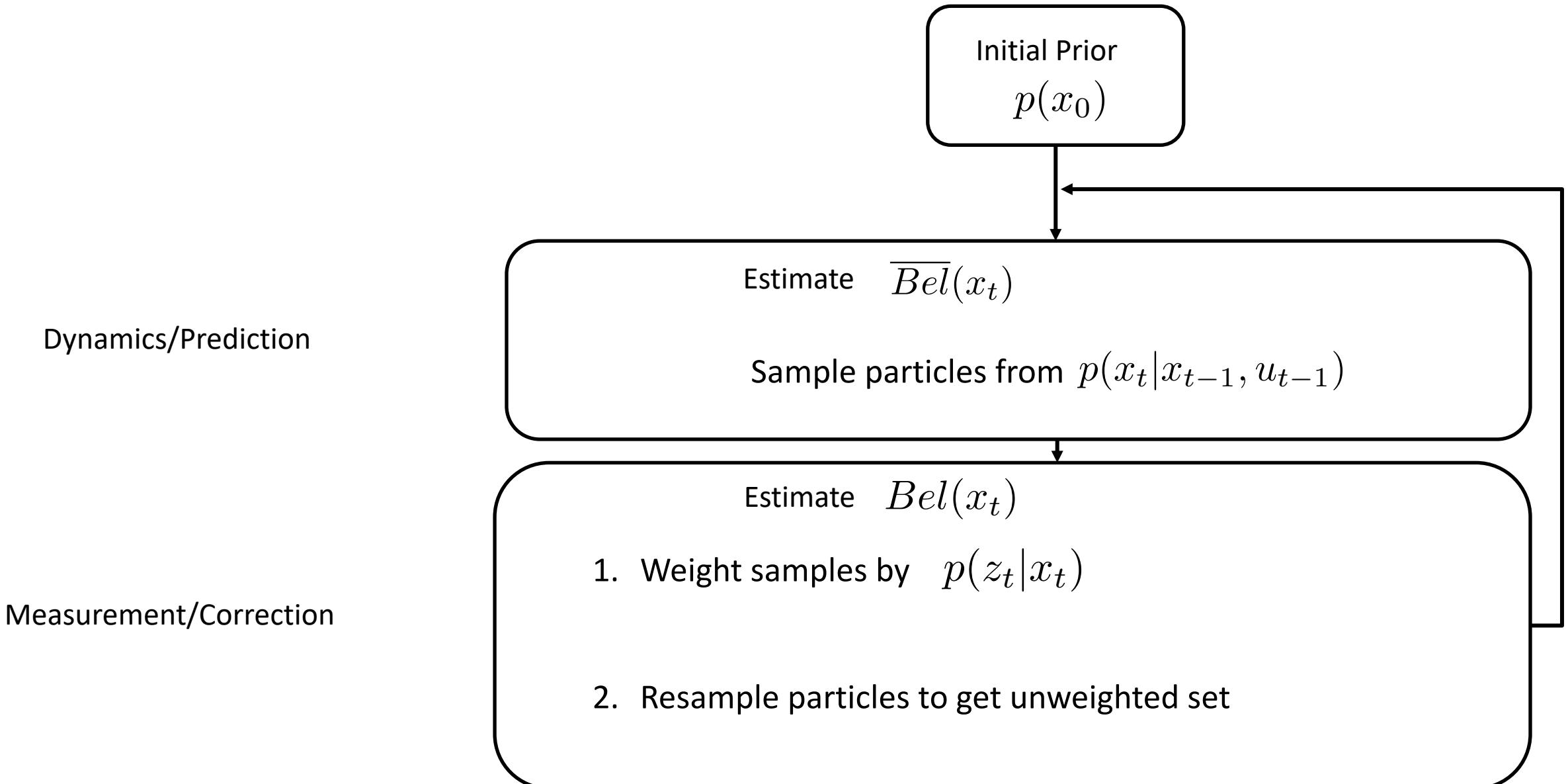








Overall Particle Filter algorithm – v2



Lecture Outline

Particle Based Representations in Filtering

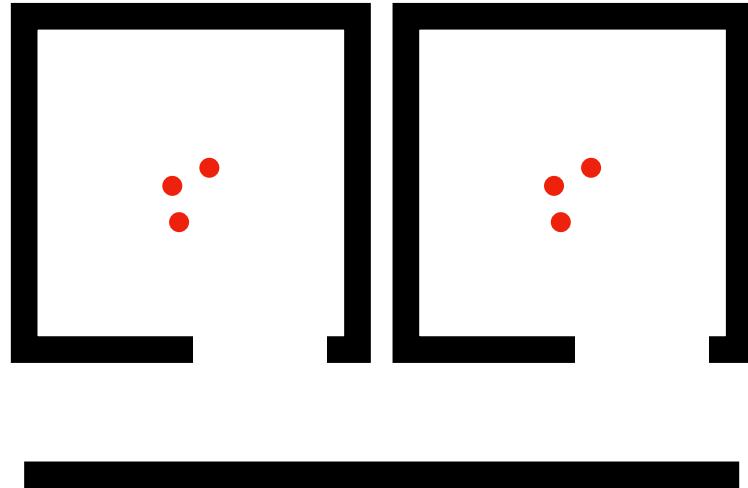
Particle Filter

Particle Filter w/ Resampling

Practical Considerations

Problem 1: Two Room Challenge

Particles begin equally distributed, no motion or observation

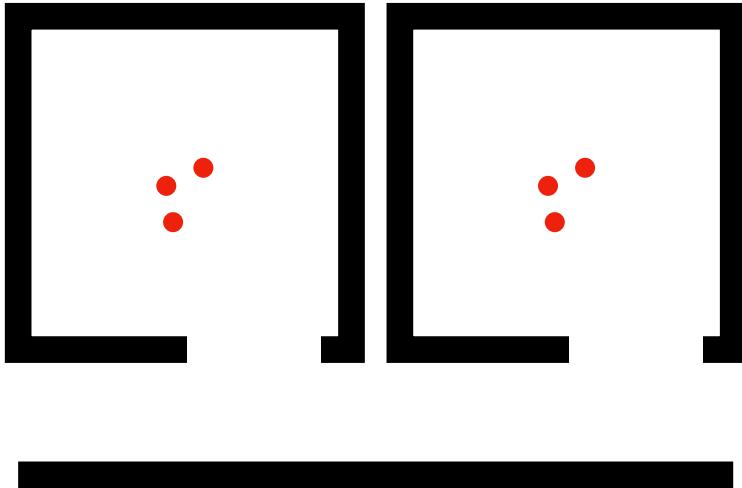
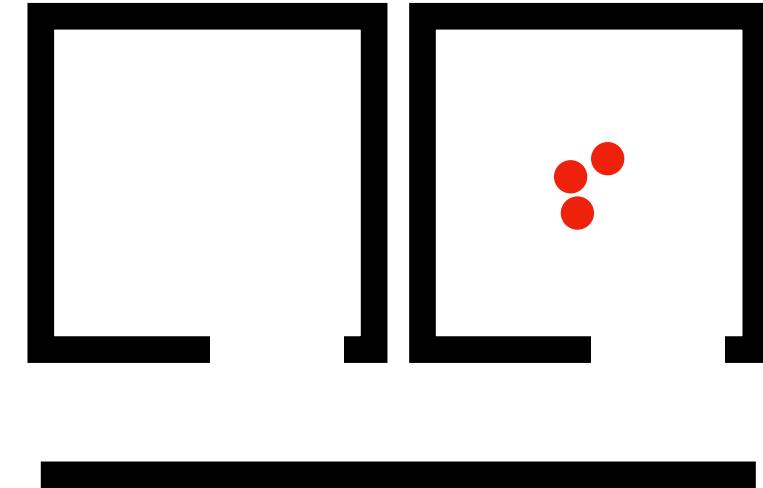


All particles migrate to one room!

Reason: Resampling Increases Variance

50% prob. of resampling particle from Room 1 vs Room 2

31% prob. of preserving 50-50 particle split



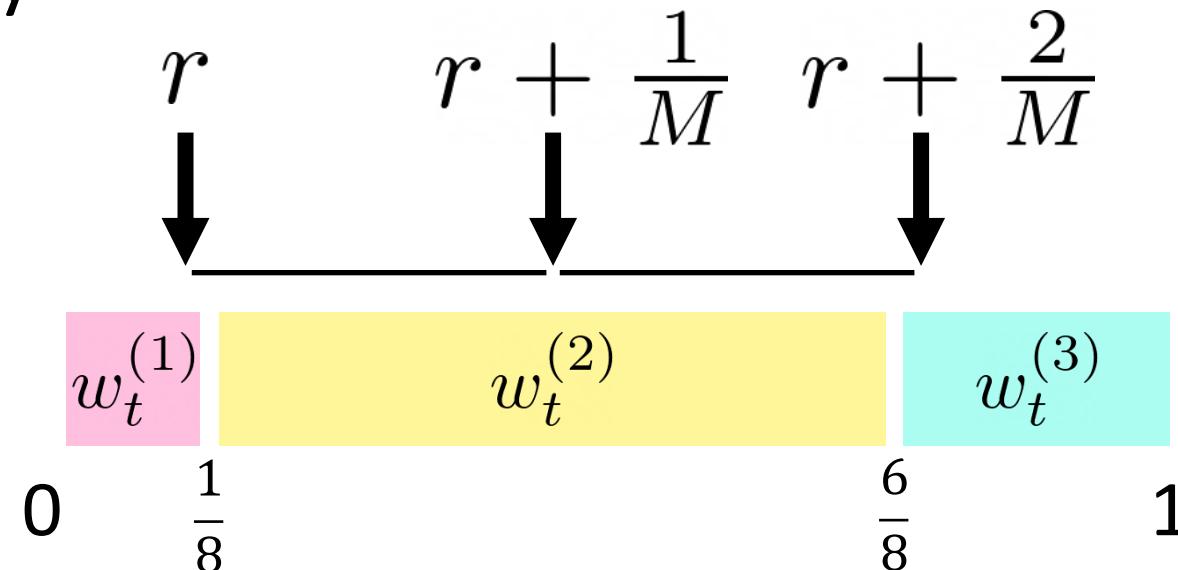
All particles migrate to one room!

Idea 1: Judicious Resampling

- Key idea: resample less often! (e.g., if the robot is stopped, don't resample). Too often may lose particle diversity, infrequently may waste particles
- Common approach: don't resample if weights have low variance
- Can be implemented in several ways: don't resample when...
 - ...all weights are equal
 - ...weights have high entropy
 - ...ratio of max to min weights is low

Idea 2: Low-Variance Resampling

- Sample one random number $r \sim [0, \frac{1}{M}]$
- Covers space of samples more systematically (and more efficiently)
- If all samples have same importance weight, won't lose particle diversity



Other Practical Concerns

- How many particles is enough?
 - Typically need more particles at the beginning (to cover possible states)
 - [KLD Sampling \(Fox, 2001\)](#) adaptively increases number of particles when state uncertainty is high, reduces when state uncertainty is low
- Particle filtering with overconfident sensor models
 - Squash sensor model prob. with power of $1/m$ (Lecture 3)
 - Sample from better proposal distribution than motion model
 - [Manifold Particle Filter \(Koval et al., 2017\)](#) for contact sensors
- Particle starvation: no particles near current state

MuSHR Localization Project

- Implement kinematic car motion model
- Implement different factors of single-beam sensor model
- Combine motion and sensor model with the Particle Filter algorithm

Class Outline

