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Recap



So what do we need to define to instantiate this?

Apply Markov to get a recursive update!

Step 0. Start with the belief at time step t-1
bel(xi_1)

Step 1: Prediction - push belief through dynamics given action

@(xt) = ’ P(a:t|ut,a:t_1 Bl(ﬂjt_]_)

Step 2: Correction - apply Bayes rule given measurement

bel(xy) = el(a;t)



Let’s ground this in the context of the car

PREDICTION CORRECTION

PREDICTION CORRECTION

P(x¢|ug, xp—1) P(z¢|x¢)



Motion Model

How do we know this?
-2 it’s just physics!




Kinematic Car Model
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Kinematic Car Model
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Definition: Instant Center of Rotation (CoR)

A planar rigid body undergoing a rigid
transformation can be viewed as
undergoing a pure rotation about an
instant center of rotation.

rigid body: a non-deformable object

rigid transformation: a combined
rotation and translation

HTTPS://EN.WIKIPEDIA.ORG/WIKI/INSTANT_CENTRE_OF_ROTATION
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Equations of Motion
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Equations of Motion

T = vcosl
Yy =vsinf
v
0=w=—
R




Kinematic Car Model
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Integrate the Kinematics Numerically

T = vcosb
Yy = vsinf

0 = %tan5

Assume that steering
angle is piecewise
constant betweentand t’



Integrate the Kinematics Numerically

t’ t’ 0’
Axr = / vcosO(t)dt = / UC(.)SH d(gdt = / cos 0d6
t t 0

o di 6
—— .
= tan5(8111(9 — sin ) x = vcos b
Yy = vsinf
.
L 0 = —tano
Ay = — cos '
Y tam(s(cosH cos ") L

Assume that steering
angle is piecewise
constant betweentand t’

t/
Al = / Odt = b tan 0 At
’ L



Kinematic Car Update

0, =0, 1 + A0 =0, + — tan 6A
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Kinematic Car Model
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‘Why is the kinematic car model probabilistic?

= Control signal error: voltage discretization, communication lag
= Unmodeled physics parameters: friction of carpet, tire pressure
= Incorrect physics: ignoring tire deformation, ignoring wheel slippage

= Our probabilistic motion model
= Add noise to control before propagating through model
= Add noise to state after propagating through model




Motion Model Summary

MOTION MODEL MOTION MODEL
PROB. DENSITY FUNCTION SAMPLES

= Write down the deterministic equations of motion (kinematic car model)
= Introduce stochasticity to account against various factors
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Sensor Model




How Does LIDAR Work?

HTTPS://YOUTU.BE/NZKVF1CXES8S



LIDAR in the Real World

HTTPS://YOUTU.BE/I8YV5D8CPOC



Why is the sensor model probabilistic?

= Incomplete/incorrect map: pedestrians, objects moving
around

= Unmodeled physics: lasers go through glass

= Sensing assumptions: light interference from other sensors,
multiple laser returns (bouncing off multiple objects)




What defines a good sensor model?

= Overconfidence can be catastrophic for Bayes filter

= LIDAR s very precise, but has distinct modes of failure
= Anticipate specific types of failures, and add stochasticity accordingly



What sensor model should | use for MuSHR?

P(z¢|xy) — P(z¢|xe, m)

LASER SCAN STATE MAP




Assumption: Conditional Independence

7ZtK|xt7 m)




Assumption: Conditional Independence

P(zi|zy, m) = P(zg, th, co ,ZtK|ZIZt,m)




Single Beam Sensor Model

P(z{f|xt,m)

\> DISTANCE




Typical Sources of Stochasticity

1. Correct range (distance) with local measurement noise
2. Unexpected objects

3. Sensor failures

4. Random measurements



Factor 1: Local Measurement Noise

p(zf | x¢,m)

What the range must have
been, given the map

Sensor limit

L £

Rt <max

e (25 | zem) = ] MNGEEET o) 0 S 2 <t
A Y 0 otherwise



Factor 2: Unexpected Objects

p(zf | m,m)

What the range must have
been, given the map

Sensor limit

\

koo
N Ashort € ebort?r  if O < 2F < 2
0 otherwise

Zmax

pshort(zgC | xt,m) — {



Factor 2: Unexpected Objects

p(zéc | ¢, m) 128

\

O |l oOo|lo|lo|oOoo | oo |OoO |+~

k *
Rt Amax

koo
k _ n )\short 6_>\Sh°rtzt if 0 < Zf < Zf*

Dshort (27 | ¢, m) = .
0 otherwise



Factor 2: Unexpected Objects (Project)

p(zf | m,m)

What the range must have
been, given the map

\/ Sensor limit

Zmax

Zt _Zt
{2 e if 2F < 2

0 otherwise

Pshort (Zf‘ﬂjt, m) —



Factor 3: Sensor Failures

p(z | x,m)

What the range must have
been, given the map

Sensor limit

Zmax

1 if 2 = zZpax

pmax(zt |a:t,m) — I(ZZZmaX) — {O otherwise



Factor 4: Random Measurements

p(zf | m,m)

What the range must have
been, given the map

Sensor limit
l% |
Ry * Amax

1

if0< 2k <2
prand(zf|$t,m) p— { Smax — ~t max

otherwise




Putting It All Together

T
( Zhit \ ( phit(zf | T, m) \
Zshort . Pshort (Zf | Lt m)
Zmax pmatx(zic | Lty m)

\ Zrand ) \ prand(zilbc | $t7m) )

(2t | ze,m) =

Weights sum to 1

Ik*
Zy Zmax



LIDAR Model Algorithm

K
P(zi|xy, m) = H P(z} |z, m)
k=1

. Use robot state to compute the sensor’s pose on the map
. Ray-cast from the sensor to compute a simulated laser scan

. For each beam, compare ray-casted distance to real laser scan
distance

. Multiply all probabilities to compute the likelihood of that real laser
scan



Tuning Single Beam Parameters

ters

imize parame

collect lots of data and opt

s Offline

10000

5000



Tuning Single Beam Parameters

= Online: simulate a scan and plot the likelihood from different positions

Y

Actual scan Likelihood at various locations



Dealing with Overconfidence

K
P(zt|xe, m) = H |-Tt>

= Subsample laser scans: convert 180 beams to 18 beams
= Force the single beam model to be less confident

P(z;|ze, m) = P(27 |z, m)%, a < 1



MuSHR Localization Project

= Implement kinematic car motion model
= Implement different factors of single-beam sensor model

s Combine motion and sensor model with the Particle Filter
algorithm
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Why is the Bayes filter challenging to implement?

Key Idea: Apply Markov to get a recursive update!

Step 0. Start with the belief at time step t-1
bel(xi_1)

Step 1: Prediction - push belief through dynamics given action

Intractable due ___--"" Step 2: Correction - apply Bayes rule given measurement
to discretization @ T T T--—-o___



How does discretization work for Bayesian filters?

XL X-COORDINATE - Discretize into K bins
Yy Y-COORDINATE - Discretize into K bins Overall K3 bins
v

HEADING - Discretize into K bins

Exponentially expensive with dimension for
each summation

Many of these bins will be empty!

How can we do better?



46

Let’s change our way of thinking

Second
Dimension

Third
Dimension

e

Mostly empty

e

g
[Sll S1/ S2r S10s S4a0s S40r S40s Sssy S55]
//
2 Keep a list of only the states with likelihood, with
P

number of repeat instances proportional to probability

///// First
Dimension No discretization per dimension!

s this even a useful/valid representation of belief?
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Let’s change our way of thinking

Target Distribution "Particle” Approximation

—

(0] (0]
(0]

(o)o]
O0O0O0O0

Is this even a useful/valid representation of belief?

U

Depends what we want to do with the probability distribution!

-> Typically we want to compute averages (expectations)



Downstream Usage of Estimated Probability Distributions

What do we actually intend to do with the belief bel(z41)?

- Often times we will be evaluating the expected value

E[f] = / F()bel () da

Mean position: f(ac) =X

Probability of collision: f(ac) = I[(QU c O)

Mean value / cost-to-go: f(:c) = V(a:)



Computing Expectations without Closed Form Likelihoods

Monte-Carlo Simulation

Ewael(xt) /f Bel )dZE NZf )Bel(x

Sample from the belief: x1,--- ,xn ~ Bel(x;)

V “x~ Bel(x;) [f Z f (Z)

Don’t require closed form distributions (Gaussian/Beta, etc), just samples (particles)!
—> Replace fancy math by brute force simulation!!



Examples of Monte Carlo Estimation

Ell(x € O)] = P(x € O) = % R %Zﬂ(x(i) c 0)

i n =100, 7~ 3.1600

1. Sample points uniformly
from unit square

2. Count number in quarter-
circle (i.e.|z;]| < 1)

3. Divide by N, multiply by 4

0 1

— Exercise: What are other practical problems where this is useful?

ADAPTED FROM WIKIPEDIA



Bringing this Back to Estimation — Belief Distribution

Let’s consider the Bayesian filtering update

Bel(x;) = nP(zt|xt)/P(:z:t|ut,xt_l)Bel(xt_l)dxt_l

\ /

Represent the belief with a set of particles! Each is a hypothesis of what the state might be.

Higher likelihood regions have more particles

J\




How do we “propagate” belief across timesteps with particles?

Bayes Filter Bel(xy) = nP(z|xs) /P(33t|ut,$t—1)Bel(ﬂi‘t—1)dﬂit—1

Dynamics Update Bel(z;) = /p(xt\ut,a:t_l)Bel(xt_l)d:Et_l
\

Measurement Correction Bel(aft) — UP(ZtILCt)B—Gl(ZL’t)

How do we sample from the product of two distributions?

How do we compute conditioning/normalization with particles?
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