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n Car pick up cars in OH any time this week. 
n Project 1 due on Jan 21 EOD

n Post questions, discuss any issues you are having on Ed.
n Students with no access to 002, e-mail us with your student ID.
n Students that have not been added to the class, email 

abhgupta@cs.washington.edu with the subject-line “Waitlisted for 
CSE478”

Logistics

mailto:abhgupta@cs.Washington.edu


Recap



But all decision making depends on knowing state

Solution: Estimate belief over state

Also called Posterior / Information state / State of knowledge 

Belief is a probability of each possible state given history 

Represent belief? Parametric (Gaussian), Non-parametric (Histogram)

Fundamental Problem: State is hidden



Step 0. Start with the belief at time step t-1

Key Idea: Apply Markov to get a recursive update!

Step 1: Prediction - push belief through dynamics given action

Step 2: Correction - apply Bayes rule given measurement

Bayes filter in a nutshell



Bayes filter in a nutshell

Step 1: Prediction - push belief 
through dynamics given action

Step 2: Correction - apply Bayes rule 
given measurement
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Example: Opening a Door

HTTPS://YOUTU.BE/AFUA50H9UEK

OPEN, CLOSED
PULL, LEAVE



Example: Opening a Door
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Example: Opening a Door
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Example: Opening a Door
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Prediction: Given action, propagate belief 
through dynamics
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Example: Opening a Door

OPEN, CLOSED
PULL, LEAVE
OPEN, CLOSED

Correction: Given measurement, apply 
Bayes’ rule

*



Example: Opening a Door

OPEN, CLOSED
PULL, LEAVE
OPEN, CLOSED

Correction: Given measurement, apply 
Bayes’ rule

*



Example: Opening a Door

OPEN, CLOSED
PULL, LEAVE
OPEN, CLOSED

00.20.40.60.81

Open

n Robot initially thought the door was open with 0.4 prob
n Robot took the PULL action, then thought the door was open with 0.74 prob
n Robot received a CLOSED measurement, now thinks open with 0.58 prob



Robot lost in a 1-D hallway

Uniform (robot could be anywhere)



Action at time t: NOP

NOP action implies belief remains the same!

(still uniform — no idea where I am)



Measurement at time t: “Door”



Action at time t+1: Move 3m right



Measurement at time t+1: “Door”



Do actions always increase uncertainty?

HTTPS://YOUTU.BE/BC1ATPRPPJC



Do measurements always reduce uncertainty?
n Level of uncertainty can be formalized as entropy

n Low entropy if belief is tightly concentrated (e.g., concentrated on one state)
n High entropy if belief is very spread out (e.g., uniform distribution)

n What if you reach into your pocket and can’t find your keys?
n Initially: low entropy (belief concentrated around pocket, some probability in 

other states around the house)
n After: high entropy (very little probability in pocket, other states around the 

house have increased probability)



Ok this seems simple? What makes this hard!

111 )(),|()|()( ---ò= tttttttt dxxBelxuxPxzPxBel h

Tractable Bayesian inference is challenging in the general case

We will work out the conjugate prior and discrete case, 
leaving the MCMC/VI cases as an exercise



How does this connect back to our racecar?

Where am I in the world?
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Step 0. Start with the belief at time step t-1

Key Idea: Apply Markov to get a recursive update!

Step 1: Prediction - push belief through dynamics given action

Step 2: Correction - apply Bayes rule given measurement

So what do we need to define to instantiate this?



Let’s ground this in the context of the car

PREDICTION CORRECTION

PREDICTION CORRECTION



Motion Model

How do we know this?
à it’s just physics!



A Spectrum of Motion Models

Highest-fidelity models 
capturing everything 

we know
(Red Bull F1 Simulator)

Simple model
with lots of noise

VS

https://www.f1simulatormaniac.com/red-bull-simulator/


Why is the motion model probabilistic?

n If we know how to write out equations of motion, 
shouldn’t we be able to predict exactly where an 
object ends up?

n “All models are wrong, but some are useful” —
George Box
n Examples: ideal gas law, Coulomb friction

n Stochasticity is a catch-all for model error, actuation 
error, …



What defines a good motion model?

n In theory: try to accurately model the uncertainty (e.g., actuation errors)
n In practice…

n We need just enough stochasticity to explain any measurements we’ll see
(Bayes filter uses measurements to hone in on the right state)

n We need a model that can deal with unknown unknowns
(No matter the model, we need to overestimate uncertainty)

n We would like a model that is computationally cheap
(Bayes filter repeatedly invokes this model to predict state after actions)

n Key idea: simple model + stochasticity



What motion model should I use for MuSHR?

n A kinematic model governs how wheel speeds map to 
robot velocities

n A dynamic model governs how wheel torques map to robot 
accelerations

n For MuSHR, we’ll ignore dynamics and focus on kinematics 
(assuming the wheel actuators can set speed directly)

n Other assumptions: wheels roll on hard, flat, horizontal 
ground without slipping



Kinematic Car Model

X-COORDINATE

Y-COORDINATE

HEADING

SPEED

STEERING ANGLE



Kinematic Car Model

INTEGRATE

ADD NOISE



HTTPS://EN.WIKIPEDIA.ORG/WIKI/INSTANT_CENTRE_OF_ROTATION

A planar rigid body undergoing a rigid 
transformation can be viewed as 
undergoing a pure rotation about an 
instant center of rotation.

rigid body: a non-deformable object

rigid transformation: a combined 
rotation and translation

Definition: Instant Center of Rotation (CoR)



Equations of Motion

?



Equations of Motion



Kinematic Car Model

INTEGRATE



Integrate the Kinematics Numerically

Assume that steering 
angle is piecewise 
constant between t and t’



Integrate the Kinematics Numerically

Assume that steering 
angle is piecewise 
constant between t and t’



Kinematic Car Update



Kinematic Car Model

INTEGRATE

ADD NOISE



Why is the kinematic car model probabilistic?

n Control signal error: voltage discretization, communication lag
n Unmodeled physics parameters: friction of carpet, tire pressure
n Incorrect physics: ignoring tire deformation, ignoring wheel slippage
n Our probabilistic motion model

n Add noise to control before propagating through model
n Add noise to state after propagating through model



Motion Model Summary

n Write down the deterministic equations of motion (kinematic car model)
n Introduce stochasticity to account against various factors

MOTION MODEL
PROB. DENSITY FUNCTION

MOTION MODEL
SAMPLES
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Sensor Model



How Does LIDAR Work?

HTTPS://YOUTU.BE/NZKVF1CXE8S



LIDAR in the Real World

HTTPS://YOUTU.BE/I8YV5D8CPOC



Why is the sensor model probabilistic?

n Incomplete/incorrect map: pedestrians, objects moving 
around

n Unmodeled physics: lasers go through glass
n Sensing assumptions: light interference from other sensors,

multiple laser returns (bouncing off multiple objects)



What defines a good sensor model?

n Overconfidence can be catastrophic for Bayes filter
n LIDAR is very precise, but has distinct modes of failure

n Anticipate specific types of failures, and add stochasticity accordingly



What sensor model should I use for MuSHR?

MAPLASER SCAN STATE



Assumption: Conditional Independence



Assumption: Conditional Independence



Single Beam Sensor Model

DISTANCE



Typical Sources of Stochasticity

1. Correct range (distance) with local measurement noise
2. Unexpected objects
3. Sensor failures
4. Random measurements



Factor 1: Local Measurement Noise

What the range must have 
been, given the map

Sensor limit



Factor 2: Unexpected Objects

What the range must have 
been, given the map

Sensor limit



Factor 2: Unexpected Objects
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Factor 2: Unexpected Objects (Project)

What the range must have 
been, given the map

Sensor limit



Factor 3: Sensor Failures

What the range must have 
been, given the map

Sensor limit



Factor 4: Random Measurements

What the range must have 
been, given the map

Sensor limit



Putting It All Together

Weights sum to 1



LIDAR Model Algorithm

1. Use robot state to compute the sensor’s pose on the map
2. Ray-cast from the sensor to compute a simulated laser scan
3. For each beam, compare ray-casted distance to real laser scan 

distance
4. Multiply all probabilities to compute the likelihood of that real laser 

scan



Tuning Single Beam Parameters

n Offline: collect lots of data and optimize parameters



Tuning Single Beam Parameters

n Online: simulate a scan and plot the likelihood from different positions

Actual scan Likelihood at various locations



Dealing with Overconfidence

n Subsample laser scans: convert 180 beams to 18 beams
n Force the single beam model to be less confident



MuSHR Localization Project

n Implement kinematic car motion model
n Implement different factors of single-beam sensor model
n Combine motion and sensor model with the Particle Filter 

algorithm
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