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Logistics

m Car pick up cars in OH any time this week.
m Project 1 due onJan 21 EOD

m Post questions, discuss any issues you are having on Ed.

m Students with no access to 002, e-mail us with your student ID.

m Students that have not been added to the class, email
abhgupta@cs.washington.edu with the subject-line “Waitlisted for
CSE478"



mailto:abhgupta@cs.Washington.edu

Recap



Fundamental Problem: State is hidden

But all decision making depends on knowing state

Estimate belief over state

bel(xt) — P(xt‘zlztaulzt)

Belief is a probability of each possible state given history
Also called Posterior / Information state / State of knowledge

Represent belief? Parametric (Gaussian), Non-parametric (Histogram)



Bayes filter in a nutshell

Key Idea: Apply Markov to get a recursive update!

Step 0. Start with the belief at time step t-1
bel(xi_1)

Step 1: Prediction - push belief through dynamics given action

bel ZCt ZP 513t|ut,il3t 1)b€l($t 1)

Step 2: Correction - apply Bayes rule given measurement

bel(x) = nP(z|z:)bel(x;)



Bayes filter in a nutshell

Step 1: Prediction - push belief Step 2: Correction - apply Bayes rule
through dynamics given action given measurement

bel(zr) = ) P(@luy, x-1)bel(zi1) bel(x¢) = nP(z|x:)bel(x:)
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Example: Opening a Door

X = OPEN, CLOSED
A = PULL, LEAVE P(x¢|Ts_1,uys)

HTTPS://YOUTU.BE/AFUA50H9UEK



Example: Opening a Door

HTTPS://YOUTU.BE/AFUA50H9UEK



Example: Opening a Door

X = OPEN, CLOSED
A = PULL, LEAVE
Z = OPEN, CLOSED  P(z¢|x¢)

HTTPS://YOUTU.BE/AFUA50H9UEK



Example: Opening a Door

X = OPEN, CLOSED 0.4 0.&13

A = PULL, LEAVE Bellwo) = 0.6 8:2

Z = OPEN, CLOSED O'(Z)
Open

PULL



Example: Opening a Door

Prediction: Given action, propagate belief

X — OPEN, CLOSED through dynamics
A =PULL LEAVE 35 = S P(ayfu 1) Bel(ri 1)
Z = OPEN, CLOSED



Example: Opening a Door

X = OPEN, CLOSED
A = PULL, LEAVE
Z = OPEN, CLOSED

Prediction: Given action, propagate belief
through dynamics

Bel(z;) = Z P(x¢|ug, xi—1)Bel(xs_1)

Tt—1

0.74] [0.8 0.7] [0.4
0.26| — 0.2 0.3] |0.6

Bel(z;) P(|,P) Bel(r;_1)



Example: Opening a Door

X = OPEN, CLOSED ___ ~ [o.74 0.&13
A = PULL, LEAVE Bel(z) = 0.26 8:91 ll
Z = OPEN, CLOSED O'(Z)

Open

CLOSED



Example: Opening a Door

X — OPEN. CLOSED Correction: Given measurement, apply

Bayes’ rule

Z = OPEN, CLOSED

rize) = N ol




Example: Opening a Door

X — OPEN. CLOSED Correction: Given measurement, apply

Bayes’ rule

Z = OPEN, CLOSED

P(z, = 0)] _ 0.4] [0.74] _ [0.296] _ [0.58
[P(:vt=C)] - 77 [0.8] [0.26] — 7 [0.208] B [0.42]

Bel(x;) Bel(z;)



Example: Opening a Door

X = OPEN, CLOSED
A = PULL, LEAVE
Z = OPEN, CLOSED

Bel(xy) =

0.58

0.42

= Robot initially thought the door was open with 0.4 prob
= Robot took the PULL action, then thought the door was open with 0.74 prob
= Robot received a CLOSED measurement, now thinks open with 0.58 prob

T

Open



Robot lost in a 1-D hallway

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

Uniform (robot could be anywhere)



NOP

Action at time t

U = NOP

AN NN NN NN NN N (N (N (N [ (N (N (N (N N Y N N N (Y (N N (N N U N (N (Y (N (NN N NN N

NOP action implies belief remains the same!

(still uniform — no idea where | am)



Measurement at time t: “Door”

2z = Door
P(zi|x¢) = N(door centre,0.75m) @ G g




Action at time t+1: Move 3m right

Ug+1 = 3m right @ @ @
P(xiy1|ussr, zg) = N(z¢ + usp1,0.25m)

lllllllllllllllllllllllllllllllllllllllll




Measurement at time t+1: “Door”

zt+1 = Door
P(zi11|x¢41) = N(door centre, 0.75m) @ @ g @:




Do actions always increase uncertainty?

HTTPS://YOUTU.BE/BC1ATPRPPIC



Do measurements always reduce uncertainty?

= Level of uncertainty can be formalized as entropy
= Low entropy if belief is tightly concentrated (e.g., concentrated on one state)

= High entropy if belief is very spread out (e.g., uniform distribution)

= Whatif you reach into your pocket and can’t find your keys?
= Initially: low entropy (belief concentrated around pocket, some probability in
other states around the house)

= After: high entropy (very little probability in pocket, other states around the
house have increased probability)




Ok this seems simple? What makes this hard!

Bel(xt) =1 P(Zt | xt) P(xt | utaxt—l) Bel(xt—l) dxt—l

Tractable Bayesian inference is challenging in the general case

We will work out the conjugate prior and discrete case,
leaving the MCMC/VI cases as an exercise



How does this connect back to our racecar?

Where am | in the world?
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So what do we need to define to instantiate this?

Apply Markov to get a recursive update!

Step 0. Start with the belief at time step t-1
bel(xi_1)

Step 1: Prediction - push belief through dynamics given action

@(xt) = ’ P(a:t|ut,a:t_1 Bl(ﬂjt_]_)

Step 2: Correction - apply Bayes rule given measurement

bel(x) = el(xt)



Let’s ground this in the context of the car

PREDICTION CORRECTION

PREDICTION CORRECTION

P(x¢|ug, xp—1) P(z¢|x¢)



Motion Model

How do we know this?
-2 it’s just physics!




A Spectrum of Motion Models

Highest-fidelity models Simple model

. . with lots of noise
capturing everything
we know

(Red Bull F1 Simulator)



https://www.f1simulatormaniac.com/red-bull-simulator/

Why is the motion model probabilistic?

= If we know how to write out equations of motion,
shouldn’t we be able to predict exactly where an

object ends up?

= “All models are wrong, but some are useful” —
George Box
= Examples: ideal gas law, Coulomb friction

m Stochasticity is a catch-all for model error, actuation
error, ...




What defines a good motion model?

= Intheory: try to accurately model the uncertainty (e.g., actuation errors)
= In practice...

= We need just enough stochasticity to explain any measurements we'll see
(Bayes filter uses measurements to hone in on the right state)

= We need a model that can deal with unknown unknowns
(No matter the model, we need to overestimate uncertainty)

= We would like a model that is computationally cheap
(Bayes filter repeatedly invokes this model to predict state after actions)

s Key idea: simple model + stochasticity



W What motion model should | use for MuSHR? .

= A kinematic model governs how wheel speeds map to
robot velocities

= A dynamic model governs how wheel torques map to robot
accelerations

= For MuSHR, we'll ignore dynamics and focus on kinematics
(assuming the wheel actuators can set speed directly)

s Other assumptions: wheels roll on hard, flat, horizontal
ground without slipping



Kinematic Car Model

X

X-COORDINATE
Y-COORDINATE
HEADING

SPEED
STEERING ANGLE



Kinematic Car Model

fij:f(ajvu)

-

INTEGRATE

—->

ADD NOISE

P($t|ut,$t—1)

Lt—1
Yt—1

Or—1

+ Az

- Ay

-AG




Definition: Instant Center of Rotation (CoR)

A planar rigid body undergoing a rigid
transformation can be viewed as
undergoing a pure rotation about an
instant center of rotation.

rigid body: a non-deformable object

rigid transformation: a combined
rotation and translation

HTTPS://EN.WIKIPEDIA.ORG/WIKI/INSTANT_CENTRE_OF_ROTATION



Equations of Motion

v cos 6

=
|

vsin @

. .
iz il




Equations of Motion

T = vcosl
Yy =vsinf
v
0=w=—
R




Kinematic Car Model

j;:f(ajvu)

-

INTEGRATE

1 T ACC-
1 _Ay

L+ A




Integrate the Kinematics Numerically

T = vcosb
Yy = vsinf

0 = %tan5

Assume that steering
angle is piecewise
constant betweentand t’



Integrate the Kinematics Numerically

t’ t’ 0’
Axr = / vcosO(t)dt = / UC(.)SH d(gdt = / cos 0d6
t t 0

o di 6
—— .
= tan5(8111(9 — sin ) x = vcos b
Yy = vsinf
.
L 0 = —tano
Ay = — cos '
Y tam(s(cosH cos ") L

Assume that steering
angle is piecewise
constant betweentand t’

t/
Al = / Odt = b tan 0 At
’ L



Kinematic Car Update

0, =0, 1 + A0 =0, + — tan 6A

L
+A Y (sinf, — sinf,_,)
— XT+_ — L+_1 no; —sino;_
Lt Lt—1 L Lt—1 tanéSIt SINN Uy 1
L
Yt = Yp—1 + AY = yy_1 (cos@;_1 — cos6;)

tan o



Kinematic Car Model

fij:f(ajvu)

-
INTEGRATE

— P(:z:t|ut,xt_1)

ADD NOISE

Lt—1
Yt—1

Or—1
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‘Why is the kinematic car model probabilistic?

= Control signal error: voltage discretization, communication lag
= Unmodeled physics parameters: friction of carpet, tire pressure
= Incorrect physics: ignoring tire deformation, ignoring wheel slippage

= Our probabilistic motion model
= Add noise to control before propagating through model
= Add noise to state after propagating through model




Motion Model Summary

MOTION MODEL MOTION MODEL
PROB. DENSITY FUNCTION SAMPLES

= Write down the deterministic equations of motion (kinematic car model)
= Introduce stochasticity to account against various factors
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Sensor Model




How Does LIDAR Work?

HTTPS://YOUTU.BE/NZKVF1CXES8S



LIDAR in the Real World

HTTPS://YOUTU.BE/I8YV5D8CPOC



Why is the sensor model probabilistic?

= Incomplete/incorrect map: pedestrians, objects moving
around

= Unmodeled physics: lasers go through glass

= Sensing assumptions: light interference from other sensors,
multiple laser returns (bouncing off multiple objects)




What defines a good sensor model?

= Overconfidence can be catastrophic for Bayes filter

= LIDAR s very precise, but has distinct modes of failure
= Anticipate specific types of failures, and add stochasticity accordingly



What sensor model should | use for MuSHR?

P(z¢|xy) — P(z¢|xe, m)

LASER SCAN STATE MAP




Assumption: Conditional Independence

7ZtK|xt7 m)




Assumption: Conditional Independence

P(zi|zy, m) = P(zg, th, co ,ZtK|ZIZt,m)




Single Beam Sensor Model

P(z{f|xt,m)

\> DISTANCE




Typical Sources of Stochasticity

1. Correct range (distance) with local measurement noise
2. Unexpected objects

3. Sensor failures

4. Random measurements



Factor 1: Local Measurement Noise

p(zf | x¢,m)

What the range must have
been, given the map

Sensor limit

L £

Rt <max

e (25 | zem) = ] MNGEEET o) 0 S 2 <t
A Y 0 otherwise



Factor 2: Unexpected Objects

p(zf | m,m)

What the range must have
been, given the map

Sensor limit

\

koo
N Ashort € ebort?r  if O < 2F < 2
0 otherwise

Zmax

pshort(zgC | xt,m) — {



Factor 2: Unexpected Objects

p(zéc | ¢, m) 128

\

O |l oOo|lo|lo|oOoo | oo |OoO |+~

k *
Rt Amax

koo
k _ n )\short 6_>\Sh°rtzt if 0 < Zf < Zf*

Dshort (27 | ¢, m) = .
0 otherwise



Factor 2: Unexpected Objects (Project)

p(zf | m,m)

What the range must have
been, given the map

\/ Sensor limit

Zmax

Zt _Zt
{2 e if 2F < 2

0 otherwise

Pshort (Zf‘ﬂjt, m) —



Factor 3: Sensor Failures

p(z | x,m)

What the range must have
been, given the map

Sensor limit

Zmax

1 if 2 = zZpax

pmax(zt |a:t,m) — I(ZZZmaX) — {O otherwise



Factor 4: Random Measurements

p(zf | m,m)

What the range must have
been, given the map

Sensor limit
l% |
Ry * Amax

1

if0< 2k <2
prand(zf|$t,m) p— { Smax — ~t max

otherwise




Putting It All Together

T
( Zhit \ ( phit(zf | T, m) \
Zshort . Pshort (Zf | Lt m)
Zmax pmatx(zic | Lty m)

\ Zrand ) \ prand(zilbc | $t7m) )

(2t | ze,m) =

Weights sum to 1

Ik*
Zy Zmax



LIDAR Model Algorithm

K
P(zi|xy, m) = H P(z} |z, m)
k=1

. Use robot state to compute the sensor’s pose on the map
. Ray-cast from the sensor to compute a simulated laser scan

. For each beam, compare ray-casted distance to real laser scan
distance

. Multiply all probabilities to compute the likelihood of that real laser
scan



Tuning Single Beam Parameters

ters

imize parame

collect lots of data and opt

s Offline

10000

5000



Tuning Single Beam Parameters

= Online: simulate a scan and plot the likelihood from different positions

Y

Actual scan Likelihood at various locations



Dealing with Overconfidence

K
P(zt|xe, m) = H |-Tt>

= Subsample laser scans: convert 180 beams to 18 beams
= Force the single beam model to be less confident

P(z;|ze, m) = P(27 |z, m)%, a < 1



MuSHR Localization Project

= Implement kinematic car motion model
= Implement different factors of single-beam sensor model

s Combine motion and sensor model with the Particle Filter
algorithm
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