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Step 4: Compute control law

• We will only control steering angle; 
fixed constant speed

• As a result, no real control for along-track error

• Some control laws will only minimize cross-
track error, others will also minimize heading



Step 4: Compute control law

u = K(x, e)
state errorcontrol

Compute control action based on instantaneous error

Different laws have different trade-offs

Apply control action, robot moves a bit, compute new error, repeat

(steering angle, speed)
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Equations of Motion
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Figure 13.10: The two front wheels of a car are steered at di↵erent angles using

Ackermann steering such that all wheels roll without slipping (i.e., the wheel heading

direction is perpendicular to the line connecting the wheel to the CoR). The car is

shown executing a turn at its minimum turning radius rmin.

and the angular speed w of the steering angle. The car’s kinematics are
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where ` is the wheelbase between the front and rear wheels. The control v is

limited to a closed interval [vmin, vmax] where vmin < 0 < vmax, the steering rate

is limited to [�wmax, wmax] with wmax > 0, and the steering angle  is limited

to [� max, max] with  max > 0.

The kinematics (13.16) can be simplified if the steering control is actually

just the steering angle  and not its rate w. This assumption is justified if the

steering rate limit wmax is high enough that the steering angle can be changed

nearly instantaneously by a lower-level controller. In this case,  is eliminated

as a state variable, and the car’s configuration is simply q = (�, x, y). We use

the control inputs (v,!), where v is still the car’s forward speed and ! is now its

rate of rotation. These can be converted to the controls (v, ) by the relations

v = v,  = tan�1
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The constraints on the controls (v,!) due to the constraints on (v, ) take a

somewhat complicated form, as we will see shortly.
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Model Predictive Control / Receding Horizon Control

• Select a trajectory class

• Select an optimization objective J

• Execute

• Repeat until end

ξ ∈ Ξ

ξ* = arg min
ξ∈Ξ

J(ξ)



Pure Pursuit Controller

Chapter 13. Wheeled Mobile Robots 525

CoR

(x, y)

rmin

 

�
ŷ
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The constraints on the controls (v,!) due to the constraints on (v, ) take a

somewhat complicated form, as we will see shortly.

May 2017 preprint of Modern Robotics, Lynch and Park, Cambridge U. Press, 2017. http://modernrobotics.org

• Assume the car is moving with fixed 
steering angle

COULTER, 1992

https://www.ri.cmu.edu/pub_files/pub3/coulter_r_craig_1992_1/coulter_r_craig_1992_1.pdf


Trajectory class - circular arcs



How do we choose a reference position?

For an index-parameterized path, 
there are multiple options.

Lookahead



How do we choose a reference position?

Lookahead



Computing the Arc Radius



Computing the Arc Radius

Different than cross-track error 
(this is ref. position in robot frame; 
vice versa for cross-track error)



Computing the Steering Angle
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The constraints on the controls (v,!) due to the constraints on (v, ) take a

somewhat complicated form, as we will see shortly.
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Pure Pursuit: Chasing the Lookahead



Controller Design Decisions
1. Get a reference path/trajectory to track

2. Pick a reference state from the reference path/trajectory

3. Compute error to reference state

4. Compute control law to minimize error



Recap: Feedback control framework

17

Look at current state error and compute control actions

Goal: To drive error to 0 … to optimally drive it to 0

xt

xref
t

ut = ⇡(xt, x
ref
t )

ut+1 = ⇡(xt+1, x
ref
t+1)

xref
t+1

xt+1

Reference 



Recap: Feedback control framework
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Look at current state error and compute control actions

Goal: To drive error to 0 … to optimally drive it to 0

et = xt � xref
t

xt

xref
t

ut = ⇡(xt, x
ref
t )

ut+1 = ⇡(xt+1, x
ref
t+1)

xref
t+1

xt+1

et+1 = xt+1 � xref
t+1

Reference 



Limitations of this framework

19

ut = ⇡(xt, x
ref
t )

A fixed control law that looks at instantaneous feedback 

Fixed Reference

Why is it so difficult to create a magic control law?



Problem 1: What if we have constraints?

20

Simple scenario: Car tracking a straight line

Small error,
control within 

steering constraints 

Large error,
control violates 

steering constraints 

We could “clamp control command” …  
but what are the implications? 



General problem: Complex models

21

xt+1 = f(xt, ut)

g(xt, ut)  0

Dynamics

Constraints

Such complex models imply we need to:

1. Predict the implications of control actions 

2. Do corrections NOW that would affect the future

3. It may not be possible to find one law - might need to predict



Problem 2: What if some errors are worse than others?

22

We need a cost function that penalizes states non-uniformly



Model Predictive Control / Receding Horizon Control

• Select a trajectory class

• Select an optimization objective J

• Execute

• Repeat until end

ξ ∈ Ξ

ξ* = arg min
ξ∈Ξ

J(ξ)



Control as an Optimization Problem

SUCH  
THAT

• For a sequence of H control actions

1. Use model to predict consequence of actions (i.e., H future states)

2. Evaluate the cost function and check constraints

• Compute optimal sequence of H control actions, minimizing cost while 
satisfying constraints



Model-Predictive Control (MPC) Framework

• Solve the H step optimization problem

• Execute first command of the optimal sequence of H control actions

TIME

PLAN

PLAN

PLAN

DO

DO

DO

0 1 2 H H+1H+2



MPC in Action: Georgia Tech AutoRally

HTTPS://YOUTU.BE/1AR2-OHCXSQWILLIAMS ET AL., 2015

https://youtu.be/1AR2-OHCxsQ
https://arxiv.org/pdf/1509.01149.pdf


Abhishek Gupta (abhgupta@cs)
Siddhartha Srinivasa (siddh@cs)

TAs: 
Carolina Higuera (chiguera@cs)
Rishabh Jain (jrishabh@cs)
Entong Su (ensu@cs)

CSE 478 Robot Autonomy
Model Predictive Control
Pure Pursuit


