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Step 4: Compute control law

• We will only control steering angle; 
fixed constant speed

• As a result, no real control for along-track error

• Some control laws will only minimize cross-
track error, others will also minimize heading



Step 4: Compute control law

u = K(x, e)
state errorcontrol

Compute control action based on instantaneous error

Different laws have different trade-offs

Apply control action, robot moves a bit, compute new error, repeat

(steering angle, speed)



Kinematic Car Model
X-COORDINATE
Y-COORDINATE
HEADING

SPEED

STEERING ANGLE

RECALL



Equations of Motion
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Figure 13.10: The two front wheels of a car are steered at di↵erent angles using

Ackermann steering such that all wheels roll without slipping (i.e., the wheel heading

direction is perpendicular to the line connecting the wheel to the CoR). The car is

shown executing a turn at its minimum turning radius rmin.

and the angular speed w of the steering angle. The car’s kinematics are
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where ` is the wheelbase between the front and rear wheels. The control v is

limited to a closed interval [vmin, vmax] where vmin < 0 < vmax, the steering rate

is limited to [�wmax, wmax] with wmax > 0, and the steering angle  is limited

to [� max, max] with  max > 0.

The kinematics (13.16) can be simplified if the steering control is actually

just the steering angle  and not its rate w. This assumption is justified if the

steering rate limit wmax is high enough that the steering angle can be changed

nearly instantaneously by a lower-level controller. In this case,  is eliminated

as a state variable, and the car’s configuration is simply q = (�, x, y). We use

the control inputs (v,!), where v is still the car’s forward speed and ! is now its

rate of rotation. These can be converted to the controls (v, ) by the relations

v = v,  = tan�1

✓
`!

v

◆
. (13.17)

The constraints on the controls (v,!) due to the constraints on (v, ) take a

somewhat complicated form, as we will see shortly.

May 2017 preprint of Modern Robotics, Lynch and Park, Cambridge U. Press, 2017. http://modernrobotics.org
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Kinematic Car Model
X-COORDINATE
Y-COORDINATE
HEADING
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Bang-bang control

ect

Simple control law - choose between hard left and hard right

u =

(
umax if ect < 0

�umax otherwise

u



Bang-bang control

What happens when we run this control?

Need to adapt the magnitude of control proportional to the error …

Error does not stay 0!



Proportional-Integral-Derivative (PID) Controller
• One of the most popular controllers in practice! 

• Used widely in industrial control since 1900s (regulating temp., speed, etc.)

PROPORTIONAL
(PRESENT)

INTEGRAL
(PAST)

DERIVATIVE
(FUTURE)



Proportional Control



The proportional gain matters!

ect

What happens when gain is low?

What happens when gain is high?



Proportional Integral (PI) Control

Proportional cannot 
overcome wind alone!

WIND



Proportional Derivative (PD) Control



How do you evaluate the derivative term?

Terrible way: Numerically differentiate error. Why is this a bad idea?

Smart way: Analytically compute the derivative of the cross track error

ėct = � sin(✓ref )ẋ+ cos(✓ref )ẏ

= � sin(✓ref )V cos(✓) + cos(✓ref )V sin(✓)

= V sin(✓ � ✓ref ) = V sin(✓e)

ect = � sin(✓ref )(x� xref ) + cos(✓ref )(y � yref )

u = � (Kpect +KdV sin ✓e)
New control law! Penalize error in cross track and in heading



PID Intuition

PROPORTIONAL
(PRESENT)

INTEGRAL
(PAST)

DERIVATIVE
(FUTURE)

• Proportional: minimize the current error!

• Integral: if I’m accumulating error, try harder!

• Derivative: if I’m going to overshoot, slow down!



How can we prove 
that a controller is stable?

Lyapunov Stability



What is stability?
lim
t!1

e(t) = 0

t

e(t)

Time

Er
ro

r

Question: Why does the error oscillate?

So we want both e(t) ! 0 and ė(t) ! 0



Detour: How do we make a pendulum stable?

ml2✓̈ +mgl sin ✓ = u

What control law should we use to stabilize the pendulum, i.e.

Choose u = ⇡(✓, ✓̇) such that ✓ ! 0

✓̇ ! 0



How does the passive error dynamics behave?

e1 = ✓ � 0 = ✓ e2 = ✓̇ � 0 = ✓̇

e1

e2

Set u=0. Dynamics is not stable. 



How do we verify if a controller is stable?

ml2✓̈ +mgl sin ✓ = u

Is this stable? How do we know?

We can simulate the dynamics from different start point and check….

but how many points do we check? what if  we miss some points?

Lets pick the following law: 

u = �K ✓̇



Key Idea: Think about energy!
V (✓, ✓̇)

✓ ✓̇



Make energy decay to 0 and stay there

V̇ (✓, ✓̇) = ml2✓̇✓̈ +mgl(sin ✓)✓̇

= ✓̇(u�mgl sin ✓) +mgl(sin ✓)✓̇

= ✓̇u

Choose a control law u = �k✓̇

V̇ (✓, ✓̇) = �k✓̇2 < 0

V (✓, ✓̇) =
1

2
ml2✓̇2 +mgl(1� cos ✓)

> 0



Lyapunov function:
A generalization of energy 



Lyapunov function for a closed-loop system
1. Construct an energy function that is always positive

V (x) > 0, 8x
Energy is only 0 at the origin, i.e. V (0) = 0

2. Choose a control law such that this energy always decreases

V̇ (x) < 0, 8x
Energy rate is 0 at origin, i.e. V̇ (0) = 0

No matter where you start, energy will decay and you will reach 0!



Let’s get provable control for our car!

ẋ = V cos ✓

ẏ = V sin ✓

✓̇ =
V

B
tanu

Dynamics of the car



Let’s get provable control for our car!

V (ect, ✓e) =
1

2
k1e

2
ct +

1

2
✓2e > 0

V̇ (ect, ✓e) = k1ect ˙ect + ✓e✓̇e

Let’s define the following Lyapunov function

Compute derivative

V̇ (ect, ✓e) = k1ectV sin ✓e + ✓e
V

B
tanu



Let’s get provable control for our car!

V̇ (ect, ✓e) = k1ectV sin ✓e + ✓e
V

B
tanu

Trick: Set u intelligently to get this term to always be negative

✓e
V

B
tanu = �k1ectV sin ✓e � k2✓

2
e

tanu = �k1ectB

✓e
sin ✓e �

B

V
k2✓e

u = tan�1

✓
�k1ectB

✓e
sin ✓e �

B

V
k2✓e

◆



(Advanced Reading) 

Bank-to-Turn Control for a Small UAV using Backstepping and Parameter Adaptation

Dongwon Jung and Panagiotis Tsiotras
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