
Introduction to ROS
Slides adapted from: http://www.rsl.ethz.ch/education-students/lectures/ros.html

Credit to Markus Grotz, Joshua Smith and others on the EE 545 staff

http://www.rsl.ethz.ch/education-students/lectures/ros.html

ROS Terminology

> ROS versions are identified by
name
– first letter of name increments

with each new version…

> In this class, we are using ROS
Melodic (latest version is
Noetic)

> Previous versions were Lunar
and Kinetic

ROS 1 vs. ROS 2

> Currently ROS vs ROS2
> Major difference

– Single base library for C++ and Python
– No roscore
– Services are now asynchronous
– Quality of Service (QoS)

What is ROS?

History of ROS

> Originally developed in 2007 at
the Stanford Artificial
Intelligence Laboratory

> Since 2013 managed by OSRF
> Today used by many robots,
> universities and companies
> De facto standard for robot

programming

ROS Philosophy

> Peer to peer
– Individual programs communicate over defined API (ROS messages, services, etc.).

> Distributed
– Programs can be run on multiple computers and communicate over the network.

> Multi-lingual
– ROS modules can be written in any language for which a client library exists (C++,

Python, MATLAB, Java, etc.).
> Light-weight

– Stand-alone libraries are wrapped around with a thin ROS layer.
> Free and open-source

– Most ROS software is open-source and free to use.

ROS Nodes

> Single-purpose, executable program
> Individually compiled, executed,

andmanaged
> Organized in packages

Run a node with
➔ rosrun package_name node_name

See active node list
➔ rosnode list

Retrieve information about a node with
➔ rosnode info node_name

ROS Master

Node 1 Node 2

Registration Registration

ROS Master

> Manages the communication between nodes
(processes)

> Every node registers at startup with the master
> No longer required in ROS2

ROS Master

ROS Topics

> Nodes communicate over topics
▪ Nodes can publish or subscribe to a topic
▪ Typically, 1 publisher and n subscribers

> Topic is a name for a stream of messages

List active topics with
➔ rostopic list

Subscribe and print the contents of a topic with
➔ rostopic echo /topic

Show information about a topic with
➔ rostopic info /topic

rostopic: info + echo

Note hierarchical naming of topics

Here we went further down the tree to display just
orientation, not all the other parts of the car_pose topic

Many things in ROS use hierarchical naming
(Naming is similar to paths in a filesystem)

ROS Messages

> Data structure defining the type of a topic
> Comprised of a nested structure of integers,

floats, booleans, strings etc. and arrays of
objects

> Defined in *.msg files

See the type of a topic
➔ rostopic type /topic

Publish a message to a topic
➔ rostopic pub /topic type data

car_pose

> Get the message type of a topic

ROS Messages

Pose Stamped Example

Some ROS Messages we will use

> geometry_msgs/PoseStamped
> sensor_msgs/LaserScan
> ackermann_msgs/AckermannDriveStamped
> geometry_msgs/Quaternion

ROS Workspace Environment

> Defines context for the current workspace
> Default workspace loaded with
➔ source /opt/ros/noetic/setup.bash

Overlay your catkin workspace with
➔ cd ~/catkin_ws
➔ source devel/setup.bash

Check your workspace with
➔ echo $ROS_PACKAGE_PATH See setup with

➔ cat ~/.zshrc

The catkin build system

> catkin is the ROS build system to generate executables, libraries, and
interfaces

> We suggest to use the Catkin Command Line Tools

Navigate to your catkin workspace with
➔ cd ~/catkin_ws

Build a package with
➔ catkin_make

Whenever you build a new package,
update your environment
➔ source devel/setup.bash

The catkin build system

The catkin workspace contains the following spaces

If necessary, clean the entire build and devel space with
➔ catkin clean

ROS Launch

> launch is a tool for launching multiple
nodes (as well as setting parameters)

> Are written in XML as *.launch files
> If not yet running, launch automatically

starts a roscore

Browse to the folder and start a launch file with
➔ roslaunch file_name.launch

Start a launch file from a package with
➔ roslaunch package_name file_name.launch

ROS Launch

File Structure

ROS Launch

Arguments

ROS Launch

Including Other Launch Files

RVIZ Simulator

Further References

ROS Wiki
> http://wiki.ros.org/
Installation
> http://wiki.ros.org/ROS/Installation
Tutorials
> http://wiki.ros.org/ROS/Tutorials
Available packages
> https://index.ros.org/packages/

Further References II

ROS Cheat Sheet
> https://www.clearpathrobotics.com/ros-robot-operating-

system-cheat-sheet/
> https://kapeli.com/cheat_sheets/ROS.docset/Contents/Res

ources/Documents/index
ROS Best Practices
> https://github.com/leggedrobotics/ros_best_practices/wiki
ROS Package Template
> https://github.com/leggedrobotics/ros_best_practices/tree

/master/ros_package_template

