

Autonomous Robotics Winter 2025

Abhishek Gupta

TAs: Carolina Higuera, Entong Su, Bernie Zhu

Class Outline

Logistics

- Project 2 underway, start early!
- First seeded paper discussion groups will be sent out Saturday for next Friday

- Post questions, discuss any issues you are having on Ed.
- Students with no access to 002, e-mail us with your student ID.
- Students that have not been added to the class, email <u>abhgupta@cs.washington.edu</u> with the subject-line "Waitlisted for CSE478"

Recap

Let's change our way of thinking

 $[S_1, S_1, S_2, S_{10}, S_{40}, S_{40}, S_{40}, S_{55}, S_{55}]$

Keep a list of only the states with likelihood, with number of repeat instances proportional to probability

No discretization per dimension!

Bringing this Back to Estimation – Belief Distribution

Let's consider the Bayesian filtering update

$$Bel(x_t) = \eta P(z_t|x_t) \int P(x_t|u_t, x_{t-1}) Bel(x_{t-1}) dx_{t-1}$$

Represent the belief with a set of particles! Each is a hypothesis of what the state might be.

Higher likelihood regions have more particles

How do we "propagate" belief across timesteps with particles?

$$Bel(x_t) = \eta P(z_t|x_t) \int P(x_t|u_t, x_{t-1}) Bel(x_{t-1}) dx_{t-1}$$

$$\overline{Bel}(x_t) = \int p(x_t|u_t, x_{t-1})Bel(x_{t-1})dx_{t-1}$$

Measurement Correction

$$Bel(x_t) = \eta P(z_t|x_t) \overline{Bel}(x_t)$$

How do we sample from the product of two distributions?

How do we compute conditioning/normalization with particles?

Dynamics Update:

$$\overline{Bel}(x_t) = \int P(x_t|u_{t-1}, x_{t-1})Bel(x_{t-1})dx_{t-1}$$

Sample forward using the dynamics model:

- 1. No gaussian requirement
- 2. No linearity requirement, just push forward distribution

Measurement Update

$$Bel(x_t) = \eta P(z_t|x_t)\overline{Bel}(x_t)$$

$$Bel(x_t) = \frac{P(z_t|x_t)\overline{Bel}(x_t)}{\int P(z_t|x_t)\overline{Bel}(x_t)\overline{Bel}(x_t)dx_t}$$

$$w_i = \frac{P(z_t|x_t^i)}{\sum_j P(z_t|x_t^j)}$$

Reweight particles according to measurement likelihood

Lecture Outline

What happens across multiple steps?

Importance weights get multiplied at each step

Why might this be bad?

Importance weights get multiplied at each step

- 1. May blow up and get numerically unstable over many steps
- 2. Particles stay stuck in unlikely regions

Resampling

Given: Set S of weighted samples (from measurement step)
 with weights w_i

• Wanted: unweighted random sample, where the probability of drawing x_i is given by w_i .

Typically done n times with replacement to generate new sample set S'.

Resampling

Here are your random numbers:

0.97

0.26

0.72

- Spin a roulette wheel
- Space according to weights
- Pick samples based on where it lands

Resampling in a particle filter

$$Bel(x_t) = \eta P(z_t|x_t)\overline{Bel}(x_t)$$

$$Bel(x_t) = \frac{P(z_t|x_t)\overline{Bel}(x_t)}{\int P(z_t|x_t)\overline{Bel}(x_t)dx_t} w_i = \frac{P(z_t|x_t^i)}{\sum_j P(z_t|x_t^j)}$$
Resampling

Resample particles from weighted distribution to give unweighted set of particles

Original: Normalized Importance Sampling

0.125

0.625

0.250

$$Bel(x_t) = \left\{ \begin{array}{ccc} \bar{x}_t^{(1)} & \bar{x}_t^{(2)} & \cdots & \bar{x}_t^{(M)} \\ w_t^{(1)} & w_t^{(2)} & \cdots & w_t^{(M)} \end{array} \right\}$$

New: Normalized Importance Sampling with Resampling

0.250

Here are your random numbers:

0.26

0.72

New: Normalized Importance Sampling with Resampling

$$x_t^{(i)} \sim w_t^{(i)}, \ Bel(x_t) = \left\{ \begin{array}{ccc} x_t^{(1)} & \cdots & x_t^{(M)} \\ \frac{1}{M} & \cdots & \frac{1}{M} \end{array} \right\}$$

Overall Particle Filter algorithm – v2

Dynamics/Prediction

Measurement/Correction

2. Resample particles to get unweighted set

Lecture Outline

Problem 1: Two Room Challenge

Particles begin equally distributed, no motion or observation

All particles migrate to one room!

Reason: Resampling Increases Variance

50% prob. of resampling particle from Room 1 vs Room 2 31% prob. of preserving 50-50 particle split

All particles migrate to one room!

Idea 1: Judicious Resampling

- Key idea: resample less often! (e.g., if the robot is stopped, don't resample). Too often may lose particle diversity, infrequently may waste particles
- Common approach: don't resample if weights have low variance
- Can be implemented in several ways: don't resample when...
 - ...all weights are equal
 - ...weights have high entropy
 - ...ratio of max to min weights is low

Idea 2: Low-Variance Resampling

- Sample one random number $r \sim \left[0, \frac{1}{M}\right]$
- Covers space of samples more systematically (and more efficiently)
- If all samples have same importance weight, won't lose particle diversity

Other Practical Concerns

- How many particles is enough?
 - Typically need more particles at the beginning (to cover possible states)
 - KLD Sampling (Fox, 2001) adaptively increases number of particles when state uncertainty is high, reduces when state uncertainty is low
- Particle filtering with overconfident sensor models
 - Squash sensor model prob. with power of 1/m (Lecture 3)
 - Sample from better proposal distribution than motion model
 - Manifold Particle Filter (Koval et al., 2017) for contact sensors
- Particle starvation: no particles near current state

MuSHR Localization Project

Implement kinematic car motion model

Implement different factors of single-beam sensor model

 Combine motion and sensor model with the Particle Filter algorithm

Lecture Outline

Can we get closed form updates for Bayesian Filtering?

Need to choose form of probability distributions

$$\overline{Bel}(x_t) = \int \frac{p(x_t|u_t, x_{t-1})Bel(x_{t-1})dx_{t-1}}{p(x_t|u_t, x_{t-1})Bel(x_{t-1})dx_{t-1}}$$

Measurement (Correction)

$$Bel(x_t) = \eta P(z_t | x_t) \overline{Bel}(x_t)$$

Tractable computation of Bayesian posteriors

Solution: Linear Gaussian Models

Dynamics (Prediction)

$$\overline{Bel}(x_t) = \int p(x_t|u_t,x_{t-1})Bel(x_{t-1})dx_{t-1}$$
 Measurement (Correction)
$$Bel(x_t) = \eta P(z_t|x_t)\overline{Bel}(x_t)$$

Model as Linear Gaussian

Let's take a little Gaussian detour

Gaussians (1D)

• Gaussian with mean (μ) and standard deviation (σ)

$$X \sim \mathcal{N}(\mu, \sigma^2)$$
$$p(x; \mu, \sigma^2) = \frac{1}{\sigma \sqrt{2\pi}} \exp(-\frac{(x - \mu)^2}{2\sigma^2})$$

Gaussians (2D) – we won't get too deep into this!

$$p(\mathbf{x}) = \mathbf{N}(\mu, \Sigma)$$

$$\mathbf{x} = \begin{pmatrix} x_a \\ x_b \end{pmatrix}, \quad \mu = \begin{pmatrix} \mu_a \\ \mu_b \end{pmatrix}$$

$$\Sigma = \begin{pmatrix} \Sigma_{aa} & \Sigma_{ab} \\ \Sigma_{ba} & \Sigma_{bb} \end{pmatrix}$$

$$p(\mathbf{x}) = \frac{1}{(2\pi)^{d/2} |\Sigma|^{1/2}} e^{-\frac{1}{2}(\mathbf{x} - \mu)^T \Sigma^{-1}(\mathbf{x} - \mu)}$$

- $\mu = [0; 0]$
- $\Sigma = [1 \ 0 \ ; 0 \ 1]$

- $\mu = [0; 0]$
 - $\Sigma = [.6 \ 0 \ ; 0 \ .6]$

- $\mu = [0; 0]$
- $\Sigma = [2 \ 0 \ ; 0 \ 2]$

Important Identities: Gaussians

Forward propagation
$$\left\{ \begin{array}{l} X \sim \mathcal{N}(\mu, \Sigma) \\ Y = AX + B + \epsilon \\ \epsilon \sim \mathcal{N}(0, Q) \end{array} \right. \implies Y \sim \mathcal{N}(A\mu + B, A\Sigma A^T + Q)$$

$$\begin{cases} X \sim \mathcal{N}(\mu, \Sigma) \\ Y = CX + B + \delta \\ \delta \sim \mathcal{N}(0, R) \end{cases} \implies X|Y = y_0 \sim \mathcal{N}(\mu + K(y_0 - C\mu), (I - KC)\Sigma)$$

- Marginalization and conditioning in Gaussians results in Gaussians
- We stay in the "Gaussian world" as long as we start with Gaussians and perform only linear transformations.

Discrete Kalman Filter

Kalman filter = Bayes filter with Linear Gaussian dynamics and sensor models

Discrete Kalman Filter: Scalar Version

Estimates the state **x** of a discrete-time controlled process that is governed by the linear stochastic difference equation

$$x_t = ax_{t-1} + bu_t + \epsilon_t$$
 $\epsilon_t \sim \mathcal{N}(0,q)$ with a measurement $z_t = cx_t + \delta_t$ $\delta_t \sim \mathcal{N}(0,r)$

Discrete Kalman Filter: Matrix Version

Estimates the state **x** of a discrete-time controlled process that is governed by the linear stochastic difference equation

$$x_t = Ax_{t-1} + Bu_t + \epsilon_t$$
 $\epsilon_t \sim \mathcal{N}(0,Q)$ with a measurement $z_t = Cx_t + \delta_t$ $\delta_t \sim \mathcal{N}(0,R)$

Components of a Kalman Filter

- A Matrix (n x n) that describes how the state evolves from t-1 to t without controls or noise.
- B Matrix (n x l) that describes how the control u_{t-1} changes the state from t-1 to t
- C Matrix (k x n) that describes how to map the state x_t to an observation z_t .
- Random variables representing the process and measurement noise that are assumed to be independent and normally distributed with covariance δ_t and \mathbf{Q} respectively.

Goal of the Kalman Filter: Same as Bayes Filter

2 step process:

- Dynamics update (incorporate action)
- Measurement update (incorporate sensor reading)

Bayes Filters

Key Idea: Apply Markov to get a recursive update!

Step 0. Start with the belief at time step t-1

$$bel(x_{t-1})$$

Step 1: Prediction - push belief through dynamics given action

Linear Gaussian Systems: Initialization

Initial belief is normally distributed:

$$Bel(x_0) = \mathcal{N}(\mu_0, \Sigma_0)$$

- $Bel(x_t)$ at any step t is: $\mathcal{N}(\mu_{t|0:t}, \Sigma_{t|0:t})$
- $lacksquare \overline{Bel}(x_t)$ at any step t is: $\mathcal{N}(\mu_{t|0:t-1}, \Sigma_{t|0:t-1})$

Integrate the effect of one action under the dynamics, before measurement comes in

$$x_{t+1} = Ax_t + Bu_{t+1} + \epsilon_{t+1} \qquad \epsilon_{t+1} \sim \mathcal{N}(0, Q_{t+1})$$
$$p(x_{t+1}|x_t, u_{t+1}) = \mathcal{N}(Ax_t + Bu_{t+1}, Q_{t+1})$$

$$\overline{Bel}(x_{t+1}) \qquad Bel(x_t)$$

$$p(x_{t+1}|z_{0:t},u_{0:t+1}) = \int p(x_t|u_{0:t},z_{0:t})p(x_{t+1}|u_{t+1},x_t)dx_t$$

$$\overbrace{u_{t+1}} \qquad \qquad Gaussian, easy!$$

Integrate the effect of one action under the dynamics, before measurement comes in

$$x_{t+1} = Ax_t + Bu_{t+1} + \epsilon_{t+1} \qquad \epsilon_{t+1} \sim \mathcal{N}(0, Q_{t+1})$$
$$p(x_{t+1}|x_t, u_{t+1}) = \mathcal{N}(Ax_t + Bu_{t+1}, Q_{t+1})$$

$$\overline{Bel}(x_{t+1}) \qquad Bel(x_t)
p(x_{t+1}|z_{0:t}, u_{0:t+1}) = \int p(x_t|u_{0:t}, z_{0:t}) p(x_{t+1}|u_{t+1}, x_t) dx_t$$

$$\begin{cases} X \sim \mathcal{N}(\mu, \Sigma) \\ Y = AX + B + \epsilon \implies Y \sim \mathcal{N}(A\mu + B, A\Sigma A^T + Q) \\ \epsilon \sim \mathcal{N}(0, Q) \end{cases}$$

Gaussian, easy!

Integrate the effect of one action under the dynamics, before measurement comes in

$$p(x_t|u_{0:t}, z_{0:t}) = \mathcal{N}(\mu_{t|0:t}, \Sigma_{t|0:t})$$

$$x_{t+1} = Ax_t + Bu_{t+1} + \epsilon_{t+1}$$

$$\epsilon_{t+1} \sim \mathcal{N}(0, Q_{t+1})$$

$$\begin{cases} X \sim \mathcal{N}(\mu, \Sigma) \\ Y = AX + B + \epsilon \implies Y \sim \mathcal{N}(A\mu + B, A\Sigma A^T + Q) \\ \epsilon \sim \mathcal{N}(0, C) \end{cases}$$

Previous belief
$$p(x_t|u_{0:t},z_{0:t}) = \mathcal{N}(\mu_{t|0:t},\Sigma_{t|0:t})$$

Belief Update
$$p(x_{t+1}|u_{0:t+1},z_{0:t}) = \mathcal{N}(A\mu_{t|0:t} + Bu_{t+1},A\Sigma_{t|0:t}A^T + Q_{t+1})$$

Intuition: Scale and shift the mean according to dynamics, uncertainty grows quadratically!

Previous belief $p(x_t|u_{0:t},z_{0:t}) = \mathcal{N}(\mu_{t|0:t},\Sigma_{t|0:t})$

Belief Update $p(x_{t+1}|u_{0:t+1},z_{0:t}) = \mathcal{N}(A\mu_{t|0:t} + Bu_{t+1},A\Sigma_{t|0:t}A^T + Q_{t+1})$

Intuition: Scale and shift the mean according to dynamics, uncertainty grows!

Intuition Behind Prediction Step

Previous belief

$$p(x_t|u_{0:t}, z_{0:t}) = \mathcal{N}(\mu_{t|0:t}, \Sigma_{t|0:t})$$

Belief Update

$$p(x_{t+1}|u_{0:t+1}, z_{0:t}) = \mathcal{N}(A\mu_{t|0:t} + Bu_{t+1}, A\Sigma_{t|0:t}A^T + Q_{t+1})$$

Intuition: Scale and shift the mean according to dynamics, uncertainty grows!

Belief at x_t

Belief post dynamics → shifted mean, scaled and shifted variance

Integrate the effect of an observation using sensor model, after dynamics

$$z_{t+1} = Cx_{t+1} + \delta_{t+1} \qquad \delta_{t+1} \sim \mathcal{N}(0, R_{t+1})$$
$$p(z_{t+1}|x_{t+1}) = \mathcal{N}(Cx_{t+1}, R_{t+1})$$

Integrate the effect of an observation using sensor model, after dynamics

$$z_{t+1} = Cx_{t+1} + \delta_{t+1} \qquad \delta_{t+1} \sim \mathcal{N}(0, R_{t+1})$$
$$p(z_{t+1}|x_{t+1}) = \mathcal{N}(Cx_{t+1}, R_{t+1})$$

$$\frac{Bel(x_{t+1})}{p(x_{t+1}|u_{0:t+1},z_{0:t+1})} \propto p(z_{t+1}|x_{t+1})p(x_{t+1}|u_{0:t+1},z_{0:t})$$

$$\begin{cases} X \sim \mathcal{N}(\mu, \Sigma) \\ Y = CX + B + \delta \implies X | Y = y_0 \sim \mathcal{N}(\mu + K(y_0 - C\mu), (I - KC)\Sigma) \\ \delta \sim \mathcal{N}(0, R) \end{cases}$$

$$K = \Sigma C^T (C\Sigma C^T + R)^{-1}$$

Integrate the effect of an observation using sensor model, after dynamics

$$p(x_{t+1}|u_{0:t+1}, z_{0:t}) = \mathcal{N}(\mu_{t+1|0:t}, \Sigma_{t+1|0:t})$$

$$z_{t+1} = Cx_{t+1} + \delta_{t+1}$$

$$\delta_{t+1} \sim \mathcal{N}(0, R_{t+1})$$

$$p(x_{t+1}|u_{0:t+1}, z_{0:t}) = \mathcal{N}(\mu_{t+1|0:t}, \Sigma_{t+1|0:t})$$

$$z_{t+1} = Cx_{t+1} + \delta_{t+1}$$

$$\delta_{t+1} \sim \mathcal{N}(0, R_{t+1})$$

$$\begin{cases} X \sim \mathcal{N}(\mu, \Sigma) \\ Y = CX + B + \delta \\ \delta \sim \mathcal{N}(0, R) \end{cases} \Rightarrow X|Y = y_0 \sim \mathcal{N}(\mu + K(y_0 - C\mu), (I - KC)\Sigma)$$

$$K = \Sigma C^T (C\Sigma C^T + R)^{-1}$$

Previous belief
$$p(x_{t+1}|u_{0:t+1},z_{0:t}) = \mathcal{N}(\mu_{t+1|0:t},\Sigma_{t+1|0:t}) \quad \text{Computed from dynamics step}$$
 Updated belief
$$p(x_{t+1}|u_{0:t+1},z_{0:t+1}) \\ = \mathcal{N}(\mu_{t+1|0:t} + K_{t+1}(z_{t+1} - C\mu_{t+1|0:t}), (I - K_{t+1}C)\Sigma_{t+1|0:t}) \\ K_{t+1} = \Sigma_{t+1|0:t}C^T(C\Sigma_{t+1|0:t}C^T + R)^{-1}$$

Previous belief $p(x_{t+1}|u_{0:t+1},z_{0:t})=\mathcal{N}(\mu_{t+1|0:t},\Sigma_{t+1|0:t})$ Computed from dynamics step

Updated belief $p(x_{t+1}|u_{0:t+1},z_{0:t+1})$

$$= \mathcal{N}(\mu_{t+1|0:t} + K_{t+1}(z_{t+1} - C\mu_{t+1|0:t}), (I - K_{t+1}C)\Sigma_{t+1|0:t})$$

Intuition: Correct the update linearly according to measurement error from expectation, shrink uncertainty accordingly

Intuition Behind Correction Step

- Previous belief
- New Measurement

$$p(x_{t+1}|u_{0:t+1}, z_{0:t+1}) = \mathcal{N}(\mu_{t+1|0:t} + K_{t+1}(z_{t+1} - C\mu_{t+1|0:t}), (I - K_{t+1}C)\Sigma_{t+1|0:t})$$

$$K_{t+1} = \Sigma_{t+1|0:t}C^{T}(C\Sigma_{t+1|0:t}C^{T} + R)^{-1}$$

For the sake of simplicity, let's say C = I

$$K_{t+1} = \frac{\sum_{t+1|0:t}}{\sum_{t+1|0:t} + R}$$

Corrects belief based on measurement

- → Average between mean and measurement based on K
- → Scale down uncertainty based on K

Unpacking the Kalman Gain

Previous belief
$$p(x_{t+1}|u_{0:t+1},z_{0:t})=\mathcal{N}(\mu_{t+1|0:t},\Sigma_{t+1|0:t})$$
 Computed from dynamics step

Updated belief
$$p(x_{t+1}|u_{0:t+1}, z_{0:t+1})$$

$$= \mathcal{N}(\mu_{t+1|0:t} + K_{t+1}(z_{t+1} - C\mu_{t+1|0:t}), (I - K_{t+1}C)\Sigma_{t+1|0:t})$$

$$K_{t+1} = \Sigma_{t+1|0:t} C^T (C \Sigma_{t+1|0:t} C^T + R)^{-1}$$

Case 1: Very noisy sensor, $R >> \Sigma$

For the sake of simplicity, let's say C = I

$$K_{t+1} = \frac{\sum_{t+1|0:t}}{\sum_{t+1|0:t} + R}$$

Case 2: Deterministic sensor, R = 0

Kalman Filter Algorithm

Dynamics/Prediction (given some u)

Measurement/Correction (given some z)

Estimate
$$Bel(x_{t+1})$$

$$p(x_{t+1}|u_{0:t+1}, z_{0:t+1})$$

$$= \mathcal{N}(\mu_{t+1|0:t} + K_{t+1}(z_{t+1} - C\mu_{t+1|0:t}), (I - K_{t+1}C)\Sigma_{t+1|0:t})$$

Kalman Filter in Action

Kalman Filter Summary

• Highly efficient: Polynomial in measurement dimensionality k and state dimensionality n: $O(k^{2.376} + n^2)$

Matrix Inversion (Correction)

Matrix Multiplication (Prediction)

$$K_{t+1} = \Sigma_{t+1|0:t} C^T (C \Sigma_{t+1|0:t} C^T + R_{t+1})^{-1} \qquad p(x_{t+1}|z_{0:t}, u_{0:t+1}) \sim \mathcal{N}(A\mu_{t|0:t} + Bu_t, A\Sigma_{t|0:t} A^T + Q_t)$$

- Optimal for linear Gaussian systems!
- Most robotics systems are nonlinear!

Why should we care?

Still a very widely used technique for estimation/localization/mapping in real problems

Class Outline

