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Logistics

m Project 2 underway, start early!
m First seeded paper discussion groups will be sent out Saturday for
next Friday

m Post questions, discuss any issues you are having on Ed.

m Students with no access to 002, e-mail us with your student ID.

m Students that have not been added to the class, email
abhgupta@cs.washington.edu with the subject-line “Waitlisted for
CSE478"



mailto:abhgupta@cs.Washington.edu

Recap



Let’s change our way of thinking

Mostly empty

>
Second [Sll S1/ 52/ S10s S40s S40s Sa0s Sssy S55]
Dimension \ //
2 Keep a list of only the states with likelihood, with
! \\// | number of repeat instances proportional to probability
Third %
Riinensiog Dimension No discretization per dimension!



Bringing this Back to Estimation — Belief Distribution

Let’s consider the Bayesian filtering update

Bel(x;) = nP(zt|xt)/P(:z:t|ut,xt_l)Bel(xt_l)dxt_l

\ /

Represent the belief with a set of particles! Each is a hypothesis of what the state might be.

Higher likelihood regions have more particles

J\




How do we “propagate” belief across timesteps with particles?

Bayes Filter Bel(xy) = nP(z|xs) /P(33t|ut,$t—1)Bel(ﬂi‘t—1)dﬂit—1

Dynamics Update Bel(z;) = /p(xt\ut,a:t_l)Bel(xt_l)d:Et_l
\

Measurement Correction Bel(aft) — UP(ZtILCt)B—Gl(ZL’t)

How do we sample from the product of two distributions?

How do we compute conditioning/normalization with particles?



Dynamics Update:

Bel(x;) = /P(xt\ut_l,a:t_l)Bel(xt_l)dajt_l

Sample forward using the dynamics model:
1. No gaussian requirement
2. No linearity requirement, just push forward distribution

- -
- -
- -
- -
- ~
~ <
~

A

- S< A
~
A Y
7
7
,
’
4
D N S
. O -~
\ -
\~~~_
T T T e e e __ /——
= = m e e e e e m e mo .>O
00000 =< f’ < >
» S~a - hal »
o=
————— S
O~ Q
p 4
~ - /
_________ ad
——————————— 7
7
~
\\
-
- - v

~
~ -
~ -
~ -
~ -
T~ -~ -
- -



Measurement Update

Bel(x,) = nP(z|x;)Bel(x;) Pl

Bel(z,) = — L (#lz0) Bel(1) TS, Pl
Y [ P(z)w) Bel(xy)day

© xp(z|x) O

O
o ‘ > e
o ° > O

Reweight particles according to measurement likelihood
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What happens across multiple steps?
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Importance weights get multiplied at each step



Why might this be bad?

Importance weights get multiplied at each step

O A A @
O o
Q N

1. May blow up and get numerically unstable over many steps
2. Particles stay stuck in unlikely regions

TRUE POSTERIOR | TRUE POSTERIOR | TRUE POSTERIOR




Resampling

Given: Set S of weighted samples (from measurement step)
with weights w;

Wanted : unweighted random sample, where the probability
of drawing x; is given by w;.

Typically done n times with replacement to generate new
sample set §”.



Resampling

® Spin a roulette wheel

® Space according to weights

® Pick samples based on where it lands

Here are your random numbers:

0.97
0.26

col o)}



Resampling in a particle filter

Bel(xzy) = nP(2|2:) Bel(x) P(z|)

Bel(x:) = Pzila)Bel(zy) ™~ 2 P(z]a7)
Y [ P(z|wy) Bel(xy)day

O csam >
esampling

o
OQ oo

Resample particles from weighted distribution to give unweighted set of particles



Original: Normalized Importance Sampling
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New: Normalized Importance Sampling with Resampling

Here are your random numbers:
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New: Normalized Importance Sampling with Resampling
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Overall Particle Filter algorithm — v2

Dynamics/Prediction

Measurement/Correction

Initial Prior
p(xo)

Estimate B—el(gjt)

Sample particles from p(z¢|xs 1, ur_1)

v

Estimate  Bel(x¢)

1. Weight samples by p(zt|att)

2. Resample particles to get unweighted set

AN
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Problem 1: Two Room Challenge

Particles begin equally distributed, no motion or observation

All particles migrate to one room!



Reason: Resampling Increases Variance

50% prob. of resampling particle from Room 1 vs Room 2
31% prob. of preserving 50-50 particle split

L LG

All particles migrate to one room!



ldea 1: Judicious Resampling

s Key idea: resample less often! (e.g., if the robot is stopped,
don’t resample). Too often may lose particle diversity,

infrequently may waste particles

= Common approach: don’t resample if weights have low
variance

= Can be implemented in several ways: don’t resample when...

= ...all weights are equal
= ..weights have high entropy
= ..ratio of max to min weights is low



ldea 2: Low-Variance Resampling

Sample one random number r ~ [O, ﬁ]

Covers space of samples more systematically (and more
efficiently)

If all samples have same importance weight, won’t lose
particle diversity




Other Practical Concerns

= How many particles is enough?

= Typically need more particles at the beginning (to cover possible states)

= KLD Sampling (Fox, 2001) adaptively increases number of particles when state
uncertainty is high, reduces when state uncertainty is low

m Particle filtering with overconfident sensor models
= Squash sensor model prob. with power of 1/m (Lecture 3)

= Sample from better proposal distribution than motion model
=« Manifold Particle Filter (Koval et al., 2017) for contact sensors

= Particle starvation: no particles near current state


https://proceedings.neurips.cc/paper/2001/file/c5b2cebf15b205503560c4e8e6d1ea78-Paper.pdf
https://www.cs.cmu.edu/~kaess/pub/Koval17icra.pdf

MuSHR Localization Project

Implement kinematic car motion model

Implement different factors of single-beam sensor
model

Combine motion and sensor model with the Particle
Filter algorithm
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Can we get closed form updates for Bayesian Filtering?

Need to choose form of probability distributions

= Dynamics (Prediction)

Bel(xy) = /p(azt|ut,l,"lxt_1)Bel(:13t_1)da:t_l

= Measurement (Correction)

Bel(z,) = nP(z|x:)Bel(x;)

Tractable computation of Bayesian posteriors



Solution: Linear Gaussian Models

= Dynamics (Prediction)

B—el(azt) — /p(:ct|ut,xt_l)Bel(:zzt_l)dazt_l

= Measurement (Correction)

Bel(z,) = nP(z|x{)Bel(x;)

Model as Linear Gaussian



Let’s take a little Gaussian detour



Gaussians (1D)

=  Gaussian with mean () and standard deviation (O)

X ~N(p,0?)

T — 2
p(x; p,0°) = G\/lﬂexp(—( 205) )

p(x; p, 0?)

34.1% | 34.1%




Gaussians (2D) — we won’t get too deep into this!

p(x) = N(1,%) y
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2D examples
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Important Identities: Gaussians

[ X ~N(p,X)
Forward propagation ! Y=AX+B+e — YNN(A,LL+B,AEAT+Q)
e ~N(0,Q)

\

(X ~ N(p, %)
Conditioning Y =CX+B4+5§ — XY =yo~N(u+ K(yo— Cu),(I — KC)X)
5~ N0, R)

= Marginalization and conditioning in Gaussians results in Gaussians

= We stay in the “Gaussian world” as long as we start with Gaussians and perform
only linear transformations.



Discrete Kalman Filter

Kalman filter = Bayes filter with Linear Gaussian dynamics and sensor models

Lt—1 Tt Lt4+1




Discrete Kalman Filter: Scalar Version

Estimates the state x of a discrete-time controlled
process that is governed by the linear stochastic
difference equation

Ty = AQxi_1 + but —+ €4
e: ~ N(0,q) \
with a measurement Linear Gaussian

Zt:C.’L‘t—Fé’t‘ //

5tNN(O,T)




Discrete Kalman Filter: Matrix Version

Estimates the state x of a discrete-time controlled
process that is governed by the linear stochastic
difference equation

Lt — Ail?t_l -+ But —+ €4
e ~ N(0,Q) \
with a measurement Linear Gaussian

Zt:CfEt—|—5t ‘ /

575 NN(O,R)




Components of a Kalman Filter

A Matrix (n x n) that describes how the state evolves
from t-1 to t without controls or noise.

B Matrix (n x ) that describes how the control u,,
changes the state from t-7to t

C Matrix (k x n) that describes how to map the state x, to
an observation z,.

€4 Random variables representing the process and
measurement noise that are assumed to be
5 independent and normally distributed with covariance
t R and Q respectively.



) Goal of the Kalman Filter: Same as Bayes Filter

Belief

Q@ @ e

|dea: recursive update

_ L
Lt—1 Lt t+1 ocp(zt’ajt)/p(fb‘t‘ilﬁt_l,Ut)p(xt—l‘fzo:t—lauO:t—l)

}
1 3 Measurement
@ @ @ Dynamics
Recursive Belief

2 step process:

= Dynamics update (incorporate action)

= Measurement update (incorporate sensor reading)



Bayes Filters

Apply Markov to get a recursive update!

Step 0. Start with the belief at time step t-1
bel(xi_1)

Step 1: Prediction - push belief through dynamics given action

bel :Bt ZP wt|ut,$t 1)561(5’% 1)

Linear Gaussian

Step 2: Correction - apply Bayes rule given

bel(x) = nP(z|z:)bel(x;)



Linear Gaussian Systems: Initialization

= Initial belief is normally distributed:
Bel(ili()) — N(/LQ, ZO)

= Bel(x;) atany step tis: N (f¢)0.¢, 2¢(0:t)

= Bel(x;) atany step tis: N(:ut|0:t—17 Z15|():15—1)



Linear Gaussian Systems: Prediction

= Integrate the effect of one action under the dynamics, before measurement comes in

ri11 = Axy + Bugy1 + €141 err1 ~ N(0,Q¢i1)
p(Tig1|Te, upr1) = N(Azy + Bugyr, Qir1)

B—fil(ilft+1) Bel (xt)

p($t+1|20:t7u0:t—|—1) — /p(xt’UO:taZO:t)p($t+1‘ut+1axt)d$t

@ Gaussian, easy!



Linear Gaussian Systems: Prediction

Integrate the effect of one action under the dynamics, before measurement comes in

Ti+1 = Axy + Bug1 + €141

p(xeat|re, uer1) = N(Azy + Bugyr, Qeyn)

B—fil(ilft+1) Bel (xt)

€rr1 ~ N(0,Qi41)

p($t+1|20:tauozt+1) — /P(SUt’UO:t,Zozt)p(33t+1‘ut+1,fl3t)dﬂ3t

-

1

B

Y =AX +B+e¢ = Y ~N(Au+ B, ASA” + Q)
GNN(O7Q)

J

Gaussian, easy!



Linear Gaussian Systems: Prediction

Integrate the effect of one action under the dynamics, before measurement comes in

g A
p<xt‘u0:ta Zo:t) — N(:ut|0:t7 Z1&|0:t) rX ~ N(/L, E)
Tip1 = Axy + Bugyr + €441 (Y =AX+B+e = Y ~N(Au+ B,ASAT + Q)
€41~ N(0,Qey1) e~ N(0,C)

\_

J

Previous belief p(xt ’UO:t, Zo;t) = N(/Ltyo;t, Et\ozt)

Belief Update (@1 |uoe41, 20:4) = N(Aut|o:t + Bugy1, A2t|0:tAT + Q1)

Intuition: Scale and shift the mean according to dynamics, uncertainty grows quadratically!



Linear Gaussian Systems: Prediction

Previous belief p(xe|uo:t, 20:¢) = N (thejo:4, Dejo:t)
Belief Update (T y1|Uoit1, 20:t) = N(A,uﬂo:t + Bugy1, AZt|OztAT + Qt11)

Intuition: Scale and shift the mean according to dynamics, uncertainty grows!

Valocify volocify



Intuition Behind Prediction Step

Previous belief p(xe|uo:t, 20:¢) = N (thejo:4, Dejo:t)
Belief Update P(Tiy1|vot41, 20:4) = N(A/Lﬂo;t + Bugy1, Azt|0:tAT + Qt11)

Intuition: Scale and shift the mean according to dynamics, uncertainty grows!

o‘ﬁ T T T T L} O'E

Belief at x; Belief post dynamics = shifted mean, scaled and shifted variance



Linear Gaussian Systems: Observations

= Integrate the effect of an observation using sensor model, after dynamics
21 = COTyyq1 + 011 Ot+1 ~ N(0, Ryy1)
pP(zi1|mi41) = N(Cxpyr, Reyr)

Bel(xt41) Bel(z411)
p($t+1 \Uozt+17 Zo:t+1) X p(zt+1 \$t+1)p($t+1 \uozt+1, Zo:t)

Gaussian, easy to normalize

@ Slightly harder than the dynamics step!




Linear Gaussian Systems: Observations

= Integrate the effect of an observation using sensor model, after dynamics

zt41 = Cwppq +0pp1

5t—|—1 ™~ N(07 Rt—|—1)

P(zeg1|Tis1) = N(Crpqr, Riyr)

Bel(zi11)

B—el(azH_l)

p($t+1 |U0:t+17 Zo:t+1) X p(zt+1 \$t+1)p($t+1 \uozt+1, Zo:t)

-

Conditioning

\_

(X~ N(p, %)

5~ N(0,R)

K=xctczct +Rr)™

~

Y =CX+B+6 = X|Y=yo~Np+K(y—Cup),I - KC)X)

J




Linear Gaussian Systems: Observations

= Integrate the effect of an observation using sensor model, after dynamics

p(Tes1|Uot+1, 20:) = N(Mt+1|o:t, Yit41]0:) C (X ~ N(u, X) )

zt41 = Cwpyr + 041 lY=CX+B+6§ — XIY=y~Np+ Ky —Cn),(I-KC))
K=xct(czct + rR)™

6t41 ~ N(0, Ryp1) L |0 ~N(0,R) ( +R) )

Previous belief p(xt+1 |u0;t+1, Zo;t) = N(Mt_|_1‘0:t, Zt+1|0:t) Computed from dynamics step

Updated belief P(Teg1|®0t41,5 20:t41)
= N (110t + Ki41(2e41 — Clig1jo:e)s (I — K1 C)Xi1110:t)

K = Et—|—1|0:tCT(Czt+1|0:tCT + R)_l




Linear Gaussian Systems: Observations

Previous belief p(:l?t+1 |u0;t+1, ZO:t) = N(Nt+1|0:t7 Et—|—1|0:t) Computed from dynamics step
Updated belief P(T41|U0:t41, 20:4+1)
= N(Mt+1|0:t + Kit1(ze41 — C,ut—l—1|0:t)a (- Kt+10)2t+1|0:t)

Intuition: Correct the update linearly according to measurement error from expectation,
shrink uncertainty accordingly

estimatc L
mwpr estimate 2

\mw covayiance




Intuition Behind Correction Step

0z T T T T T Az

B Previous belief ]

ok

New Measurement

Q05 -

0

P(Te41|U0:t41, 20:041) = N(Mt+1|o:t + Kip1(2e41 — Cﬂt+1|0:t)7 (I - Kt+1c>zt+1|0:t> oz
K11 = 541110:C" (C8i41)04C" + R) ™!

For the sake of simplicity, let's say C = |

| “
Et—l—l|0:t a1l !
Kiiq =

Yir1)0:¢ T R \
Corrects belief based on measurement ) | | ~

- Average between mean and measurement based on K T
—> Scale down uncertainty based on K T




Unpacking the Kalman Gain

Previous belief p(:l?t+1 \u0:t+1, Zo;t) = N(Mt+1|0:t; Zt+1|0:t) Computed from dynamics step

Updated belief P(T41|U0:t41, 20:441)
- N(:U’t—i—1|0:t + Kt—l—l(zt—{—l - C/JJt—i—1|O:t)7 (I - Kt—}—lc)zt—l—lm:t)

K11 = 2111)0:4C" (Cp41)02C" + R) ™!

Case 1: Very noisy sensor, R>>%

For the sake of simplicity, let's say C = |

Kt—l—l — Case 2: Deterministic sensor, R=0



Kalman Filter Algorithm

Initial Prior

p(CCO)

A

\ 4

Estimate B—el(ﬂft+1) A

Dynamics/Prediction P(eg1|uoi11, Z0:) = N (Apigjorr + Buegr, ASo A" + Qupa)
(given some u)

\_ J

4 )
Estimate Bel (CCt_|_1 )

Measurement/Correction

P($t+1 |U0:t+1> Zo:t+1)

_ = N(pet110:¢ + Ker1(2e41 — Cpiggajone), (I — Ker1C) X 4100:4) y

(given some z)




Kalman Filter in Action

Thrust Intensities Centroidal Momentum
Left Arm Right Arm Linear x Component Linear y Component Linear z Component
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Kalman Filter Summary

= Highly efficient: Polynomial in measurement
dimensionality k and state dimensionality n:
0(k2.376 + n2)

Matrix Inversion (Correction) Matrix Multiplication (Prediction)

Kyl = Et+1|0:tCT(Cthuuo:tCT + Rt—i—l)_l P(Tp41|20:45 Voit41) ~ N(A,Utm:t + Buy, A2t|0:tAT + Q)

s Optimal for linear Gaussian systems!

= Most robotics systems are nonlinear!



Why should we care?

Still a very widely used technique for estimation/localization/mapping in real problems
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