

Autonomous Robotics Winter 2025

Abhishek Gupta

TAs: Carolina Higuera, Entong Su, Bernie Zhu

Class Outline

Logistics

- Project 1 due on Jan 21 EOD
- Project 2 released next week

- Post questions, discuss any issues you are having on Ed.
- Students with **no** access to 002, e-mail us with your student ID.
- Students that have not been added to the class, email <u>abhgupta@cs.washington.edu</u> with the subject-line "Waitlisted for CSE478"

Recap

Motion Model

$$\theta_t = \theta_{t-1} + \Delta\theta = \theta_{t-1} + \frac{v}{L} \tan \delta \Delta t$$

$$x_t = x_{t-1} + \Delta x = x_{t-1} + \frac{L}{\tan \delta} (\sin \theta_t - \sin \theta_{t-1})$$

$$y_t = y_{t-1} + \Delta y = y_{t-1} + \frac{L}{\tan \delta} (\cos \theta_{t-1} - \cos \theta_t)$$

Measurement Model

$$P(z_t|x_t, m) = P(z_t^1, z_t^2, \cdots, z_t^K|x_t, m)$$

$$= \prod_{k=1}^K P(z_t^k | x_t, m)$$

Measurement Model

Lecture Outline

Why is the Bayes filter challenging to implement?

Key Idea: Apply Markov to get a recursive update!

Step 0. Start with the belief at time step t-1

$$bel(x_{t-1})$$

Step 1: Prediction - push belief through dynamics given action

$$\overline{bel}(x_t) = \sum P(x_t | \mathbf{u_t}, x_{t-1}) bel(x_{t-1})$$

Intractable due to discretization

Step 2: Correction - apply Bayes rule given measurement

$$bel(x_t) = \eta P(z_t|x_t)\overline{bel}(x_t)$$

How does discretization work for Bayesian filters?

X-COORDINATE - Discretize into K bins

Y-COORDINATE

- Discretize into K bins

Overall K³ bins

HEADING

- Discretize into K bins

Exponentially expensive with dimension for each summation

Many of these bins will be empty!

How can we do better?

Let's change our way of thinking

 $[S_1, S_1, S_2, S_{10}, S_{40}, S_{40}, S_{40}, S_{55}, S_{55}]$

Keep a list of only the states with likelihood, with number of repeat instances proportional to probability

No discretization per dimension!

Is this even a useful/valid representation of belief?

Let's change our way of thinking

Is this even a useful/valid representation of belief?

Depends what we want to do with the probability distribution!

→ Typically we want to compute averages (expectations)

Downstream Usage of Estimated Probability Distributions

What do we actually intend to do with the belief $bel(x_{t+1})$?

→ Often times we will be evaluating the expected value

$$\mathbb{E}[f] = \int_{x} f(x)bel(x)dx$$

Mean position:

$$f(x) \equiv x$$

Probability of collision:

$$f(x) \equiv \mathbb{I}(x \in \mathcal{O})$$

Mean value / cost-to-go:

$$f(x) \equiv V(x)$$

Computing Expectations without Closed Form Likelihoods

Monte-Carlo Simulation

$$\mathbb{E}_{x \sim Bel(x_t)} [f(x)] = \int_x f(x) Bel(x) dx \approx \sum_x f(x) Bel(x)$$

Sample from the belief: $x_1, \cdots, x_N \sim Bel(x_t)$

$$\mathbb{E}_{x \sim Bel(x_t)} \left[f(x) \right] \approx \frac{1}{N} \sum_{i}^{N} f(x^{(i)})$$

Don't require closed form distributions (Gaussian/Beta, etc), just samples (particles)!

→ Replace fancy math by brute force simulation!!

Examples of Monte Carlo Estimation

$$\mathbb{E}[\mathbb{I}(x \in \mathcal{O})] = P(x \in \mathcal{O}) = \frac{\pi}{4} \approx \frac{1}{N} \sum \mathbb{I}(x^{(i)} \in \mathcal{O})$$

- 1. Sample points uniformly from unit square
- 2. Count number in quartercircle (i.e. $||x_i|| \le 1$)
- 3. Divide by N, multiply by 4

→ Exercise: What are other practical problems where this is useful?

Bringing this Back to Estimation – Belief Distribution

Let's consider the Bayesian filtering update

$$Bel(x_t) = \eta P(z_t|x_t) \int P(x_t|u_t, x_{t-1}) Bel(x_{t-1}) dx_{t-1}$$

Represent the belief with a set of particles! Each is a hypothesis of what the state might be.

Higher likelihood regions have more particles

How do we "propagate" belief across timesteps with particles?

$$Bel(x_t) = \eta P(z_t|x_t) \int P(x_t|u_t, x_{t-1}) Bel(x_{t-1}) dx_{t-1}$$

$$\overline{Bel}(x_t) = \int p(x_t|u_t, x_{t-1})Bel(x_{t-1})dx_{t-1}$$

Measurement Correction

$$Bel(x_t) = \eta P(z_t|x_t) \overline{Bel}(x_t)$$

How do we sample from the product of two distributions?

How do we compute conditioning/normalization with particles?

Lecture Outline

Particle Based Representations in Filtering

Particle Filter

Particle Filter

Particle Filter w/ Resampling

♦Practical Considerations

Dynamics Step: Propagating Belief Through Dynamics

$$Bel(x_t) = \eta P(z_t|x_t) \int P(x_t|u_t, x_{t-1}) Bel(x_{t-1}) dx_{t-1}$$

$$\overline{Bel}(x_t) = \int P(x_t|u_{t-1}, x_{t-1})Bel(x_{t-1})dx_{t-1}$$

How do we sample from the product of two distributions?

Treat each particle as point estimate of actual state and propagate through the dynamics

Propagating Belief Through Dynamics: Initial

Propagating Belief Through Dynamics: Robot Motion

$$\overline{Bel}(x_t) = \int P(x_t|u_{t-1}, x_{t-1})Bel(x_{t-1})dx_{t-1}$$
 Push samples forward according to dynamics

Take every x_{t-1} in previous belief, run motion model forward with x_{t-1} and u_t to get new particles

Dynamics Update:

$$\overline{Bel}(x_t) = \int P(x_t|u_{t-1}, x_{t-1})Bel(x_{t-1})dx_{t-1}$$

Sample forward using the dynamics model:

- 1. No gaussian requirement
- 2. No linearity requirement, just push forward distribution

How do we "propagate" belief across timesteps with particles?

Bayes Filter
$$Bel(x_t) = \eta P(z_t|x_t) \int P(x_t|u_t,x_{t-1}) Bel(x_{t-1}) dx_{t-1}$$

Measurement Correction

$$Bel(x_t) = \eta P(z_t|x_t) \overline{Bel}(x_t)$$

How do we compute conditioning/normalization with particles?

Sensor Information: Measurement Update

Can no longer just push forward with evidence, need to normalize

$$Bel(x_t) = \eta P(z_t|x_t)\overline{Bel}(x_t)$$

$$Bel(x_t) = \frac{P(z_t|x_t)\overline{Bel}(x_t)}{\int P(z_t|x_t)\overline{Bel}(x_t)dx_t}$$

Weight each particle - Can compute a per sample weight. Distribution represented as set of weighted samples

$$w_i = \frac{P(z_t|x_t^i)}{\sum_j P(z_t|x_t^j)}$$

Not ad hoc! → exactly the same as importance sampling

Detour: What is Importance Sampling?

How can we sample from a "complex" distribution p(x) using a simple distribution q(x)?

- 1. Sample from an (easy) proposal distribution
- 2. Reweight samples to match the target distribution

Don't know how to sample from target!

1. Sample from an (easy) proposal distribution

- 1. Sample from an (easy) proposal distribution
- 2. Reweight samples to match the target distribution

$$\begin{split} \mathbb{E}_{x \sim p(x)}[f(x)] &= \sum p(x)f(x) \\ &= \sum p(x)f(x)\frac{q(x)}{q(x)} \\ &= \sum q(x)\frac{p(x)}{q(x)}f(x) \\ &= \mathbb{E}_{x \sim q(x)}\left[\frac{p(x)}{q(x)}f(x)\right] \\ \\ \text{IMPORTANCE} &\approx \frac{1}{N}\sum_{i=1}^{N}\left[\frac{p(x^{(i)})}{q(x^{(i)})}f(x^{(i)})\right] \end{split}$$

Expected value with p(x)

Expected value with q(x)

Monte Carlo estimate

Measurement Update with Importance Sampling

Target Distribution: Posterior

$$Bel(x_t) = \eta P(z_t|x_t) \int P(x_t|u_t, x_{t-1}) Bel(x_{t-1}) dx_{t-1}$$

Proposal Distribution: After applying motion model

$$\overline{Bel}(x_t) = \int P(x_t|u_t, x_{t-1})Bel(x_{t-1})dx_{t-1}$$

Measurement Update with Importance Sampling

$$Bel(x_t) = \eta P(z_t|x_t) \int P(x_t|u_t, x_{t-1}) Bel(x_{t-1}) dx_{t-1}$$

$$\overline{Bel}(x_t) = \int P(x_t|u_t, x_{t-1}) Bel(x_{t-1}) dx_{t-1}$$

Importance Weight (Ratio)

$$w = \frac{Bel(x_t)}{\overline{Bel}(x_t)} = \eta P(z_t|x_t)$$

Sensor Information: Importance Sampling

Can compute a weighted set of samples by weighting by (normalized) evidence

$$Bel(x_t) = \eta P(z_t|x_t)\overline{Bel}(x_t) \qquad w_i = \frac{P(z_t|x_t^i)}{\sum_j P(z_t|x_t^j)}$$

Measurement Update

$$Bel(x_t) = \eta P(z_t|x_t)\overline{Bel}(x_t)$$

$$Bel(x_t) = \frac{P(z_t|x_t)\overline{Bel}(x_t)}{\int P(z_t|x_t)\overline{Bel}(x_t)\overline{Bel}(x_t)dx_t}$$

$$w_i = \frac{P(z_t|x_t^i)}{\sum_j P(z_t|x_t^j)}$$

Reweight particles according to measurement likelihood

Normalized Importance Sampling

0.50

0.25

0.25

$$Bel(x_{t-1}) = \left\{ \begin{array}{ccc} x_{t-1}^{(1)} & x_{t-1}^{(2)} & \cdots & x_{t-1}^{(M)} \\ w_{t-1}^{(1)} & w_{t-1}^{(2)} & \cdots & w_{t-1}^{(M)} \end{array} \right\}$$

Normalized Importance Sampling

$$\bar{x}_t^{(i)} \sim P(x_t | u_t, x_{t-1})$$

Normalized Importance Sampling

$$w_t^{(i)} = P(z_t | \bar{x}_t^{(i)}) w_{t-1}^{(i)}$$

Normalized Importance Sampling

0.125

0.625

$$w_t^{(i)} = \frac{w_t^{(i)}}{\sum_i w_t^{(i)}}$$

Normalized Importance Sampling

0.125

0.625

$$Bel(x_t) = \left\{ \begin{array}{ccc} \bar{x}_t^{(1)} & \bar{x}_t^{(2)} & \cdots & \bar{x}_t^{(M)} \\ w_t^{(1)} & w_t^{(2)} & \cdots & w_t^{(M)} \end{array} \right\}$$

Overall Particle Filter algorithm – v1

Dynamics/Prediction

Measurement/Correction

Estimate
$$\overline{Bel}(x_t)$$

Sample particles from $p(x_t|x_{t-1},u_t)$ propagating weights

Estimate
$$Bel(x_t)$$

- 1. Weight samples by $p(z_t|x_t)$
- 2. Normalize weights

Lecture Outline

Particle Based Representations in Filtering

Particle Filter

Particle Filter w/ Resampling

Practical Considerations

What happens across multiple steps?

Importance weights get multiplied at each step

Why might this be bad?

Importance weights get multiplied at each step

- 1. May blow up and get numerically unstable over many steps
- 2. Particles stay stuck in unlikely regions

Resampling

Given: Set S of weighted samples (from measurement step)
 with weights w_i

• Wanted: unweighted random sample, where the probability of drawing x_i is given by w_i .

Typically done n times with replacement to generate new sample set S'.

Resampling

Here are your random numbers:

0.97

0.26

- Spin a roulette wheel
- Space according to weights
- Pick samples based on where it lands

Resampling in a particle filter

$$Bel(x_t) = \eta P(z_t|x_t)\overline{Bel}(x_t)$$

$$Bel(x_t) = \frac{P(z_t|x_t)\overline{Bel}(x_t)}{\int P(z_t|x_t)\overline{Bel}(x_t)dx_t} w_i = \frac{P(z_t|x_t^i)}{\sum_j P(z_t|x_t^j)}$$
Resampling

Resample particles from weighted distribution to give unweighted set of particles

Original: Normalized Importance Sampling

0.125

0.625

$$Bel(x_t) = \left\{ \begin{array}{ccc} \bar{x}_t^{(1)} & \bar{x}_t^{(2)} & \cdots & \bar{x}_t^{(M)} \\ w_t^{(1)} & w_t^{(2)} & \cdots & w_t^{(M)} \end{array} \right\}$$

New: Normalized Importance Sampling with Resampling

0.250

Here are your random numbers:

0.26

New: Normalized Importance Sampling with Resampling

$$x_t^{(i)} \sim w_t^{(i)}, \ Bel(x_t) = \left\{ \begin{array}{ccc} x_t^{(1)} & \cdots & x_t^{(M)} \\ \frac{1}{M} & \cdots & \frac{1}{M} \end{array} \right\}$$

Overall Particle Filter algorithm – v2

Dynamics/Prediction

Measurement/Correction

2. Resample particles to get unweighted set

Lecture Outline

Particle Based Representations in Filtering

Particle Filter

Particle Filter w/ Resampling

Practical Considerations

Problem 1: Two Room Challenge

Particles begin equally distributed, no motion or observation

All particles migrate to one room!

Reason: Resampling Increases Variance

50% prob. of resampling particle from Room 1 vs Room 2 31% prob. of preserving 50-50 particle split

All particles migrate to one room!

Idea 1: Judicious Resampling

- Key idea: resample less often! (e.g., if the robot is stopped, don't resample). Too often may lose particle diversity, infrequently may waste particles
- Common approach: don't resample if weights have low variance
- Can be implemented in several ways: don't resample when...
 - ...all weights are equal
 - ...weights have high entropy
 - ...ratio of max to min weights is low

Idea 2: Low-Variance Resampling

- Sample one random number $r \sim \left[0, \frac{1}{M}\right]$
- Covers space of samples more systematically (and more efficiently)
- If all samples have same importance weight, won't lose particle diversity

Other Practical Concerns

- How many particles is enough?
 - Typically need more particles at the beginning (to cover possible states)
 - KLD Sampling (Fox, 2001) adaptively increases number of particles when state uncertainty is high, reduces when state uncertainty is low
- Particle filtering with overconfident sensor models
 - Squash sensor model prob. with power of 1/m (Lecture 3)
 - Sample from better proposal distribution than motion model
 - Manifold Particle Filter (Koval et al., 2017) for contact sensors
- Particle starvation: no particles near current state

MuSHR Localization Project

Implement kinematic car motion model

Implement different factors of single-beam sensor model

 Combine motion and sensor model with the Particle Filter algorithm

Class Outline

